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As a model system, Escherichia coli has been used to study various life pro-

cesses. A dramatic paradigm shift has occurred in recent years, with the study

of single proteins moving toward the study of dynamically interacting proteins,

especially protein–protein interaction (PPI) networks. However, despite the

importance of PPI networks, little is known about the intrinsic nature of the

network structure, especially high-dimensional topological properties. By intro-

ducing general hypergeometric distribution, we reconstruct a statistically reli-

able combined PPI network of E. coli (E. coli-PPI-Network) from several

datasets. Unlike traditional graph analysis, algebraic topology was introduced

to analyze the topological structures of the E. coli-PPI-Network, including

high-dimensional cavities and cycles. Random networks with the same node

and edge number (RandomNet) or scale-free networks with the same degree

distribution (RandomNet-SameDD) were produced as controls. We discovered

that the E. coli-PPI-Network had special algebraic typological structures,

exhibiting more high-dimensional cavities and cycles, compared to Ran-

domNets or, importantly, RandomNet-SameDD. Based on these results, we

defined degree of involved q-dimensional cycles of proteins (q-DCprotein) in the

network, a novel concept that relies on the integral structure of the network

and is different from traditional node degree or hubs. Finally, top proteins

ranked by their 1-DCprotein were identified (such as gmhB, rpoA, rplB, rpsF

and yfgB). In conclusion, by introducing mathematical and computer technolo-

gies, we discovered novel algebraic topological properties of the E. coli-PPI-

Network, which has special high-dimensional cavities and cycles, and thereby

revealed certain intrinsic rules of information flow underlining bacteria biology.

A dramatic paradigm shift has occurred in recent years,

from traditional study of single proteins to study of

group of dynamically interacting proteins, which formed

complex protein–protein interaction (PPI) networks

[1–7]. Because bacterial PPI networks are less complex

but more diverse than their plant or animal

counterparts, it is important to study their structures

and properties to reveal principles of network organiza-

tion [8]. Escherichia coli K-12, as a representative strain

of Gram-negative bacterium in a central position within

the microbial research community, is one of the best

characterized organisms and has served as a model
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system to study many aspects of bacterial physiology.

However, despite increasingly advances in both theoreti-

cal and technical approaches of mapping the protein

interactions [9–11], little is known about the organiza-

tional principles of the PPI networks, mainly as a result

of a lack of feasible approaches, because analysis of PPI

networks relies on interdisciplinary areas including biol-

ogy, computer science, and mathematics. Traditional

graph approaches have been developed to study the

topological features of PPI networks [12], including

degree, clustering coefficient, betweenness, closeness,

assortativity, shortest path between two nodes, and so

on. However, only very limited intrinsic properties of

the PPI networks were revealed by these parameters,

and most studies focused on the degree of the proteins,

especially those with large degrees, namely hub proteins.

As complex metric independent geometry objects,

PPI networks exhibited obvious high-dimensional

abstract topological structures that are important for

information transduction. However, for very long

time, these high-dimensional topological structures and

their biological significance were not explored. As a

young field in mathematics, algebraic topology deals

with high-dimensional metric independent geometry

objects by taking advantage of modern algebra, which

quantitatively describes the intrinsic features of high-

dimensional algebraic topological structures (HDATS)

of networks, such as simplexes, cavities, and cycles

[13,14]. In addition, remarkably, the results of alge-

braic topology analysis also revealed rules of informa-

tion flow in high-dimensional cycles, which cannot be

described by traditional graph analysis [15].

Here, by integrating biology study, mathematical

theory, and computer science, we first investigated the

algebraic topological structures of PPI networks of E.

coli (E. coli-PPI-Network) and discovered that E. coli-

PPI-Network contained significant HDATS, which is

significantly different from random networks and cor-

responding scale-free networks [16]. Our results not

only revealed novel properties of the E. coli-PPI-

Network in an integrated global perspective, but also

provided novel approaches to find potential therapeu-

tic targets which have critical impact on the essential

functions of bacteria, such as survival, drug resistance,

and so on.

