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Abstract: In this study, which was inspired by mussel-biomimetic bonding research, carbon nan-
otubes (CNTs) were interfacially modified with polydopamine (PDA) to prepare a novel nano-filler
(CNTs@PDA). The structure and properties of the CNTs@PDA were studied using scanning electron
microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, X-ray pho-
toelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The CNTs and the CNTs@PDA
were used as nanofillers and melt-blended into trans-1,4 polyisoprene (TPI) to create shape-memory
polymer composites. The thermal stability, mechanical properties, and shape-memory properties of
the TPI/CNTs and TPI/CNTs@PDA composites were systematically studied. The results demon-
strate that these modifications enhanced the interfacial interaction, thermal stability, and mechanical
properties of TPI/CNTs@PDA composites while maintaining shape-memory performance.

Keywords: trans-1,4-polyisoprene; carbon nanotubes; mechanical properties; thermal stability; shape-
memory properties

1. Introduction

Shape-memory polymer (SMP) refers to a type of smart polymer that can return
to its initial shape from a temporary deformed shape under external stimuli such as
heat, light, electricity, magnetism, pH value, metal ions, and many other physical and
chemical stimuli [1–3]. Because of their unique shape-recovery function, SMPs have broad
application prospects in many fields, including biological medical devices, aerospace
engineering, textiles, and anti-counterfeiting [4–6]. Thermally induced SMP is an important
branch of shape-memory polymer stimulation that has been widely studied and has many
industrial applications [7–9]. As an important component of thermally induced SMPs, trans-
1,4-polyisoprene (TPI) and its composites have been used in biomedical and protective
equipment applications due to their fast deformation speed, high recovery rate, and high
recovery accuracy [10]. However, poor thermal stability and weak mechanical properties
limit the potential of TPI shape-memory polymers.

In recent years, researchers have found that the shape-memory and mechanical proper-
ties of shape-memory polymers can be effectively enhanced by integrating nano-fillers into
a polymer’s matrix [11–13]. Carbon nanotubes (CNTs) are a new type of one-dimensional
nanomaterial where the carbon atoms in the tube walls form a hexagonal network struc-
ture due to sp2 hybridization; the basic network is the same as that of graphene. The
C=C covalent bond formed by sp2 hybridization is one of the strongest covalent bonds
in nature, so carbon nanotubes have extremely high mechanical properties [14,15]. The
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elastic modulus of CNTs can reach 1TPa, which is almost the same as that of diamond and
about five times that of steel [16]. However, due to their high cohesion, CNTs are prone
to form intertangled cluster structures, which hinders their effective dispersion in a TPI
matrix [17]. Therefore, identifying a method that will promote the uniform dispersion of
CNTs in SMPs is of great importance to expand its potential applications [18]. CNTs can
be functionalized by covalent and noncovalent modifications [19,20]. Of the two, covalent
functionalization is the most common form of modification of CNTs, and it is also one
of the most destructive methods when it comes to the CNTs’ structure. Conversely, the
noncovalent modification conditions of organic polymer coatings is mild, making it an
ideal modification method [21–23]. In addition, previous research has shown that inor-
ganic nanomaterials modified with organic polymers may improve the compatibility and
interface interaction between the nanoparticles and the matrices, allowing them to achieve
better performance, as compared to that of other common composite materials [24–27].

Dopamine molecules derived from biomimetic mussels have shown strong adhesion
ability [28,29]. Messersmith et al. found that dopamine could be oxidized under weak
alkaline conditions, forming polydopamine (PDA) [30]. PDA can be added to almost any
material and can form a thick coating on its surface because of its strong adhesion [31–33].
More importantly, since the surface of the PDA contains a large number of chemically active
groups [34,35], the coating could effectively reduce the agglomeration of the nanofiller
itself, which could further improve the dispersion of nanofillers in shape-memory polymer
composites. In addition, the reaction conditions of PDA modification in nanofillers are
mild (i.e., no strong acid or strong oxidant has to be used), and the surface and length of
nanofillers are not damaged, indicating its potential for further development [36,37]

In this study, CNTs were modified with noncovalent bonds using oxidative autopoly-
merization of dopamine, and CNTs@PDA nano-fillers were prepared to improve the disper-
sion of CNTs. In addition, TPI shape-memory polymer composites were prepared using a
melt-blending method with TPI as the matrix and CNTs@PDA as the filler. The mechanical
properties, thermal stability, and shape-memory properties of TPI shape-memory polymer
composites were studied and compared with neat TPI and a TPI/CNTs composite.

