
����������
�������

Citation: Alvarez-Gonzalez, R.;

Mendez-Vazquez, A. Deep Learning

Architecture Reduction for fMRI

Data. Brain Sci. 2022, 12, 235.

https://doi.org/10.3390/

brainsci12020235

Academic Editor: Muthuraman

Muthuraman

Received: 16 December 2021

Accepted: 12 January 2022

Published: 8 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

brain
sciences

Article

Deep Learning Architecture Reduction for fMRI Data

Ruben Alvarez-Gonzalez and Andres Mendez-Vazquez *

Department of Computer Science, Cinvestav Guadalajara, Zapopan 45015, Mexico; rodolfo.alvarez@cinvestav.mx
* Correspondence: andres.mendez@cinvestav.mx

Abstract: In recent years, deep learning models have demonstrated an inherently better ability to
tackle non-linear classification tasks, due to advances in deep learning architectures. However,
much remains to be achieved, especially in designing deep convolutional neural network (CNN)
configurations. The number of hyper-parameters that need to be optimized to achieve accuracy in
classification problems increases with every layer used, and the selection of kernels in each CNN layer
has an impact on the overall CNN performance in the training stage, as well as in the classification
process. When a popular classifier fails to perform acceptably in practical applications, it may be
due to deficiencies in the algorithm and data processing. Thus, understanding the feature extraction
process provides insights to help optimize pre-trained architectures, better generalize the models, and
obtain the context of each layer’s features. In this work, we aim to improve feature extraction through
the use of a texture amortization map (TAM). An algorithm was developed to obtain characteristics
from the filters amortizing the filter’s effect depending on the texture of the neighboring pixels. From
the initial algorithm, a novel geometric classification score (GCS) was developed, in order to obtain a
measure that indicates the effect of one class on another in a classification problem, in terms of the
complexity of the learnability in every layer of the deep learning architecture. For this, we assume
that all the data transformations in the inner layers still belong to a Euclidean space. In this scenario,
we can evaluate which layers provide the best transformations in a CNN, allowing us to reduce the
weights of the deep learning architecture using the geometric hypothesis.

Keywords: CNN; machine learning; deep learning; computer vision; transfer learning

1. Introduction

Two recent neuroimaging studies [1,2] have decoded the structure and semantic con-
tent of static visual images from human brain activity. Considerable interest has developed
in decoding stimuli or mental states from brain activity measured by functional magnetic
resonance imaging (fMRI). The significant advantage of fMRI is that it does not use ra-
diation, as is the case with X-rays, computed tomography (CT), and positron emission
tomography (PET) scans. If performed correctly, fMRI poses virtually no risks. It can be
used to safely, non-invasively, and effectively evaluate brain function [3]. fMRI is easy
to use, and the produced images have very high resolution (as detailed as 1 millimeter).
Compared to the traditional questionnaire methods of psychological evaluation, fMRI is
much more objective.

Technological advances have led to significant evolution in user–computer interfaces.
Hence, there are new opportunities to facilitate and simplify computer access, including
the practical use of these interfaces in vast applications [4,5] and a broad spectrum of user
communities. Designing models that can predict brain activity is an extensive research
field, where one crucial aspect is feature selection, which is used to find the patterns that
describe data.

At present, different techniques are used for feature selection, such as probability, logic,
optimization, and so on, to solve various problems and to obtain the best features to solve
a classification problem [6–8]. Having the most representative features for the description
of the problem allows the classifier to converge to the correct solution. Deep learning [9]
is a current group of techniques, within the range of black-box solutions, producing the

Brain Sci. 2022, 12, 235. https://doi.org/10.3390/brainsci12020235 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci12020235
https://doi.org/10.3390/brainsci12020235
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://doi.org/10.3390/brainsci12020235
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci12020235?type=check_update&version=2

Brain Sci. 2022, 12, 235 2 of 27

most promising results. With deep learning, some architectures such as convolutional
neural network (CNN) with different layers extract features from the image, and others
perform classification within the same architecture. In some scenarios with large amounts of
high-dimensional data, without considering the distributions and the correlations between
features, overfitting problems can occur.