Methods

Identification of statistically significant PPI

interactions from several datasets

To get a reliable PPI interactions set of E. coli, we

searched the Pubmed with key words ‘protein protein

interaction network’, ‘Escherichia coli’, and ‘K-12’, and

read the relevant papers to find highly reliable PPI results

that are validated by experimental and theoretical

approaches. At last, three datasets were used for our anal-

ysis, comprising those of Arifuzzaman et al. [17], Hu

et al. [18], and Rajagopala et al. Considering the great

variation of high-throughput data, we used overlapped

data in the three datasets to get most reliable PPI interac-

tions, by taking advantages of the general hypergeometric

distribution (GHGD) [19]. Different from our previous

paper, here, we used the interaction rather than the nodes

of the networks as the overlapped elements in the GHGD

analysis. The GHGD was used because, if we use the

PPIs overlapped in all the three datasets, then we only get

a few PPIs (in total, 37 interactions were overlapped in all

of the three datasets) and would lose too many PPIs (the

false negative is too high). However, if we use all the PPIs

in the three files, the result would contain too many false

positives. By using the formulas of mathematical expecta-

tions and variances of the GHGD, the 95% confidence

interval (CI) of the GHGD can be estimated with Cheby-

shev’s inequality, which gives an upper bound of number

of randomly overlapped elements (random_Up_PPIs).

Then, the number of statistically significant overlapped

PPIs (sig_PPIs) can be deduced by sig_PPIs = ob-

served_PPIs − random_Up_PPIs.

Calculation of homology group (HG) and Betti

numbers

The definition of simplex, simplicial complex, chain, cav-

ity, cycle, HG, and Betti numbers have been described in

detail previously [14,15]. Here, a simplicial complex K

was made up of vertices and simplexes. A p-dimensional

simplex (p-simplex) is defined as collections of (p + 1) full

connected vertices. For example, a point is a 0-simplex, a

set of two points that are connected to each other is a 1-

simplex, and a set of three points that are connected to

each other is a 2-simplex, and so on. (Fig. 1A). It should

be noted that a p-simplex is a p-dimension object. Any

subset of the vertices of one simplex is a ‘face’ of the

simplex. Specifically, the edges are 1-dimensional faces of

a simplex. To make the simplexes be calculable with alge-

braic approaches, assign a value (or an element) in a

group for each of the p-simplex (coefficient group; here

group is a conception in algebra, which is defined as fol-

lows: a group is an algebraic structure consisting of a set

of elements equipped with a binary operation that combi-

nes any two elements to form a third element. To be a

group, this operation must satisfy four conditions called

the group axioms: closure, associativity, identity, and

invertibility). An operation for the p-simplex was defined

as the same operation of its corresponding element in the

group. Therefore, a finite number of p-simplex with the

above-defined operation formed a chain with p-dimension
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(p-chain). For example, for a set of p-simplexes, s1,

s2, . . ., sl, each si can be represented by its vertices:

σk ¼ σ½vi1 , vi2 ,⋯, vip �, and the p-chain is:

CpðKÞ ¼ ∑
l

i¼0

σ vi1 , vi2 ⋯vip
� �

:

Therefore, each p-chain has a value belonging to the

group. All of the p-chains with the above-defined operation

form a group Cp(K).

In the following description, group, map, image, kernel, and

rank are all terminologies of group theory in modern algebra.

The simplex can be oriented according to the order of the

vertices. Next, define the boundary map for each simplex

Cp(K) → Cp − 1(K) (bvij indicates omission of the vertex vij ):

∂σ vi1 , vi2 ,⋯, vik½ � ¼ ∑
k

j¼0

ð�1Þjσ vi1 , vi2⋯bvij⋯vik
� �

:

It is clear that the boundary map ∂ transforms a p-simplex

to a (p − 1)-simplex, and the result (p − 1)-simplexes are

Fig. 1. Schematic images illustrating the key concepts in algebraic topology and persistence homology. (A) Simplexes for different dimensions.

(B) Calculation of boundary maps. Boundary map for Dim 1 Simplex ∂[1,2] = [2] − [1], and for Dim 2 Simplex ∂[1,2,3] = [1,2] + [2,3] + [3,1].

Furthermore, the boundary of the ‘Dim 2 Simplex Boundary’ is, ∂∂[1,2,3] = ∂[1,2] + ∂[2,3] + ∂[3,1] = [2] − [1] + [3] − [2] + [1] − [3] = 0. (C)

Dim1 cycles (or cavities). There are two classes of Dim 1 cycles: (1) δ1[1,2,3,4]; (2) δ2[3,5,7,4] or [3,5,6,7,4], these two are equal to each other,

because they enclosed a same ‘cavity’ (yellow part). The two cavities are filled with orange and yellow colors respectively. Note that δ3[5,6,7] is
a simplex but not a cycle. (D) Process of persistence homology. An example of filtration which starts at value 1 and ends at value 5. Each image

represents a filtration step and is assigned with a value. At value 1, there are five dim 0 simplexes (that are points, [1], [2], [3], [4], [5]) and four

dim 1 simplexes (that are edges, [1,2], [2,3], [4,5], [1,5]). At value 2, one more dim 1 simplex [3,4] is added into the complex and thus a dim 1

cycle (cycle 1) is formed; hence, the life of this dim 1 cycle starts at value 2. At value 3, two more dim 0 simplexes ([6], [7]) and three more dim

