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Rhodium(II)-catalyzed multicomponent assembly
of α,α,α-trisubstituted esters via formal insertion of
O–C(sp3)–C(sp2) into C–C bonds
Dan Ba1, Si Wen1, Qingyu Tian1, Yanhui Chen1, Weiwei Lv1 & Guolin Cheng 1✉

The direct cleavage of C(CO)−C single bonds, delivering otherwise inaccessible compounds,

is a significant challenge. Although the transition metal-catalyzed insertion of functional

groups into C(CO)−C bonds has been studied, strained ketone substrates or chelating

assistance were commonly required. In this article, we describe a rhodium(II)-catalyzed

three-component reaction of 1,3-diones, diazoesters, and N,N-dimethylformamide (DMF),

leading to an unusual formal insertion of O–C(sp3)–C(sp2) into unstrained C(CO)−C bonds.

This procedure provides a rapid entry to a gamut of otherwise inaccessible α,α,α-trisub-
stituted esters/amide from relatively simple substrates in a straightforward manner. 55

examples of highly decorated products demonstrate the broad functional group tolerance and

substrate scope. The combination of control experiments and isotope-labeling reactions

support that O, C(sp3), and C(sp2) units derive from 1,3-diones, diazoesters, and DMF,

respectively.
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Ketones are widely present in natural products and synthetic
molecules, and are one of the most fundamental feedstocks
in organic synthesis. But while there are many reactions

involving the α-functionalization and transformation of carbonyl
group of ketones, the selective and catalytic cleavage of C(CO)−C
single bonds is still a significant challenge1–26. Especially, the
direct insertion of functional groups into C(CO)−C single bonds,
enabling the formation of otherwise inaccessible compounds, is
considerably appealing27. For example, the traditional Baeyer−
Villiger reaction28 and Büchner−Curtius−Schlotterbeck reac-
tion29–32 could directly insert one-atom into C(CO)−C bonds to
give esters and homologated ketones, respectively (Fig. 1a).
Recently, transition metal-catalyzed chemoselective insertion of
unsaturated units (alkene, allene, alkyne, ketone, and imine) into
strained C(CO)−C bonds has been extensively studied by
Dong33–38, Murakami39,40, Cramer41,42, Martin43, Chi44, and
Krische (Fig. 1b)45. However, successful transformation for the
catalytic insertion of functional groups into unstrained C(CO)−C
bonds is extremely rare, wherein chelating assistance is
required46. In 2018, Bi and co-workers reported the first example
that involve the formal insertion of carbenoids into acyclic C(CO)
−C bonds using Ag catalyst (Fig. 1c)47,48. Undoubtedly, the
development of multiple functional groups, particularly deriving
from different molecules, and insertion into unstrained C(CO)
−C bonds is of great interest from both practical synthetic
applications and mechanistic investigations.

In the course of developing transition metal-catalyzed deacy-
lative cross-coupling of 1,3-diones with carbene precursors, we
unexpectedly observed the α,α,α-trisubstituted ester products by
using N,N-dimethylformamide (DMF) as solvent49–52. Herein we
report a multicomponent synthesis of α,α,α-trisubstituted esters
from 1,3-diones, diazoesters, and DMF using a rhodium(II) cat-
alyst, in which one-oxygen, one-carbon (sp3), and one carbon
(sp2), deriving from 1,3-diones, diazoesters, and DMF, respec-
tively, are inserted into C(CO)−C bonds (Fig. 1d). This process
represents a method for catalytic skeletal remodeling and a
complement to cut and sew strategies based on C−C bonds
cleavage27.

Results
Reaction development. We commenced our study by examining
the multicomponent reaction of 1,3-diphenylpropane-1,3-dione
(1a), methyl α-phenyldiazoacetate (2a), and DMF in the presence of
a catalytic amount of [RuCl2(p-cymene)]2 at ambient temperature
under air atmosphere for 12 h. The three-component reaction
product (3a) was obtained in 51% yield (Table 1, entry 1). The
structure of 3a was unambiguously verified by single-crystal X-ray
diffraction. We then explored the efficiency of the reaction using
different transition metal catalysts. Rh2(OAc)4 and AgOAc catalysts
could give the desired product in 65% and 60% yields, respectively
(entries 2 and 3), whereas no product was detected using Pd(OAc)2
and Cu(OAc)2 catalysts (entries 4 and 5). The choice of Rh salts was
also critical to this reaction. Rh(III) and Rh(I) salts exhibited
inferior reactivity compared to Rh(II) salt (entries 6 and 7). A
similar yield of 3a was obtained when Rh2(esp)2 was used instead of
Rh2(OAc)4, and no reaction occurred without a catalyst (entries 8
and 9). Remarkably, we noticed that 4 Å MS had a significant effect
on the reactivity and gave 3a in 85% yield (entry 10). Further
investigation of the loading of catalyst and additive, as well as
the concentration of the reaction afforded no better results (entries
11−15). A comparative yield was observed when the reaction was
carried out under nitrogen atmosphere (entry 16).

Interestingly, the carbenoid insertion (one-carbon insertion)
product was not detected in any of the investigations of the
reaction parameters47,48.