2. Materials and Methods
2.1. Materials

The TPI was provided by Qingdao Dipai New Material Co., Ltd., Beijing, China.
Carbon nanotubes (CNTs, multi-walled, diameter of 20–30 nm and length of 1–3 µm)
were purchased from Suzhou Hengqiu Technology Co., Ltd., Suzhou, China. Dopamine
hydrochloride was provided by Shanghai Macklin Biochemical Co., Ltd., Shanghai, China.
Tris (hydroxymethyl) aminomethane (Tris) was purchased from Tianjin Damao Chemical
Reagent Factory, Tianjin, China. Sulfur, zinc oxide (ZnO), stearic acid (SA), N-Isopropyl-N’-
phenyl-4-phenylenediamin (antioxidant 4010NA), and N-(Oxidiethylene)-2-benzothiazolyl
sulfenamide (accelerator NOBS) were provided by Shanghai Chengjin Chemicals Co., Ltd.,
Shanghai, China, and utilized without further refinement.

2.2. Preparation of TPI/CNTs@PDA Composites

First, 600 mg of CNTs were added to 900 mL of deionized water. After ultrasonic
dispersion for 30 min, 360 mg of dopamine was added under magnetic stirring, and the
solution was stirred at room temperature for 20 min. Then, 100 mL Tris (1.21 g) aqueous
solution was added, the temperature was adjusted to 60 ◦C, and the stirring continued for
8 h. The final product was centrifuged several times (3500× g r/min) and washed with
deionized water until the filtrate was colorless. Then, it was dried in a vacuum oven at 60
◦C for 24 h to obtain the CNTs@PDA nano-filler. The preparation process of the CNTs@PDA
nano-filler is shown in Figure 1.
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Figure 1. The schematic of preparation process of CNTs@PDA.

The prepared CNTs@PDA nano-filler was melt-blended with TPI in an open mill at
70 ◦C for 15 min. TPI composites were prepared by adding 2.0 phr (parts per hundred
rubber) SA, 4.0 phr ZnO, 2.0 phr 4010NA, 1.2 phr NOBS, and 1.5 phr sulfur along with
CNTs@PDA (0 phr, 0.6 phr, 1.2 phr, 1.8 phr, 2.4 phr, and 3.0 phr, respectively) to the TPI
matrix. After standing at room temperature for 24 h, the composite was hot pressed in a
vacuum at 5 MPa and 150 ◦C for 10 min to form 2 mm thick sheets. In addition, the control
group was created according to the same method yielding 0.6 phr TPI/CNTs composite
material that contained exclusively CNTs.

2.3. Characterizations

Fourier transform infrared (FTIR) spectra were recorded using a Fourier spectrometer
(Nicolet MAGNA-IR560) to characterize the chemical structures of CNTs and CNTs@PDA.

Scanning electron microscopy (SEM) was used to analyze the microstructures of the
nanocomposite samples. The SEM micrographs were obtained by JSM-6360LV (Japan Jeol).

Raman spectra were obtained using a multichannel confocal spectrometer (HORIBA
Scientific LabRAM HR Evolution) with a laser wavelength of 535 nm.

X-ray diffraction (XRD) analysis was recorded by D & Advance (Germany Bruker)
with CuKα radiation (λ = 0.154 nm), and the diffraction angle was decreased from 5◦ to 80◦

with a scanning rate of 3◦/min.
X-ray photoelectron spectroscopy (XPS) was performed by an X-ray photoelectron

spectrometer (KRATOS, Axis UltraDLD).
Thermogravimetric analysis (TGA) was performed on a STA449C (Germany Netzsch).

Under a nitrogen environment, the range of test temperatures was from 40 to 800 ◦C at a
heating rate of 10 ◦C/min.

Dynamic mechanical analysis (DMA) was carried out by using a DMAQ800 (American
TA). The frequency and heating rate were set at 1 Hz and 3 ◦C/min from −75 to 50 ◦C.