1 simplexes ([2,6], [3,7], [6,7]) are added and another dim 1 cycle (cycle 2) is formed for which life starts at value 3. At value 4, a dim 2 simplex

δ1 ([3,6,7]) is added, and the two dim 1 cycles are persisted. At value 5, another dim 2 simplex δ2 ([2,3,6]) is added and thus cycle 2 is

disappeared whose life ended at value 5, whereas cycle 1 still persisted. Therefore, there are totally two dim 1 cycles, and the life length of

cycle 1 is infinite – 2 (here infinite indicates the cycle persists longer than the observed filtration values), while the life of cycle 2 is 5 − 3 = 2.
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denoted as a boundary for the p-simplex. For a given p, the

image from a upper dimension ∂p + 1 (Cp + 1(K)) (im∂p + 1,

that is boundaries of the p + 1 chains) is a subgroup of the

Cp(K), and the kernel of the ∂p (Cp(K)) [ker∂p, closed chains

in the Cp(K), which are termed as cycles] is also a subgroup

of Cp(K). Here, a p-dimensional cycle (p-cycle) is a ‘closed

p-chain’, that is, all the p-simplexes constituting the p-cycle

have a 0 value in the above-defined operation. In addition,

considering that ∂p + 1 ∂p = 0, any boundary from an upper

dimension is a cycle, and therefore the im∂p + 1 is a sub-

group of ker∂p (Fig. 1B). Based on these definitions, the

homology group for dimension q, Hq(K), is defined as the

quotient group:

Hp Kð Þ ¼ ker∂p
im∂pþ1

:

Behind the highly abstract definition process of the

homology group, the Hp(K) has special geometric mean-

ings. For finite simplicial complexes, which is the main

topic for the present PPI networks, the Hp(K) is a finitely

generated Abel group, and the rank of the group is called

Betti number, Bettiq. Intuitively, betti0 indicates the number

of connected graphs, betti1 indicates the number of

1-dimensional cavities, whereas betti2 indicates the number

of 2-dimensional cavities (geometrical structures similar to

hollow spherical structures). As defined above, a q-cavity is

enclosed by an equivalent class of q-cycles. Therefore,

1-cycles can be viewed as traditional rings (Fig. 1C),

whereas 2-cycles can be viewed as the surface of a ball, but

not containing the inside. It should be noted that, for the

cycles, each cycle actually represents a class of cycles which

are equal to each other based on the calculation of quotient

group (e.g. in Fig. 1C, the two cycles, 3-4-7-5 and 3-4-7-6-

5, are equal to each other). In the present study, we would

focus on the minimal cycles (e.g. in Fig. 1C, we would use

the cycle 3-4-7-5, but not 3-4-7-6-5). However, for cycle

involvement of each node, to avoid loss of cycles a node

participates, the equivalent cycles are used to represent a

class of cycles. For example, in Fig. 1C, the nodes (‘3’, ‘4’,

‘7’, ‘5’, and ‘6’) are all involved in a same class of cycle

which enclosed the same ‘cavity’ δ2. In the present study,

the Z/Z2 group (a 2-order cyclic group; here Z is an abe-

lian group consisted of all integers in the operation addi-

tion ‘+’; Z2 is the group consisted of all even integers; Z/

Z2 is the quotient group of Z and Z2, which is a 2-order

cyclic group containing two elements) was used as the coef-

ficients group. Calculation of Betti numbers was performed

using JPLEX [20].

For Betti curve analysis, a technique of persistent homol-

ogy is used, as described previously. Briefly, there is a

weight between two nodes for each edge, and larger weight

values implied more reliable link between the two genes.

Therefore, the network would be constructed by adding

edges one by one, according to the rank of their weight

values. This would produce a series of growing networks,

which formed a filtration. In each step, Betti values were

calculated, and at last, a series of Betti values were pro-

duced (Fig. 1D). Then, the number of growing edges versus

the corresponding Betti values formed the Betti curves.

Construction of random networks

To get topological features of random networks (Ran-

domNet), networks with the defined nodes and edges were

constructed. One edge was added in each step, until the

total number of edges reached to the defined amount.

