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Richard Semon and Donald Hebb are among the firsts to put forth the notion of
cell assembly—a group of coherently or sequentially-activated neurons—to represent
percept, memory, or concept. Despite the rekindled interest in this century-old
idea, the concept of cell assembly still remains ill-defined and its operational
principle is poorly understood. What is the size of a cell assembly? How should
a cell assembly be organized? What is the computational logic underlying Hebbian
cell assemblies? How might Nature vs. Nurture interact at the level of a cell
assembly? In contrast to the widely assumed randomness within the mature but
naïve cell assembly, the Theory of Connectivity postulates that the brain consists
of the developmentally pre-programmed cell assemblies known as the functional
connectivity motif (FCM). Principal cells within such FCM is organized by the
power-of-two-based mathematical principle that guides the construction of specific-
to-general combinatorial connectivity patterns in neuronal circuits, giving rise to a
full range of specific features, various relational patterns, and generalized knowledge.
This pre-configured canonical computation is predicted to be evolutionarily conserved
across many circuits, ranging from these encoding memory engrams and imagination
to decision-making and motor control. Although the power-of-two-based wiring and
computational logic places a mathematical boundary on an individual’s cognitive
capacity, the fullest intellectual potential can be brought about by optimized nature
and nurture. This theory may also open up a new avenue to examining how genetic
mutations and various drugs might impair or improve the computational logic of brain
circuits.

Keywords: nature vs. nurture, theory of connectivity, cell assembly, memory engram, generalization, imagination,
motor control, decision-making

Semon (1904) and Hebb (1949) are among the firsts to explore the concept of cell assembly: a group
of neurons that fire transiently or sequentially, as the computational primitives to encode an object,
concept, or memory engram (Figure 1A). This idea is now best summarized as ‘‘fire together, wire
together’’ (Löwel and Singer, 1992). But in the real brain, neurons fire spontaneously, typically
with huge variations even during resting periods. Such spontaneous firing variability make it
nearly impossible to determine real-time sequential firing patterns while billions of neurons in
the brain are not silent (Legendy, 1967; Palm, 1987; Harris et al., 2003; Harris, 2005; Dragoi and
Buzsáki, 2006; Pastalkova et al., 2008; Takehara-Nishiuchi and McNaughton, 2008; Buzsáki, 2010).
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FIGURE 1 | Hebbian cell-assembly and the proposed mechanisms of its formation. (A) Hebb illustrated his idea on the firing of the cell assembly as a way to
represent concept or percept as follows: “Any frequently repeated, particular stimulation will lead to the slow development of a “cell-assembly,” a diffuse structure
comprising cells in the cortex and diencephalon, capable of acting briefly as a closed system, delivering facilitation to other such systems and usually having a
specific motor facilitation. . . .The theory is evidently a form of connectionism. . .” Different numbers represent the different neural pathways. Arrows represent a simple
“assembly” of neural pathways and their firing chains or information flow. The drawing is adopted from Hebb (1949). (B) The mechanisms proposed to explain how
Hebbian cell assembly may form. The Selectionist Theory of Learning vs. Constructionist Theory of Learning offered the two major ideas for the growth and
maturation of cell assemblies, despite the fact that the internal organization of representational cell assembly was not defined.

IS CONNECTIVITY OF CELL ASSEMBLY
RANDOMIZED OR ORGANIZED?

Two influential theories have taken center stage in
explaining how the brain may develop assembly-level mental
representations of external worlds. One is termed the Selectionist
Theory of Learning (Changeux and Danchin, 1976; Edelman,
1993). The idea is that during development, the genetic
program initiates multiple waves of neural growth and synapse
overproduction and is then subjected to regressive selection, or
Neural Darwinism, during learning via synaptic pruning and
stabilization (Figure 1B). The other complementary theory is the
Constructivist Theory of Learning, which postulates that learning
interplays with the growth of neural connections over the
prolonged postnatal developmental period to gradually construct
representational networks (Figure 1B; Quartz and Sejnowski,
1997). By either assuming random patterns or overlooking what
the innate patterns should look like as Hebb had originally
done, both theories focused on the requirement of learning to
construct yet undefined ‘‘representational patterns’’. However,
models based on random connectivity face the difficulty of
explaining the natural emergence of innate cognitive abilities in
infants in the absence of apparent learning (Carruthers et al.,
2005).