Differential scanning calorimetry (DSC) analysis was used by a DSCQ200 (American
TA) under a nitrogen atmosphere. Samples with a mass of 8–10 mg were maintained at
100 ◦C for 5 min then cooled to −80 ◦C at 10 ◦C/min for 5 min, and samples were heated
to 100 ◦C at 10 ◦C/min. The degree of crystallinity (Xc) for each portion of the sample was
calculated by the following equation:

Xc =
∆Hm

∆Hm∗
× 100%, (1)
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where ∆Hm and ∆Hm∗ are the melting enthalpy of a certain polymer portion and that of
pure polymer (ca. 186.8 J/g for TPI), respectively [38].

The shape-memory properties of the composites were analyzed by DMA. Firstly, the
samples were equilibrated at 60 ◦C and then stretched at a stress of 0.4 MPa. Secondly, the
sample was maintained at a constant stress and cooled down to−10 ◦C quickly, equilibrated
at this temperature for 5 min, and then the stress was removed. In the last step, the samples
were heated to 60 ◦C and equilibrated. The fixing ratio (Rf) and recovery ratio (Rr) were
used to calculate the following formulas.

R f (X → Y) =
εY − εX

ε(Y,load) − εX
× 100%, (2)

Rr(X → Y) =
εY − ε(X,rec)

εY − εX
× 100%. (3)

3. Results and Discussion
3.1. Characterization of CNTs and CNTs@PDA

Figure 2 shows the FTIR spectra of CNTs and CNTs@PDA samples. For the spectra
of the original CNTs, obvious bands were observed at 3436 and 1574 cm−1, which may
have been caused by the adsorption of -OH groups on CNTs and the C=C stretching
vibration of CNTs while at 1720 cm−1, and the corresponding stretching vibration peak
of C=O was observed. The absorption peaks at 2924 and 2855 cm−1 corresponded to
the stretching vibration of aliphatic C-H, and the intensity of the absorption peaks of
CNTs@PDA increases significantly, which is caused by the increase in the surface carbon
content of CNTs after coating. In addition, after the auto-oxidation polymerization of
dopamine, PDA was formed, which had a strong absorption peak at 1260 and 1620 cm−1,
which was caused by the stretching vibration of C-O and the aromatic ring, respectively.
There was a wide peak at 3445 cm−1, which was caused by the combination of the two
characteristic peaks resulting from the abundant N-H and -OH on the PDA. These results
clearly indicate that the CNTs were successfully functionalized by the PDA.
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In order to explore the morphological changes of CNTs before and after modification,
the surface morphology of CNTs was characterized by SEM. The SEM images of CNTs and
CNTs@PDA are shown in Figure 3. As can be seen from the figure, the surface of unmodified
CNTs was relatively smooth and clear in outline, while the surface of the CNTs@PDA had
an obvious coating layer that was dense and complete in structure, and the diameter of
the tube was increased relative to that of the CNTs. The unmodified CNTs also had a lot
of entanglement and agglomeration. Comparatively, the dispersibility of the CNTs@PDA
was significantly improved due to the PDA coating and its large number of active surface
groups. In addition, the PDA coating formed a physical steric hindrance between the CNTs,
which effectively prevented the agglomeration of the CNTs. Therefore, we determined that
the PDA had both successfully coated the CNTs and provided additional benefits.
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Raman spectroscopy can distinguish between the hybrid forms of carbon atoms and
is also an effective method to examine the structural characteristics of CNTs. The Raman
spectra of the CNTs and the CNTs@PDA were both double peaks, as shown in Figure 4. The
Raman spectra of CNTs showed a D band (1334 cm−1) and a G band (1581 cm−1), indicating
that the graphitic structure was preserved in CNTs and CNTs@PDA [39]. If R is defined
as the intensity ratio of peak D to peak G, the value of R can reflect the functionalization
degree and the integrity of the CNTs graphite structure [40]. After calculation, the R values
of the CNTs and the CNTs@PDA were 1.27 and 1.33, respectively. In contrast, the R value
of the CNTs@PDA was only slightly greater than that of the CNTs, which was due to
the introduction of extra heteroatoms (N), resulting in the decomposition of the graphitic
structure, producing more defects and disordered areas within CNTs [41].