Then, the above algebraic topological and PH analysis was

performed to get betti number in each dimension. To get

the distribution properties of the topological features of

RandomNet, 1000 random networks samples were pro-

duced, and the Betti numbers were calculated with the

above process, and the statistical distribution of these

parameters was established.

To produce RandomNet-SameDD, we utilized the

Havel–Hakimi theorem. The Havel–Hakimi theorem was

used to determine whether a degree sequence can form a

graph. We used the reserve step of the Havel–Hakimi

determination and added one edge each step randomly.

Then, the degree distribution of the E. coli-PPI-Network

was used to produce RandomNet-SameDD. In total, 100

RandomNet-SameDD for each E. coli-PPI-Network (con-

structed from overlapped interactions or single datasets)

were produced for statistical analysis.

Calculation of the degree of involved 1-cycles of

each protein (1-DCnode)

Because the E. coli-PPI-Network contained 1-cycles, but

very few 2-cycles, we focused our analysis on the

1-DCprotein. First, all of the cycles during algebraic topol-

ogy analysis were listed. Then, the degree of each node was

calculated, which is denoted as Dprotein. Similarly, the number

of q-cycles containing a protein was defined as number of

q-cycles involving a protein (q-DCprotein), and the q-DCprotein

for each protein was calculated by examining all of the

q-cycles. Next, a rank value for a q-cycle representing its

importance was defined as the average value of all q-DCprotein

for each node in the q-cycle. Then, the cycles can be ordered

by their rank values representing their relative importance in

the network.

Calculation of traditional graph parameters of

the network

Traditional graph parameters of the E. coli-PPI-Network

were calculated as follows. (1) Degree: the number of

neighbors of a node. (2) Cluster coefficient: for a node ni
whose degree is ki (has ki neighbors), if the ki neighbors
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have ei edges, then the cluster coefficient for the node ni is

the ratio of ei to all possible edges for the ki neighbors:

cck = (2ei)/(ki (ki − 1)). (3) Betweenness: the ratio of the

number of the shortest path including a node (si) to all pos-

sible shortest paths in the network: bk = (2si)/((N − 1)

(N − 2)) (here, N is the total number of nods in the net-

work). (4) Closeness: the closeness of a node is defined as

the sum of the multiplicative inverse of the shortest path to

other nodes, and normalized by dividing (N − 1). The mul-

tiplicative inverse is used to avoid the situations of infinite

values of shortest path. (5) Assortativity for degree, close-

ness, and betweenness: the assortativity of a node is the

coefficient between the distance and corresponding parame-

ters (degree, closeness, and betweenness) to the other

nodes. Similarly, the multiplicative inverse of the shortest

path is used to avoid infinite values.

Results and Discussion

Construction of a statistically significant reliable

PPI network of E. coli

To get an accurate PPI network is still a challenging

task despite advances in high-through technologies.

Therefore, we first used novel statistical tools based on

GHGD [19] to produce a statistically reliable com-

bined PPI network from several datasets. In the pre-

sent study, three datasets from independent research

groups were used, those of: Arifuzzaman et al. [17],

Hu et al. [18], and Rajagopala et al. [21]. There are

11 017, 3888, and 5993 interactions in the three data-

sets, respectively, as well as a total of 3485 nodes (pro-

teins) and 19 719 interactions (Table S1). Examination

of the PPI overlaps in the three datasets revealed that

there are only 37 interactions that were overlapped in

all of the three datasets (PPI(OL = 3)), whereas there

are 1142 interactions that were overlapped in at least

two datasets (PPI(OL ≥ 2)) (Table S1).

Notably, only a small number of interactions (total of

37) were overlapped in all three datasets. Therefore, a

prominent question is how to use the data in the three

datasets to get a combined PPI network. In detail, if we

use the (PPI(OL = 3)), we would loss too many edges

(high false negative), whereas, if we use the (PPI(OL ≥

1)), we would get too many false positives. Because

there are 3485 proteins (nodes) in the three datasets,

there are a total of 3485 × (3485 − 1)/2 = 6 070 870

potential interactions among these nodes. The question

is: by selecting three subsets (containing 11 017, 3888,

and 5993 interactions, respectively) among these poten-

tial ones (6 070 870), what is the probability that there

are 1142 interactions overlapped in at least two subsets?

By using the GHGD [19], we found that the 95% CI of

number of PPI(OL ≥ 2) when randomly selected was

0.94–42.57 (Table 1), indicating that, at a statistical level

of 0.05, there were at most 42 interactions in the 1142

PPI(OL ≥ 2) which may not be statistically significant

(false positive is about 3.68%) (Table 1). The GHGD

analysis demonstrated that the identified 1142 interac-

tions (PPI(OL ≥ 2)) were highly reliable and were used

to construct a statistically reliable E. coli-PPI-Network.