THEORY OF CONNECTIVITY: CANONICAL
COMPUTATION OF CELL ASSEMBLIES

How should cell assembly organize itself so that incoming
information can be orderly and gradually converted into
memory, concepts, and flexible motor behavior? We previously
uncovered that CA1 cells used specific-to-general combinatorial
strategy to encode three distinct fearful experiences (Lin et al.,

2005, 2006; Tsien, 2007; Tsien et al., 2013). This seed of an
idea led to the Theory of Connectivity that the specific-to-
general combinatorial strategy may reflect the mathematical
principle underlying the general organization of cell assemblies
in the brain (Tsien, 2015). This theory described a ‘‘power-of-
two’’ based, specific-to-general wiring logic, and predicts a series
of pre-configured, conserved functional connectivity motifs
(FCMs) capable of discovering specific features, as well as all
possible relational patterns and abstract knowledge (Tsien, 2015,
2016).

This theory defines the size of a cell assembly: each
FCM consists of neural cliques (N) made of principal
neurons receiving specific afferent inputs, as well as those
principal neural cliques receiving progressively more convergent
inputs that are comprehensively and combinatorially arranged,
following the formula of N = 2i−1 (i for numbers of
distinct information inputs, N is the number of neural
cliques with all possible combinatorial connectivity patterns;
Figure 2A).

As the evolutionarily conserved cell-assembly wiring logic,
it should exhibit: (1) Anatomical prevalence—to be prevalent
across neural circuits, regardless of gross anatomical shapes;
(2) Species conservancy—to be conserved across different
animal species; and (3) Cognitive universality—to be used
as a universal computational logic for processing various
cognitive information, including appetitive, social and/or
fearful events. It should be noted that in the natural world
situation, as i become increasingly larger in more intelligent
animal species, N in a given cell-assembly can approximate
to 2i (e.g., ∼90 or 95%) rather than rigidly calculated
by the equation, this mathematical approximation would
still preserve the essence of specific-to-general combinatorial
logic.
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FIGURE 2 | The Theory of Connectivity predicts the existence of specific-to-general, combinatorial wiring logic across the brain. (A) The proposed
functional connectivity motif (FCM) is illustrated in a non-recurrent, feed-forward circuit. By following the proposed equation of N = 2i

−1, the FCM exemplified here
consists of 15 distinct neural cliques (N1...15), which cover all possible connectivity patterns in order to process four distinct inputs (i1, i2, i3, i4). The exponent i
represents the number of distinct information inputs, and N is the number of neural cliques with all possible combinatorial connectivity patterns. (B) The number of
presynaptic neurons (Pr) required to cover postsynaptic convergence can also be mathematically assessed (see the equation in the highlighted blue block,
Pr = [2i−1]/b). For example, assuming a presynaptic neuron from the upstream FCM has only a single axon (branch number, b = 1) contacting a single postsynaptic
neurons located in the downstream FCM containing 15 cliques (based on i = 4), the total number of such presynaptic specific-feature cells (providing input i1)
required for comprehensively covering the specific-to-general, combinatorial-convergent postsynaptic cells in a non-recurrent downstream FCM would be eight.
These eight postsynaptic neurons correspond to N1, N5, N6, N7, N11, N12, N14, N15 listed in the Panel A. On the other hand, if a single pre-synaptic neuron can have
eight branches (b = 8; each making a contact with a unique postsynaptic neuron, respectively), this neuron is sufficient to provide inputs onto N1, N5, N6, N7, N11,
N12, N14, N15 listed in Panel A. (C) The FCM-based computational logic can be mapped onto the multi-layered cortex as the general-purpose algorithm underlying
canonical cortical computation. In the classic six-layered (L) cortex, L1 contains scattered interneurons and mainly dendrites and afferent axons from lower layers. L2
to L6 are the primary sites for canonical computation. The specific cliques occupy layer 4 (L4), which projects to L2/3 to form the initial set of combinatorial
connectivity patterns (e.g., mostly two-featured combinations and some three-featured combinations). These subgeneral cliques then project downward to the
deeper layers, L5/6, for generating even greater combinatorial connectivity. (D) Schematic “bar-code” illustrates the specific-to-general activation responses from the
15 distinct neural cliques (n1−15), processing four distinct inputs (i = 4). The warm color represents its activation level (% maximal activation). The cartoon illustration
was adapted from Tsien (2015), TINS.