Substrate scope. With the optimized reaction conditions in hand,
we explored the substrate scope with respect to 1,3-diones. As
shown in Fig. 2a, 1,3-diarylpropane-1,3-diones bearing diverse
substituents (methyl, tert-butyl, methoxyl, halogen, and tri-
fluoromethyl) on their aryl rings smoothly underwent reactions
to generate the desired α,α,α-trisubstituted esters in 60−97%
yields (3b−p). The reactivity of this reaction was slightly
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Table 1 Optimization of the transition metal-catalyzed C
(CO)−C bonds insertion reaction (reaction conditions: 1a
(0.2 mmol), 2a (0.1 mmol), catalyst, and additive (50mg) in
DMF (0.5 mL) at room temperature under air atmosphere
for 12 h).
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Entry Catalyst (x mol %) Additive Yield (%)a

1 [RuCl2(p-cymene)]2 (5) — 51
2 Rh2(OAc)4 (2) — 65
3 AgOAc (10) — 60
4 Pd(OAc)2 (10) — 0
5 Cu(OAc)2 (10) — 0
6 [RhCp*Cl2]2 (2) — 24
7 [Rh(cod)Cl]2 (2) — Trace
8 Rh2(esp)2 (2) — 62
9 — — 0
10 Rh2(OAc)4 (2) 4 Å MS 85
11b Rh2(OAc)4 (2) 4 Å MS 70
12c Rh2(OAc)4 (2) 4 Å MS 81
13 Rh2(OAc)4 (1) 4 Å MS 67
14 Rh2(OAc)4 (5) 4 Å MS 84
15d Rh2(OAc)4 (2) 4 Å MS 80
16e Rh2(OAc)4 (2) 4 Å MS 84

aIsolated yields based on 2a.
b4 Å MS (25 mg) was used.
c4 Å MS (75mg) was used.
d1 mL of DMF was used.
eReaction was carried out under nitrogen atmosphere. esp: α,α,α′,α′-Tetramethyl-1,3-
benzenedipropionic acid.
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influenced by the electronic properties of the aryl rings. 1,3-dia-
rylpropane-1,3-diones with electron-donating groups (3b and 3c)
afforded lower yields of the corresponding products than those
with electron-withdrawing groups (3d−g). Importantly, the steric

hindrance of the aryl rings was not observed to affect the reaction
efficiency, and high yields were obtained when substrates with an
ortho-substitutent on phenyl rings were used (3l−n). Substrates
containing naphthalene and thiophene rings can be successfully
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converted to the desired products (3o and 3p). Remarkably, aryl
alkyl 1,3-diketones delivered the desired products in good to
excellent yields with exclusive chemoselectivity, and the C(CO)
−C bonds cleavage reactions were found to occur selectively at
the alkanoyl−carbon bonds (3q−z and 3aa−ae). It is worth
mentioning that the reaction is amenable to a wide range of
heteroaryl-substituted 1,3-diones (3ab−ad). Finally, a ferrocene
unit could be incorporated into the product with high efficiency
(3ae).

Subsequently, we examined the substrate scope of α-
aryldiazoacetates (Fig. 2b). We first set out to investigate the
effect of substituents on the phenyl rings of α-
phenyldiazoacetates. A variety of substituted methyl α-
phenyldiazoacetates reacted smoothly with 1a, furnishing the
desired products (4a−l) in moderated to good yields. The
electronic nature of the substituents on the phenyl rings had an
obvious effect on the yields, wherein electron-poor groups were
less favorable for this reaction (4e−h). In addition, the steric
hindrance of the substrates had a negligible effect on the reactivity
(4i−k). Moreover, α-naphthyl and α-indolyl diazoacetates were
proved to be suitable substrates, giving the corresponding product
in 67% and 89% yields, respectively (4m and 4n). We then
evaluated the generality of substituents on the ester moieties of α-
aryldiazoacetates. Gratifyingly, ethyl, isopropyl, benzyl, allyl,
cinnamyl, 3-hexenyl, homopropargyl, and 2-bromoethyl groups
were well tolerated, affording the desired products (4o−v) in
57–87% yields. Notably, α-phenyl-N-methyl-N-phenyl diazoace-
tamide underwent the reaction to provide α,α,α-trisubstituted
amide (4w) in 55% yield.

Despite the broad substrate scope shown herein (Fig. 2), this
transformation is not without limitations. For example, when
acetylacetone, ethyl acetoacetate, and N-methyl-3-oxobutanamide
were subjected to the reaction, no desired products were
observed. In addition, the donor−acceptor diazoesters are always
required, and α-alkyl and α-H diazoesters failed to give the
corresponding products. This might be explained by rapid
decomposition of the carbene precursors in the presence of a
rhodium(II) catalyst.