E. coli-PPI-Network has special HDATS

As described above in methods (Calculation of homol-

ogy group (HG) and Betti numbers) [15], we analyzed

the algebraic topological structures of the E. coli-PPI-

Network by using our established program based on

JPLEX. Different from traditional graph theory, alge-

braic topology further studied the intrinsic properties

of the global structures of the graphs or networks.

Remarkably, homology group (HG) Hq(K) (here q is

the dimension of simplex) of the simplicial complex, a

common conception in modern algebraic mathematics,

was introduced to quantitatively describe the nature of

the network in a precise manner. The definition of sim-

plex, cycle, HG, and calculation of the HG were

described in detail in our previous paper and in the

Methods section. The most important parameter of

the HG is q-dimension Betti numbers (Bettiq) (here q

is dimension; for detailed information, see Methods),

which is defined as the rank of the homology group in

each dimension. Intuitively, Betti numbers of the HG

indicate the number of ‘holes’ or ‘cavities’ in each

dimension. Intuitively, the betti1 represents the number

of 1-dimentional cavities (1-cavity) in a graph, whereas

Betti2 represents the number of 2-dimentional cavities.

Table 1. General hypergeometric distribution analysis of the overlapped interactions in the three datasets. NOL, number of elements with

specific overlapped feature.

Total

potential

amount Subsets selected

Number of

independent

groups

Overlap

number

Number of

overlapped

genes

Mean of

NOL

distribution

Var of OL

distribution

95% CI of

NOL

distribution

False

positive

(P < 0.05)

6 070 870 11 017, 3888, 5993 3 ≥ 3 37 0.007 0.007 0–0.38 0.00%

6 070 870 11 017, 3888, 5993 3 ≥ 2 1142 21.76 21.66 0.94–42.57 < 3.68%
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Noted that q-cavities are enclosed by q-cycles, where

q-cycles are q-chains that are closed. The 1-cycles can

be viewed as traditional rings in a graph, whereas 2-

cycles can be viewed as the surface of hollow spherical

structures. Similarly, for dim > 2, the Bettiq reflects

the number of q-dimension cavities that were enclosed

by q-cycles. From the definition, it should be noted

that Betti numbers represent the amount of equiva-

lence classes of cycles enclosing the cavities. Therefore,

there would be many cycles that are equivalent to each

other that surrounding a same ‘cavity’.

First, we examined the degree distribution of the

network. The degree of a node in a network is defined

as number of edges (or neighbors) that the node has.

As a result, all the nodes’ degree sequence has a

power-law distribution (Fig. S1).

Next, we examined the amount of simplexes in the

network. Here, a q-dimensional simplex (q-simplex) in a

network is defined as (q + 1) nodes that are connected

to each other. For example, a vertex itself is a 0-

simplex, an edge with two connected points is a 1-

simplex, a triangle composed of three points connected

to each other is a 2-simplex, and so on. As a result, the

E. coli-PPI-Network had a biggest dimension of simplex

(BDS) of 5 (the maximal dimension for all simplex) and

contained 163 2-simplexes, 53 3-simplexes, 13 4-

simplexes, and two 5-simplexes (Table S2).

Another important parameter is maximal simplex.

First, a proper subtest of a simplex is a ‘face’ of the sim-

plex. Therefore, a maximal simplex (max-simplex) is a

simplex that is not a face of any other simplexes in a net-

work. We next analyzed the max-simplexes of the E. coli-

PPI-Network. Obviously, the BDS of max-simples is the

same as simplex. As a result, the E. coli-PPI-Network

contained 58 2-max-simplexes, 18 3-max-simplexes, two

4-max-simplexes, and two 5-max-simplexes (Table S3).

Furthermore, we analyzed the cavities of the E. coli-

PPI-Network by calculating HGs. As a result, the

E. coli-PPI-Network had the biggest dimension of cav-

ity (BDC, the maximal dimension for all cavities) of 2

and contained a total of 149 0-dimensional cavities (0-

cavity), 79 1-cavities, and one 2-cavity (Table 2). It

should be noted that the 0-cavity indicates the number

of disconnected subnetworks of a network. For the 79

1-cavities, there are 79 classes of equivalent cycles,

which surrounded 79 cavities. For the one 2-cavity,

there is a 2-cavity in the network, which is enclosed by

an equivalent class of 2-cycles.