FCM IMPLEMENTED IN THE
NON-RECURRENT, FEED-FORWARD
CIRCUITS

The proposed connectivity logic can be used to examine
biological and mathematical boundaries of wiring efficiency
or computational capacities using modeling (McClelland
and Rogers, 2003; Cutsuridis et al., 2010; Stevens, 2012),
including recurrent and non-recurrent networks. In the non-
recurrent feed-forward network (e.g., the CA1 region or dentate
gyrus [DG]), specific-to-general combinatorial patterns can
be established by combinatorial wiring of the presynaptic
upstream inputs (Figure 2A). This wiring logic produces
instantaneous pattern-separation and pattern-generalization
by a cell assembly, which is radically different from pattern
separation or pattern completion that was specifically or
sequentially assigned to one of the hippocampal subregions
(Marr, 1971; Yassa and Stark, 2011; Rolls, 2013). Furthermore,
in the CA3 which is viewed as a completely auto-associative
recurrent network, the traditional theories would predict the
loss of the specific-to-general neural-clique connectivity logic,
because any specific input into specific cliques would easily be

taken over by feedback inputs from its subgeneral and general
cliques.

One of the critical factors in building computational models
based on this wiring logic is to determine how specific
input-neurons (presynaptic neurons, whether pyramidal cells
and long-range inhibitory projection cells) should project
onto the non-recurrent networks. For instance, the number
of presynaptic specific input-neurons (Pr) needed to cover
all distinct postsynaptic neural cliques can be estimated by
using the equation of Pr = [2i−1]/b (Figure 2B), whereas
b represents numbers of axon branches. By assuming that
the presynaptic neuron has one axon branch which projects
to one postsynaptic cell, one would expect that the minimal
number of cells from the pre-synaptic specific neural clique
should be eight (Pr = 8) to ensure the specific-to-general
combinatorial coverage in the postsynaptic FCM that deals with
four distinct information input (i = 4). Obviously, most neurons
have more than one axon and each can bifurcate at multiple
points along its length to multiple terminal locations to form
synapses with several postsynaptic target cells. For example,
a single pre-synaptic cell can be modeled to have eight axon
branches, each projecting to the eight distinct post-synaptic
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clique cells (Figure 2B, only three branches are drawn). In the
real brain, the actual number of neurons per clique and their
axon branching patterns would depend on molecular genetics
and local cues during neural development. The connectome
projects can prove to be highly valuable for this type of
analysis.

USING CORTICAL LAYERS TO EXECUTE
FCM-BASED CANONICAL COMPUTATION

The cortex has a remarkably uniformed multi-layered
architecture (usually with three or six layers; Barbas, 2015;
Fournier et al., 2015). It has been shown that the cortex
varies its surface area by a factor of 10,000 across a large
number of surveyed mammalian species, while the thickness
of cortical layers varies only by a factor of 10 (DeFelipe et al.,
2002; Rakic, 2008). This finding has contributed to the search
for a fundamental cortical ‘‘processing unit’’ (Hubel and
Wiesel, 1977; Mountcastle, 2003). In literature, a variety of
canonical neural computations have been proposed, including
exponentiation, linear filtering, normalization, receptive field
selectivity, gain control, etc. (Reichardt et al., 1983; Heeger,
1992; Bizzi et al., 1995; Hanes and Schall, 1996; Pouget and
Snyder, 2000; Smith and Ratcliff, 2004; Carandini et al.,
2005; Cisek, 2006; Kouh and Poggio, 2008; Carandini and
Heeger, 2011; Miller, 2016). Despite these efforts in identifying
operational components or neuronal properties, the core
computational principles of the cortex remain elusive (Krubitzer,
2009).