XPS is an effective means of detecting the surface composition, chemical state, and
chemical bond information of materials. The XPS curves and related data are shown in
Figure 5 and Table 1, respectively. Figure 5a,b shows the full XPS spectrum of the CNTs and
the CNTs@PDA, in which the CNTs and the CNTs@PDA could be seen in the two groups
of main peaks corresponding to the C1s and the O1s near 284 and 533 eV. In addition to
the C1s peak of 284 eV and the O1s peak of 533 eV in the full spectrum of the CNTs@PDA,
the N1s peak also appeared near 400 eV, which confirmed the existence of the PDA. Five
sub-peaks (as shown in Figure 5c) were obtained by fitting the C1s peak of the CNTs to the
corresponding C=C (284.8 eV), C-C (285.5 eV), C-O (286.4 eV), C=O (287.5 eV), and O-C=O
(289.3 eV). As a result, five sub-peaks (as shown in Figure 5c) were obtained, corresponding
to C=C (284.8 eV), C-C (285.5 eV), C-O (286.4 eV), C=O (287.5 eV), and O-C=O (289.3 eV).
The C1s peak of the CNTs@PDA was analyzed (as shown in Figure 5d), and six sub-peaks
were obtained, which were attributed to C=C (284.8 eV), C-C (285.5 eV), C-N (285.9 eV),
C-O (286.5 eV), C=O (287.3 eV), and O-C=O (289.2 eV). The new peak of the modified CNTs
near 285.9 eV corresponded to the unique N-element on the PDA, which was consistent
with the results of the full spectrum in Figure 5d. All of the above results indicate that the
PDA successfully coated the CNTs.
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Table 1. Element content of CNTs and CNTs@PDA.

O 1s (at.%) N 1s (at.%) C 1s (at.%)

CNTs 10.92 / 89.08
CNTs@PDA 16.38 4.24 79.38

The thermal stability of the CNTs@PDA was characterized by thermogravimetric
analyzer. Figure 6 shows the thermogravimetric curves of the CNTs and the CNTs@PDA.
As shown in the figure, the unmodified CNTs did not show significant weight loss during
the whole thermal analysis process, which was in line with the excellent heat resistance
characteristics of carbon nanomaterials. While the CNTs@PDA had begun to show weight
loss at 250 ◦C, they had an obvious weight loss between 300 and 600 ◦C, which was mainly
due to the thermal decomposition of the polydopamine. When the temperature increased
to 800 ◦C, the thermal weight loss of the CNTs@PDA accounted for about 19.3% of the total
weight, showing that the PDA had been successfully coated on the surface of the CNTs.
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3.2. Crystallization Properties

The crystallization and crosslinking structure of TPI plays an important role in its
mechanical and shape-memory properties. We used DSC to characterize the crystallization
and melt-transition characteristics of TPI composites. The DSC curves and related data are
shown in Figure 7 and Table 2, respectively. The results show that the melting temperature
(Tm), crystallization temperature (Tc), melting enthalpy (∆Hm), and crystallinity (Xc) of the
TPI/CNTs@PDA composites were higher than those of neat TPI and TPI/CNTs. The reason
was that the agglomeration of neat CNTs in the matrix hindered the crystallization of the
TPI molecular chains and led to the decrease in the crystallinity of the materials [42]. The
results also indicate that the CNTs@PDA had better dispersion in the TPI composites. It is
worth noting that the crystallinity of the composites first increased and then decreased with
the additional amount of the CNTs@PDA. Two possibilities could explain this phenomenon:
On the one hand, the CNTs@PDA may have acted as a nucleating agent in the composites,
which could have promoted the crystallization process of the chain segment. On the other
hand, when the total amount of the CNTs@PDA reached a certain temperature, the strong
interaction between the CNTs and the polymer greatly reduced the regularity of the TPI
molecular chain, which was not conducive to its crystallization, resulting in a decrease in
the TPI crystallinity.
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Table 2. DSC crystallization parameters of TPI composites.

Sample Xc (%) Tc (◦C) Tm (◦C) ∆Hm (J/g)

Neat TPI 21.47 −13.22 30.68 40.11
TPI/0.6 CNTs 21.28 −10.68 29.97 39.76

TPI/0.6 CNTs@PDA 22.39 −7.69 30.92 41.83
TPI/1.2 CNTs@PDA 22.66 −5.55 31.12 42.32
TPI/1.8 CNTs@PDA 25.28 −4.96 33.69 47.23
TPI/2.4 CNTs@PDA 25.62 −3.28 34.12 47.86
TPI/3.0 CNTs@PDA 21.69 −3.88 32.43 42.53

The TPI was a partially crystalline polymer material, which had two crystal forms: α
and β. As shown in the XRD pattern in Figure 8, there were obvious characteristic peaks in
the TPI composite material, of which the XRD diffraction angles (2θ) of the α and β crystal
forms were 17.9 (α), 26.7 (α), 18.7 (β), and 22.7 (β) [43]. The three peaks between 30◦ and
40◦ corresponded to the characteristic peaks of ZnO [44]. In addition, there were no new
crystallization peaks in the XRD curves of all the samples, which indicated that the crystal
structure of the TPI composites had not been destroyed.