The HDATS of the E. coli-PPI-Network are

significantly different from random networks

We have demonstrated that the E. coli-PPI-Network

had remarkable HDATS. However, any network has its

own algebraic topological structures. Therefore, it is nec-

essary to determine whether these HDATS are just ran-

dom noises or have specific meanings. To this end, we

produced random networks with the same number of

vertex and edges (RandomNet). In total, 1000 ran-

domNets with the same number of vertex and edges

were produced, and their corresponding algebraic topo-

logical parameters were calculated, including amount of

simplexes, max-simplexes, and cavities in each dimen-

sion. By analyzing the distribution of these parameters

of the randomNet, we found that randomNet had much

smaller BDS and BDC, which formed much lesser high-

dimensional simplexes and max-simplexes. For example,

there are a total of 165 2-simplexes and 58 2-max-

simplex in the E. coli-PPI-Network, but few, if any, 2-

simplexes were produced in the RandomNet (Table S2).

Notably, the BDC for RandomNets is 1 and no cavities

with dimension ≥ 2 were produced (Table 2). In addi-

tion, by investigating the random networks, especially

the Betti curves of Betti2 versus number of edges, we

found that the 2-cavities can be formed when the num-

ber of edges reaches approximately 18 000 (Fig. 2),

whereas the E. coli-PPI-Network only has 1142 edges,

indicating that the formation of a 2-cavity is extremely

specific for the E. coli-PPI-Network.

The HDATS of the E. coli-PPI-Network are not

produced by special random networks with the

same degree distribution

A key topological feature of biological networks is

scale-free property, as indicated by their paw law

Table 2. Number of cavities (Betti numbers) in different dimensions in Escherichia coli-PPI-Network, control RandomNet and RandomNet-

SameDD.

Dimension E. coli-PPI-Network

RandomNet RandomNet-SameDD

Average SD 95% CI Average SD 95% CI

0 149 160.00 10.22 139.96–180.04 315.20 4.19 306.99–323.41
1 79 208.20 10.21 188.19–228.21 31.65 3.66 24.48–38.82
2 1 0.00 0.00 0.00–0.00 0.00 0.00 0.00–0.00
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distributions of degrees, which would influence the

structures of the network remarkably. We next exam-

ined whether the HDATS observed in E. coli-PPI-

Network can be produced by its scale-free property.

To this end, we constructed random networks with

the exactly same degree distribution (RandomNet-

SameDD) of the E. coli-PPI-Network. The

RandomNet-SameDD were constructed based on the

Havel–Hakimi theorem. Similarly, 1000 random

RandomNet-SameDD were produced and analyzed.

Remarkably, the BDS in RandomNet-SameDD was 9,

which is much higher than that of E. coli-PPI-Network

for which the BDS is 5. However, even with much

higher BDS and more high-dimensional simplexes

(Table S2), the RandomNet-SameDD exhibited much

less 1-cavities, and, remarkably, no 2-cavities (Table 2).

In addition, the RandomNet-SameDD had more 0-

cavities. The larger value of Betti0 and more high-

dimensional simplexes indicated that, compared with

the E. coli-PPI-Network, these RandomNet-SameDD

tend to be more aggregated locally but separated glob-

ally. Overall, the HDATS observed in E. coli-PPI-

Network are not produced by its scale-free property

and would have specific significance.

HDATS were also observed in PPI-Networks

constructed from an individual dataset

We next examined whether the HDATS were also

observed in the networks constructed from an individ-

ual dataset, to exclude the possibility that the process

of using overlapped interactions would bring biases.

The networks constructed from the three datasets [Ari-

fuzzaman et al. [17], Hu et al. [18], and Rajagopala

et al. [21]] were labeled as E. coli-PPI-Network-A,

E. coli-PPI-Network-P, and E. coli-PPI-Network-R,

respectively. As a result, all of the three E. coli-PPI-

Networks had high-dimensional simplexes (BDS 6–8),
and, remarkably, all of the networks have 2-cavities

(Table 3), and one had a 3-cavity. In detail, compared

with the RandomNet, all of the individual E. coli-PPI-

Network had more simplexes and cavities for dimen-

sions ≥ 2. Compared with their corresponding

RandomNet-SameDD, all of the individual E. coli-

PPI-Network had smaller BDS and less simplexes in

high dimensions (≥ 2), and, in contrast, had more cav-

ities in high dimensions (≥ 2). All of these results were

consistent with that of the combined E. coli-PPI-

Network.

Fig. 2. Betti curves of dimension 2 in

RandomNets, showing the number of 2-

cavities during increased number of

edges.