Here, we would like to suggest that the universal canonical
computation performed by cortical circuits is the power-
of-two-based, specific-to-general computational logic (Tsien,
2015). This logic is implemented vertically across cortical
layers (Figure 2C). Using the moderately recurrent cortical
architecture, the locally disordered but canonically nonrandom
cortical patterns can readily execute this proposed logic. For
example, the input-cortical layer, such as layer 4 (L4), hosts
specific neural cliques. These layers’ pyramidal cells typically
project upwards to layers 2 and 3 where some recurrent
connections are made. This would produce two-event or
three-event subgeneral cells (binary or ternary cliques). These
subgeneral cells would then project to the deep layers, such
as layers 5 and 6, for further combinatorial feature discovery
and extraction to generate more broadly tuned subgeneral
and general neural cliques. It should be noted that variations
can occur; for example, some of the L5 neurons are directly
driven by thalamic inputs. This type of direct input would
enable specific features to still be maintained in the deep
layers. Regardless of such variations in wiring details, the
fundamental power-of-two-based computational logic remains
invariant.

Not all cortices have the classic six layers, rather some
cortices only use a three-layered cortex (e.g., the prefrontal
cortex, anterior cingulate cortex, piriform cortex, or retrosplenial
cortex in mice, and the entire cerebral cortex in reptiles;
Fournier et al., 2015). In such three-layered cortices, classic
layers 2 and 3 are merged in the upper layer (L2/3), whereas

layers 5 and 6 form the deep layer (L5/6). In this scenario,
specific cliques and binary subgeneral cliques should be enriched
in L2/3, whereas the general cliques should be mostly in
L5/6. Therefore, the power-of-two-based computational logic
is still preserved in such three-layered architecture. In short,
we propose that evolution relies on the multi-layered cortical
architecture to execute the power-of-two-based mathematical
principle. This explains why scaling up cognitive capacity
and intelligence is achieved by dramatically expanding the
cortical surface areas, rather than by varying the cortical
thickness.

TO TEST THE THEORY OF CONNECTIVITY
EXPERIMENTALLY

This theory can be tested initially by large-scale in vivo
recordings, because structural connectivity is ultimately reflected
by functional connectivity. One critical consideration is to
identify the proper natural stimuli to which relevant cell
assemblies in the higher cortex have been evolutionarily selected
and developmentally programmed. Another consideration is to
use multi-modality categorical stimuli (e.g., information i > 3),
thereby allowing a more stringent testing of this power-of-two-
of-two-based, specific-to-general computational logic in a given
circuit. The proposed wiring and computational logic can be
detected in the form of a brain activation ‘‘bar-code’’ (Figure 2D).
This theory should be tested across many animal species—from
fruit flies, zebra fish and songbirds, to rodents and primates
(Gerber et al., 2004; Phillips et al., 2011; Beshel and Zhong,
2013; Shi et al., 2013; Tubon et al., 2013; Lin et al., 2014; Davis,
2015).

The theory further predicts that specific-to-general logic
should be genetically programmed by evolution and during
development and already takes its primitive shape, prior to
learning, as thematured connectivity in the naïve unlearnt neural
network. However, synaptic plasticity plays a crucial role in both
neural development (Gao et al., 2014) and learning (Bliss and
Collingridge, 1993; Frey and Frey, 2008). The critical question is
how to distinguish the wiring logic set up by normal development
vs. by learning and memory.