Polymers 2021, 13, x FOR PEER REVIEW 8 of 16 
 

 

Figure 7. DSC curves of TPI composites: (a) cooling curves and (b) heating curves. 

Table 2. DSC crystallization parameters of TPI composites. 

Sample Xc (%) Tc (°C) Tm (°C) ∆Hm (J/g) 
Neat TPI 21.47 −13.22 30.68 40.11 

TPI/0.6 CNTs 21.28 −10.68 29.97 39.76 
TPI/0.6 CNTs@PDA 22.39 −7.69 30.92 41.83 
TPI/1.2 CNTs@PDA 22.66 −5.55 31.12 42.32 
TPI/1.8 CNTs@PDA 25.28 −4.96 33.69 47.23 
TPI/2.4 CNTs@PDA 25.62 −3.28 34.12 47.86 
TPI/3.0 CNTs@PDA 21.69 −3.88 32.43 42.53 

The TPI was a partially crystalline polymer material, which had two crystal forms: α 
and β. As shown in the XRD pattern in Figure 8, there were obvious characteristic peaks 
in the TPI composite material, of which the XRD diffraction angles (2θ) of the αand βcrys-
tal forms were 17.9 (α), 26.7 (α), 18.7 (β), and 22.7 (β) [43]. The three peaks between 30° and 
40° corresponded to the characteristic peaks of ZnO [44]. In addition, there were no new 
crystallization peaks in the XRD curves of all the samples, which indicated that the crystal 
structure of the TPI composites had not been destroyed. 

 
Figure 8. XRD profiles of TPI Composites. 

3.3. Thermal Properties 
The TGA and DTG curves of the sample are shown in Figure 9, while the main char-

acteristic parameters, such as the initial degradation temperature (T5%), the maximum 
thermal degradation temperature (Tmax) and carbon residue at 600 °C, are summarized in 
Table 3. Under a nitrogen atmosphere, the TPI/CNTs@PDA system had a higher T5%, Tmax, 
and carbon residue than the neat TPI and TPI/CNTs systems. With the increase in 
CNTs@PDA content, T5%, Tmax and carbon residue of TPI composites were increased by 
varying degrees. This could be attributed to the fact that polydopamine has a large num-
ber of benzene rings and hydroxyl structures. A large number of hydroxyl groups means 
crystalline water is formed more easily, and since the polymer loses water during com-
bustion, it reduces the temperature as well. At the same time, a rich benzene ring structure 
can form carbon with high thermal stability that can then accumulate on the surface of the 
TPI matrix and form a dense carbon layer. As a thermal insulation layer, the thicker carbon 
layer may not only slow down the process of thermal degradation but may also prevent 
heat transfer to the interior of the remaining composite materials. The complementary 
interaction of the dense carbon layer structure and thermal insulation barrier yielded ex-
cellent thermal stability, and they acted upon the TPI/CNTs@PDA composites. 

Figure 8. XRD profiles of TPI Composites.



Polymers 2022, 14, 110 9 of 16

3.3. Thermal Properties

The TGA and DTG curves of the sample are shown in Figure 9, while the main char-
acteristic parameters, such as the initial degradation temperature (T5%), the maximum
thermal degradation temperature (Tmax) and carbon residue at 600 ◦C, are summarized
in Table 3. Under a nitrogen atmosphere, the TPI/CNTs@PDA system had a higher T5%,
Tmax, and carbon residue than the neat TPI and TPI/CNTs systems. With the increase in
CNTs@PDA content, T5%, Tmax and carbon residue of TPI composites were increased by
varying degrees. This could be attributed to the fact that polydopamine has a large number
of benzene rings and hydroxyl structures. A large number of hydroxyl groups means crys-
talline water is formed more easily, and since the polymer loses water during combustion,
it reduces the temperature as well. At the same time, a rich benzene ring structure can form
carbon with high thermal stability that can then accumulate on the surface of the TPI matrix
and form a dense carbon layer. As a thermal insulation layer, the thicker carbon layer may
not only slow down the process of thermal degradation but may also prevent heat transfer
to the interior of the remaining composite materials. The complementary interaction of
the dense carbon layer structure and thermal insulation barrier yielded excellent thermal
stability, and they acted upon the TPI/CNTs@PDA composites.
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Figure 9. TGA (a) and DTG (b) analysis of TPI composites.