Synthetic applications. This three-component reaction was
amenable to a gram-scale synthesis. Ester (3a) could be produced
without modifying the standard conditions in 78% yield on a 5
mmol scale (Fig. 3). The ester and enone groups of the products
of this reaction offer handles for further elaboration. To illustrate
this point, several transformations of 3a were studied. First, the
1,4-dione products (5a and 5b) could be obtained via hydro-
lyzation/decarboxylation/isomerization cascaded reaction from
3a and 3ae, respectively in excellent yields, which could serve as a
precursor of Paal–Knorr pyrrole synthesis. Second, treatment of
3a with K2CO3/MeOH solution led to the transesterification/
Micheal addition product (6) in 90% yield. Moreover, the
reduction of 3a with NaBH4 proceeded efficiently to produce
alcohol (7).

Preliminary investigation of reaction mechanism. To gain an
insight into this Rh-catalyzed C(CO)−C bonds insertion reaction,
we performed mechanistic investigations. The reactions were not
inhibited by adding 2,2,6,6-tetramethyl-1-piperidinyloxy
(TEMPO) or 1,1-diphenylethylene (DPE), which indicated that a
radical pathway is unlikely to operate in this reaction system
(Fig. 4a). The result of the reaction of unsymmetrical 1,3-dione
(1af) and 2a demonstrated that the chemoselectivity was slightly
influenced by the electron density of aryl-groups, and the C(CO)
−C bond cleavage tended to occur at the
electron-poor moiety (Fig. 4b). Then, the reaction of 1a and 2a in

N,N-diethylformamide was carried out, leading to 3a in 77%
yield, whereas no product was formed using N,N-dimethylace-
tamide as solvent. When N-methyl-N-phenylformamide was used
as solvent, 3a and N-methylaniline could be isolated in 21% and
15% yields, respectively (Fig. 4c). Importantly, the reaction with
DMF-formyl-13C as solvent gave 3a-13C in 86% yield with 99%
incorporation (Fig. 4d). The result of the reaction with DMF-
dimethyl-13C2 indicated that the one carbon source could hardly
originate from the N-methyl group of DMF (Fig. 4e). Further-
more, we carried out deuterium-labeling experiments using
DMF-D7 (Fig. 4f). The full incorporation of deuterium was
observed at β position of the ester product (3a-D-1). These results
suggest that the formyl group of DMF may serve as the one-
carbon source53. Next, when the reaction was conducted in the
presence of 5 equiv of D2O, the incorporation of deuterium at γ
position of product (3a-D-2) was observed (Fig. 4g). Moreover,
5% of the oxygen atom of ester (3q-18O-1) was labeled using 2
equiv of H2

18O, and no 18O-labeled transesterification/Micheal
addition product (6) was detected (Fig. 4h). These reactions
indicate that water may be generated during the reaction process,
and the benzoyl oxygen atom of 3a originates from the in situ
generated water. Finally, when the 18O-labeled 1,3-dione (1q-
18O) was subjected to the reaction, 22% and 12% of the oxygen
atom of 3q-18O-2 and 6-18O were labeled, respectively, which
indicate that the oxygen atom at α position of 3q derives from
1,3-dione (Fig. 4i).

On the basis of the control experiments and literature reports,
we proposed a plausible reaction mechanism (Fig. 5). Initially, the
reaction of α-aryldiazoacetate (2) with Rh(II) catalyst generates
Rh(II) carbene complex (A), which is captured by enolate (B) to
give oxonium ylide (C). Then, the nucleophilic addition of
oxonium ylide (C) to DMF affords aldehyde intermediate (D),
followed by intramolecular aldol reaction of D, affording the
dihydrofuran intermediate (E). Finally, intermediate E could be
converted into α,α,α-trisubstituted esters (3 and 4) via a retro-
Baylis−Hillman-type reaction.

Discussion
In conclusion, we demonstrate an example of Rh(II)-catalyzed
formal insertion of O–C(sp3)–C(sp2) into unstrained C(CO)–C
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bonds. A preliminary mechanistic study reveals that O, C(sp3), and
C(sp2) units originate from 1,3-diones, diazoesters, and DMF,
respectively. This transformation proceeds under mild reaction
conditions and opens up a versatile synthetic entry to highly
decorated α,α,α-trisubstituted esters/amide from readily accessible
starting materials. The development of asymmetric version of this
procedure is currently under investigation in our laboratory.

Methods
General procedure for preparation of 3. A screw-capped reaction vial was
charged with 1,3-diones (1) (0.2 mmol, 2 equiv), methyl 2-(4-(tert-butyl)phenyl)-2-
diazoacetate (2a) (23.2 mg, 0.1 mmol, 1 equiv) 4 Å MS (50 mg), and DMF (0.5 mL),
followed by the addition of Rh2(OAc)4 (0.8 mg, 0.002 mmol, 2 mol%). The
resulting mixture was stirred at room temperature for 12 h, until TLC showed the
complete consumption of 2a. After the reaction was completed, the reaction
mixture was evaporated under reduced pressure to leave a crude mixture, which
was purified by column chromatography on silica gel (eluting with ethyl acetate/
petroleum= 1:10) to afford 3.

Data availability
All relevant data are available in Supplementary Information and from the authors. The
X-ray crystallographic coordinates for structures reported in this study have been
deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition
numbers CCDC: 1975575 (3a). These data can be obtained free of charge from The
Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
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