Because synaptic proteins are metabolically turned over
within days or week(s), learning-induced synaptic connectivity
will likely drift significantly over time (Shimizu et al., 2000;
Wang et al., 2006). It has been shown that the NMDA
receptor (NMDAR)-based synaptic reentry-reinforcement (SRR)
is crucial for maintaining synaptic stability (Wittenberg and
Tsien, 2002; Wittenberg et al., 2002). For example, inducible
knockout of the NMDAR in the forebrain principal neurons
for one-month (but not for one-week) caused a drift in the
synaptic connectivity pattern, leading to the abolishment of
remote fear memories (Cui et al., 2004). If the initial synaptic
connectivity were random in the matured but unlearnt network,
one should expect that deleting the NMDAR for a long
period of time (e.g., 3 months) would eventually lead synaptic
connectivity to drift all the way back to initial randomness.
On the other hand, if one can still observe these non-random,
specific-to-general neural cliques under such conditions, it
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would strongly suggest that this is a pre-configured logic
and is independent of the NMDAR-dependent learning in
adulthood.

INSTALLING THE PERSONALIZED
COGNITIVE ALGORITHMS BY NATURE
AND NURTURE

Changes in gene expression underlie brain development and
aging (Jiang et al., 2001; Mody et al., 2001; Förster et al., 2006;
Langston et al., 2010; Wills et al., 2010; Gao et al., 2014; He
et al., 2015). This provides a unique opportunity to investigate
not only how computational logic emerges during the postnatal
period and is affected by aging, but also how environment alters
or enhances cognition (Rampon et al., 2000a,b; van Praag et al.,
2000; Feng et al., 2001; Tang et al., 2001).

The pre-configured connectivity, as proposed by the Theory
of Connectivity, would conceivably constrain or give rise to
different intelligence. It also predicts that variable ratios among
the specific, subgeneral and general cliques among individual
brains can afford distinct cognitive abilities or unique talents.
The larger the number of neurons devoted to specific neural
cliques, the greater the ability of remembering episodic details
would be expected. In contrast, if more neurons were devoted to
the subgeneral and general neural cliques, such individuals may
possess a greater ability for abstraction, generalization or flexible
behavior.

Genetic mutations can also alter the basic computational
algorithms of neural circuits. By examining such interactions
in various genetically modified mice—including NMDAR1
conditional knockout mice and the memory-enhanced NR2B
transgenic mice (Tang et al., 1999; Cui et al., 2004; Wang
et al., 2009; Yu et al., 2009; Jin and Costa, 2010; Zhang et al.,
2013; Jacobs and Tsien, 2014), one can obtain crucial insight
into the precise relationships between genes, neural circuits
and cognition. In addition, Reeler mice can be a particularly
interest model because of their inverted cortex (D’Arcangelo
and Curran, 1998). One prediction might be that Reeler mice
still operate under the power-of-two-based computational logic
but with the inverted anatomical distributions of specific-
to-general cliques. On the other hand, it is also possible
that the cortex of Reeler mice may host the specific-to-
general clique arrangement in a similar manner to wild-type
mice. This would suggest that histological and molecular
characteristics critical for defining the different cortical layers are
not essential for executing the power-of-two-based, specific-to-
general computational logic.

SPECIFIC-TO-GENERAL CELL ASSEMBLY
FOR REPRESENTING MEMORY ENGRAM

The study of memory engram has gained renewed interest.
For example, using the C-fos promotor-based optogenetic
approach, researchers reported a group of neurons in the
DG or amygdala that were labeled during learning can
be optogenetically reactivated during recall, leading to
changes in freezing (see reviews by Josselyn et al., 2015;

Tonegawa et al., 2015). Intriguingly, the same protocols and
manipulation in the CA1 failed to produce a similar outcome
produced by the DG (Xu Liu, personal communication), thereby
raising the possibility that the artificial zapping of the amygdala
loop by light may not truly alter memory engram per se. In
general, methods using immediate-early-gene promoter to
label memory engram are interesting, but it lacked the ability
to distinguish categorical features and to obtain temporal
dynamics essential for revealing the fundamental principles
and encoding properties of memory engram (see Eichenbaum,
2016).