Table 3. TGA parameters of TPI composites.

Sample T5% (°C) Tmax (◦C) Weight 600 ◦C (wt%)

Neat TPI 318.7 380.2 2.5
TPI/0.6CNT 322.1 381.8 4.1

TPI/0.6CNTs@PDA 324.3 382.5 4.2
TPI/1.2CNTs@PDA 326.5 387.6 4.4
TPI/1.8CNTs@PDA 329.5 389.6 4.9
TPI/2.4CNTs@PDA 331.1 392.5 6.8
TPI/3.0CNTs@PDA 326.6 384.8 6.5

The DTG curve showed that the CNTs@PDA not only promoted the formation of car-
bon but also slowed down the mass loss rate of the TPI composites during their degradation
at high temperatures. The further decomposition of the matrix was delayed, and the carbon
yield was increased, which had a positive effect on the thermal stability of the composites.

3.4. Mechanical Properties

The tensile strength properties of TPI composites at room temperature are shown
in Figure 10. The tensile strength, elongation-at-break and Young’s modulus of neat TPI
were 17.7 MPa, 380.5% and 0.052 GPa, respectively. The tensile strength, elongation-
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at-break and Young’s modulus of the composites were increased to 18.8 MPa, 387.6%
and 0.055 GPa, respectively, by adding 0.6 phr of the CNTs, which was mainly due to the
unique mechanical and physical properties of CNTs, as well as their high specific surface
area and aspect ratio [45,46]. When the same amount of CNTs@PDA (0.6 phr) was added,
the tensile strength, elongation-at-break and Young’s modulus of the composites were
19.8 MPa, 416.9% and 0.06 GPa, respectively, which showed a better strengthening effect,
as compared to the CNTs alone. This was due to the fact that the van der Waals force
interaction between the CNTs was relatively strong and was easy to agglomerate, which
made the distribution of the CNTs in the TPI matrix uneven, and the agglomerates formed
small defects in the matrix, which reduced the tensile properties of the composites. The
dispersion of the CNTs@PDA in the TPI was better, which could effectively avoid the
agglomeration phenomenon, so the tensile properties of the TPI composites may prove
beneficial. In addition, the tensile strength, elongation-at-break and Young’s modulus of
the composite reached the highest values when the CNTs@PDA content was 2.4 phr, which
were 31.64%, 13.07% and 0.066 GPa higher, respectively, than that of the neat TPI. The
tensile properties of the TPI composites improved with the addition of the CNTs@PDA
under high load, which was a result of the CNTs@PDA thorough dispersion in the TPI and
the strong interfacial bonding between the CNTs and the TPI matrix.
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The DMA curves of the storage modulus (E′) and the loss factor (tan δ) versus the
temperature of the samples are shown in Figure 11. Below the glass transition temperature
(Tg), the addition of CNTs increased the storage modulus (E’) of the TPI composite, as
shown in Figure 11a. This result is associated with the hindered movement of the cross-
linked molecular chain when CNTs were added into the TPI matrix. In addition, due to the
high rigidity of the CNTs, they acted as a skeleton, which led to the improvement of the
rigidity of the composites and was reflected by the increased energy storage modulus. As
compared to the TPI/CNTs, the E’ of the TPI/CNTs@PDA composites increased when the
same content of the CNTs@PDA had been added. This was due to the abundant amounts
of amine and catechol groups in the PDA coating layer, which improved the interface
interaction between the CNTs@PDA surface and the TPI matrix [47]. However, when the
amount of CNTs@PDA exceeded 2.4 phr, the E’ of the composites decreased due to the
abundant catechol groups, which not only promoted the dispersions of the CNTs in the TPI
matrix but also enabled hydrogen bonding between the PDA coating layers. This resulted
in a bridge between the CNTs and, therefore, their agglomeration and resultant defects.
These defects formed stress concentration points in the matrix, leading to a decrease in
E’. Figure 11b shows that when CNTs@PDA was added to the composites, the Tg was
−48.5 ◦C, a reduction of 1.2 ◦C, as compared to the neat TPI. Tg gradually decreased and
trended downward when the element content was increased, which in turn increased the
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distance between the molecular chains and promoted their movement. In addition, with
the continuous increase in CNTs@PDA content, the loss factor of the samples tended to
decrease, and the loss factor of the samples were lower than that of the neat TPI.
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The dispersion state of the nano-fillers in the composites had an impact on their
mechanical properties. To further study the dispersion and aggregation of the CNTs@PDA
in the TPI, the sectional morphology of the composite was investigated with SEM. The
cross-section of the neat TPI was relatively flat and smooth with typical brittle fracture
characteristics. Figure 12b shows that the CNTs had a large-scale aggregation, and the
cross-section became coarser, as compared to that of the neat TPI. Even though they had
the same additional contents, the cross-section of the TPI/CNTs@PDA composites had
no aggregation, indicating that the PDA further improved the dispersion of the CNTs in
the TPI matrix. In addition, with the gradually increased CNTs@PDA content, a large
number of small cracks appeared in the composite, and the density and depth gradually
increased. This fracture behavior was due to the strong interfacial interaction between
the PDA-modified CNTs and the TPI matrix. More effective stress was transferred from
the TPI matrix to the CNTs with high modulus, which inhibited the crack propagation
in the matrix on a larger scale, leading to the roughness seen in the cross-section of the
composites. The addition of the PDA-coated CNTs improved the fracture toughness of
the TPI matrix. However, when the content of CNTs@PDA exceeded 2.4 phr, there was
still some small-scale aggregation, and the crack density decreased to a certain extent, as
shown in Figure 12g. The suggested cause for this could be that with the increased packing
content, the CNTs coated with PDA could still have had a strong association with each
other, which could have led to their weak dispersion in the TPI matrix.