Table 3. Key algebraic topological parameters of individual Escherichia coli-PPI-Network and corresponding RandomNetand RandomNet-

SameDD. Rand, RandomNet; Rand SameDD, RandomNet-SameDD. For RandomNet and RandomNet-SameDD, 200 samples were produced

to get the results. The average values of the random networks are shown.

Network

BDS BDC Betti2

E. coli Rand Rand SameDD E. coli Rand Rand SameDD E. coli Rand Rand SameDD

E. coli-PPI-Network-A 6 2 34 2 1 1 48.00 0.00 0.00

E. coli-PPI-Network-P 6 2 18 2 1 1 1.00 0.00 0.00

E. coli-PPI-Network-R 8 3 36 3 2 1 192.00 31.10 0.00

E. coli-PPI-Network 5 2 9 2 1 1 1.00 0.00 0.00
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Taken together, these results demonstrated that

E. coli-PPI-Network had less high-dimensional sim-

plexes but more high-dimensional cavities (Fig. 3 and

Table 3). Intuitively, from a geometric view, nodes in

the E. coli-PPI-Network did not connect to each other

as dense as in the RandomNet-SameDD and formed

many high-dimensional cavities. The special algebraic

topological structures of the E. coli-PPI-Network with

various cycles enclosing the cavities may reflect certain

uncovered intrinsic natures of the roles of information

flow in the whole network, which is not clear and

needs further investigation.

Analysis of cycles of the E. coli-PPI-Network

revealed potential key molecules underlying the

biological dynamics of E. coli

For traditional graph analysis of PPI networks, nodes

with high degree (or hubs) are often considered to be

important for the network. Because degree is a local

parameter related only to the neighbors of a node,

much potential information related to the integrative

features of the network would be lost [22], especially

those related to high-dimensional cycles, which

enclosed cavities. Therefore, based on our above

results, we further analyzed the cycle-related features

of each node.

First, we analyzed all the components of 1-cycles in

the E. coli-PPI-Network. As revealed above, there are

a total of 79 1-cavities in the E. coli-PPI-Network. We

first defined the degree of involved q-cycles of a node

as:

q�DCprotein ¼ the number of q�cycles that a node is

involved in the network:

Therefore, different from traditional degree, q-

DCprotein further described the number of cycles that a

protein participates. We analyzed the 1-DCprotein for

all of the nodes (Table S4). The top 15 proteins ranked

by 1-DCprotein are: rplB, rpsF, yfgB, rluB, rplD, tufB,

ybjX, dnaJ, rnr, groL, aidB, dnaA, gmhB, selB, and

cspC. Interestingly, some of the proteins had relatively

small degrees, such as ybjX, aidB, dnaA, gmhB, and

cspC (whose degrees were between 3 and 7). For

example, gmhB has a degree of 3, but a 1-DCprotein

value of 20 (Fig. 4). In addition, the node groL had

the largest degree, but not the largest 1-DCprotein.

Fig. 3. Key parameters of the Escherichia coli-PPI-Networks constructed from individual or combined datasets, including (A) BDS, (B) BDC,

and (C) Betti2 values. For the RandomNet and RandomNet-SameDD, error bars represent the SD and n = 100.
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Fig. 4. Representative gene node gmhB, who had low degree value (3), but high 1-DCprotein (20). All of the 20 1-cycles for which the gmhB

involved are shown, as well as all of its neighbors (rplB, rpsF, rpso). Yellow nodes: node genes that form one of the cycles involving gmhB.

Green node: node gene for gmhB. Blue nodes: node genes which are not involved in the cycles involving gmhB. The size of the node repre-

sents the degree of the genes (larger nodes have greater degree values).
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Fig. 5. Correlation between 1-DCprotein and traditional parameters, including degree, cluster coefficient, betweenness, assortativity (assorta-

tivity of degree, closeness, and betweenness).
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These results indicated that the algebraic topological

analysis revealed additional novel features of the pro-

teins in the network. Most of the proteins are related

to the critical biological processes of the bacteria such

as ribosomal subunit, RNase, protein translation,

lipid biosynthesis, and drug resistance (Table S4),

which constitute the basic components of bacteria

survival.

We also performed Gene Ontology (GO) enrichment

to analyze the molecular functions of the genes com-

prising the cycles. To this, GO enrichment of the genes

in each 1-cycle in the E. coli-PPI-Network was per-

formed, and the top five GO items with P < 0.05 for

each cycle were obtained (Table S5). Next, the fre-

quencies of the GO items in the top five items in all 1-

cycles were ranked. As a result, the most frequent

items of enriched molecular functions are involved in

structural constituent of ribosome, RNA binding, pro-

tein binding, DNA replication, translation, and so on.