Memory is traditionally divided into episodic memory and
semantic memory. Episodic memory refers to the memory
of a specific event in a given time and context (Tulving,
1972), whereas semantic memory represents the memory
of the conceptual knowledge of facts that are no longer
ascribable to any particular occasion in life (Tulving, 1972;
Cohen and Eichenbaum, 1993; Squire and Zola, 1998; Lin
et al., 2007). This classical definition has led to intense
search for the distinct network-mechanisms underlying the
formation of episodic and semantic memory (Düzel et al., 1999;
Maguire et al., 2005; Burianova and Grady, 2007; Ryan et al.,
2008). Yet it remains unclear as to how semantic memory
emerges from daily experiences, and what the relationship is
between these two types of memories at the cell-assembly
level.

The initial clue is provided by the revelation of specific-to-
general neural clique assembly in the CA1 hippocampus (Lin
et al., 2005, 2006; Tsien, 2007), which suggested that episodic
memory and semantic memory are simultaneously generated
within the same cell assembly. In other words, the computational
logic used by memory engram follows the same power-of-
two-based mathematical principle: the specific cliques extract
specific features from sensory information to encode episodic
traces of the memory engram, whereas the subgeneral and
general cliques generate the relational knowledge and concepts of
the memory engram (Tsien et al., 2013). Such simultaneous
extractions of both episodic and semantic memory components
by the same FCM offer a perfect solution to build the categorical
and hierarchical organization of memory and knowledge in the
brain. Encouragingly, large-scale neural recording experiments
have begun to uncover critical insights and temporal patterns of
real-time memory traces and fear memory engram in the normal
brain as well as in the absence of synaptic plasticity (Chen et al.,
2009; Os,an et al., 2011; Zhang et al., 2013).

GENERAL-TO-SPECIFIC COMBINATORIAL
LOGIC FOR MOTOR OUTPUT CIRCUITS

Gradually extracting perceptual information by sensory and
memory circuits is what leads to generalized knowledge and
concepts. In contrast, the motor output circuits may use the
same specific-to-general computational logic—but in reverse.
That is, cell assemblies in higher motor circuits (such as
the motor-planning cortex) will be more general and abstract
to begin with, then percolate to primary cortices and lower
circuits, which become successively more specific. Motor-control
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circuits are crucial for a broad range of functions, spanning
from movement planning and execution to imagined movement
or motor cognition (Bizzi et al., 1995; Nicolelis et al., 1997;
Moran and Schwartz, 1999; Fogassi et al., 2005; Georgopoulos
and Carpenter, 2015; Stetson and Andersen, 2015). Overall,
general-to-specific cliques in the FCM at the top of the hierarchy
encode more abstract intent or decision-making for general
motor execution, whereas the cliques in the lower FCMs encode
less abstract motor command, with FCMs in spinal circuits
commanding general-to-specific individual muscle activation.
One can test these predictions by large-scale recording in the
motor cortex, striatum, and spinal cord.

FCM AS THE KEY BIOMARKER FOR
ASSESSING NEUROLOGICAL AND
PSYCHIATRIC DISORDERS

The proposed theory should open a new avenue into examining
the detrimental effects of brain disease and aging at the
cell-assembly level. Characterizations of cell-assembly patterns
in various diseased models—from Alzheimer’s to depression
(D’Arcangelo and Curran, 1998; Hayashi et al., 2008; Feng et al.,
2001)—can potentially lead to deeper insights into why gene
mutations alter cognitive functions. In addition, examining the
effects of various drugs on the proposed cell-assembly logic may
provide new insights about their central mechanisms (Caine
et al., 2007;Wang et al., 2010; Kong and Xu, 2011; Cao et al., 2015;

Fuccillo et al., 2016), perhaps leading to further improvement for
drug efficacy and safety (Slutsky et al., 2010; Liu et al., 2015).

In summary, the Theory of Connectivity postulates the power-
of-two-based, specific-to-general wiring and computational
logic for the organization of pre-configured cell assemblies
in the brain. This prediction is radically different from local
random connectivity currently assumed for cell assemblies in
matured, but unlearnt, circuits. This theory also provides a new
framework to investigate how learning and development
interact to produce generative cognition and flexible
behavior.
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