3.5. Shape-Memory Properties

The shape-memory properties of the samples were measured with DMA, and the
results are shown in Figure 13 and Table 4. Because the TPI nanocomposites have excellent
shape-memory properties, there was little difference in the Rf values among the samples,
and the Rf values of all the samples were maintained at a high level. In addition, the Rr of
the neat TPI was 99.8%, and the Rr of the TPI composite with 0.6 phr of the CNTs and the
TPI composite with 0.6 phr of the CNTs@PDA decreased to 98.2% and 97.9%, respectively.
The reason for this phenomenon was that the CNTs modified with PDA can effectively
promote the crystallization of the TPI matrix. This indicated that the elastic recovery of
the TPI decreased as the relative content of the TPI cross-linked networks (at the same
density) decreased. Nevertheless, the Rr values of all the samples were still greater than
96%, indicating that the TPI composites had excellent shape-recovery properties. These
results indicate that the TPI composites had excellent shape-memory performance.
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Table 4. Shape-memory performance parameters for TPI composites.

Samples Rf (%) Rr (%)

Neat TPI 97.6 99.8
TPI/0.6CNTs 97.3 98.2

TPI/0.6CNTs@PDA 97.5 97.9
TPI/1.2CNTs@PDA 97.5 97.7
TPI/1.8CNTs@PDA 97.7 97.5
TPI/2.4CNTs@PDA 97. 3 97.4
TPI/3.0CNTs@PDA 97.6 96.7

4. Conclusions

In this study, we prepared CNTs@PDA nano-fillers via a non-covalent bonding method
and then combined it with TPI via a melt-blending method to prepare new shape-memory
polymer composites. The effects of different components on the thermal, mechanical, and
shape-memory properties of the composites were studied. The SEM results confirm that
PDA nanoparticles uniformly coated the surfaces of the CNTs. FTIR, Raman, and XPS
spectra were used to determine the chemical structure of the CNTs@PDA. In addition,
according to the DSC, XRD, and TGA test results, the crystallization properties and the
thermal stability of the samples containing the CNTs@PDA were improved, as compared
to those containing only CNTs. Furthermore, the surface and fracture morphologies of
the samples were evaluated by SEM, and the results show that PDA could significantly
improve the interfacial compatibility of CNTs and TPI, which also improved the mechanical
properties of the composites. At the same time, the CNTs@PDA (2.4 phr) composite had
the best mechanical properties and shape-memory performance.
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