(Table S6). In addition, from the GO enrichment anal-

ysis in each 1-cycle, we also identified subcycles that

are involved in certain molecular functions. For exam-

ple, in a cycle (aidB->groL->helD->pepB->rpoD-

>rplD->cbpA->rplB->gmhB->rpsF->aidB), there is a

subcycle containing three genes (rplB, rplD, and rpsF),

which are significantly involved in structural con-

stituent of ribosome (GO:0003735, P = 1.13 × 10−4)

(Table S5). These results implied that the 1-cycles iden-

tified in the E. coli-PPI-Network are involved or

related to many key programs of the bacteria.

HDATS revealed novel node features of the PPI-

Networks which are different from traditional

graph analysis

We have addressed that E. coli-PPI-Network exhibited

special algebraic topological structures. Especially, the

nodes exhibited novel features, such as q-DCprotein,

which is different from that of traditional parameter.

Therefore, we further investigated the relationship and

difference between q-DCprotein and traditional parame-

ters, such as degree, cluster coefficient, betweenness,

and assortativity (assortativity of degree, closeness,

and betweenness) (Table S4). In the combined E. coli-

PPI-Network, correlation analysis revealed that the 1-

DCprotein had a strong positive correlation with the

degree (R2 = 0.51) and weak correlation with the other

parameters (Fig. 5). Nevertheless, there is also appar-

ent difference between these two features. As described

above, there are genes who had large 1-DCprotein value

but relatively small degrees (Table S4). Similarly, there

are also genes that had large degree values but rela-

tively low 1-DCprotein values. These data indicated that

1-DCprotein reflected novel topological features of the

network that cannot be fully described by traditional

graph features.

Conclusions

In recent years, biological network construction and

analysis has been an important approach for identify-

ing potential drug targets in various situations, such as

in cancer [15], infective diseases (especially for mul-

tidrug resistance bacteria) [23], and COVID-19 [24,25].

For example, by analyzing the essential genes in the

COVID-19-related biological networks, candidates as

potential COVID-19 treatments were identified [24,25].

Therefore, network analysis played an important role

in revealing the rules of biological processes and iden-

tifying potential treatment targets. Traditional graph

analysis provided a hand of tools for characterizing

the features of a network such as degree, cluster coeffi-

cient, betweenness, assortativity, and so on. However,

these features lack a characterization of the integral

and especially high-dimensional features of the net-

work, such as high-dimensional cavities or cycles. In

the present study, by introducing algebraic topology,

we studied the HDATS and found that the E. coli-

PPI-Network had special HDATS that are significantly

different from random networks. Notably, these spe-

cial HDATS cannot be produced by random networks,

especially the random one with the same degree distri-

bution, indicting that HDATS uncovered novel net-

work features different from traditional network

characteristics such as small world features. In addi-

tion, based on the definition of cycles in the network,

we also expanded the concept of ‘degree’ in the tradi-

tional graph analysis; that is, by introducing q-DCprotein,

we also investigated the number of q-dimensional cycles

that a node (protein) anticipates. It should be noted that

the definition of q-DCprotein is a novel concept based on

a perspective of integrative topological features, which is

different from traditional parameters such as hub or

node degree. Indeed, hub features are not sufficient for

completely describing the properties of a network [22].

Furthermore, the present approaches and results can be

used to identify potential therapeutic strategies for dis-

eases, such as developing novel types of antibiotics and

overcoming the drug resistance of bacteria.

There are also limitations to the present study. In

algebraic topology calculation, based on the definition

of the quotient group, a ‘cycle’ represents a class of

equivalent cycles, which enclose the same cavity. The

description and analyses of a class of equivalent cycles

with more accuracy will be the subject of our future

studies.
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In conclusion, by taking advantage of GHGD distri-

bution, we reconstructed a statistically reliable combined

E. coli-PPI-Network. From an algebraic topological

view, we discovered novel HDATS properties of the

E. coli-PPI-Network, which cannot be obtained by tradi-

tional graph analysis. We further defined new features of

a node, which is q-DCprotein in a network, a concept

based on the algebraic topological features of a network,

and greatly extended the characteristics of a node beside

traditional parameters. Our study revealed potential rules

of information flow in E. coli, which would have implica-

tions for identifying the mechanisms of key processes of

bacteria such as survival, drug resistance, and mecha-

nisms of diseases in human.
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