One possible solution is implementing a benchmark combined with a validation tech-
nique, such as k-fold cross-validation, to determine which models can solve a classification
problem [10], the training of the models is usually run over a different data set, in order to
obtain scores for different algorithms and choose the best one, according to the input data.
This method is often impractical for larger numbers of hyperparameters, depending on
the model used; for example, a natural question is: Which classification algorithm can be
used to solve a particular problem? For this, we could use neural networks or a support
vector machine (SVM) with linear or non-linear kernels. This is an essential decision, as one
algorithm can converge to the solution faster than the others with similar accuracy, depend-
ing on the type of input data. Notably, these algorithms usually randomly initialize their
parameters and cannot reproduce the same percentage of accuracy in each execution, even
when using the same hyperparameters. In classification algorithm applications, we need to
analyze the relation of the trained models and the input training data set to determine the
complexity of the problem.

Many applications of machine learning and, most recently, computer vision have been
disrupted by the use of CNNs [11–15]. Combining a minimal need for human design and
the efficient training of large and complex models has allowed them to achieve state-of-the-
art performance on several benchmarks. However, this performance is only possible with
a high computational cost, due to the use of chains of several convolutional layers, often
requiring implementations on GPUs or highly optimized distributed CPU architectures to
process large data sets [16]. The increasing use of these networks for detection in sliding
window approaches and the desire to apply CNNs in real-world systems mean that the
inference speed has become an essential factor for various applications [16].

One significant problem is choosing the correct CNN architecture [17–19]. The sample
size for training the CNN architecture usually is enormous, considering that it will depend
on the election of filters and the rest of the hyperparameters in a CNN. Thus, transfer learn-
ing has been one of the most used techniques in the past years, implementing pre-trained
architectures for classification [20,21]. This approach brings some advantages, reducing
the processing time in training and reducing the amount of data required. One of the new
challenges of this approach is choosing the sample size for training and the correct gener-
alization of the features for new classification problems. Based on the above arguments,
the most straightforward answer is that more data is needed to improve the results, and,
in some scenarios, it is impossible to improve the results, thus leading to overfitting [22].
The sample size depends on the nature of the problem and the implemented architecture.
Still, co-dependency can occur, making it necessary to test different architectures with
appropriate data. Real-world data are never perfect and often suffer from corruption
produced by noise, which may impact the interpretation of the training data and affect the
performance of the model [23]. Additionally, noise can reduce the system performance
regarding classification accuracy and training processing time. Existing learning algorithms
integrate various approaches to enhance their learning abilities in noisy environments
however, these approaches can have severe negative impacts.

The problem of learning in noisy environments [24] has been the focus in fields
related to machine learning and inductive learning algorithms. In real-world applications,
classifiers are developed and trained without a clear understanding of the noise factor.
Thus, comprehensive knowledge of the noise in each data set avoids possible pitfalls during
training. To overcome this type of problem, some approaches have experimented with
different deep learning architectures, as they can extract features in their hidden layers
without the need for human intervention however, this creates other problems. In deep
learning, to compare the efficiency of different architectures with respect to the same
problem [25], the benchmarks use different tests, such as cross-validation [10]. Even in

Brain Sci. 2022, 12, 235 3 of 27

this scenario, one of the problems with benchmark architectures is overkill. Due to the
infinite number of possible architectures that can be proposed within the deep learning
design area, it is impossible to test all of them. In addition, a large amount of information is
needed to train this type of architecture. The larger the architecture, the higher the number
of parameters that need to be trained. Due to this, techniques such as transfer learning [26]
have become popular, utilizing the application of architectures that have been trained
previously to solve new classification problems. These models can effectively serve as a
generic model of the visual world, with different approximations [11–13,15].

Transfer learning takes advantage of these learned feature maps without having to
start from scratch by training a large model on an extensive data set [26–29]. However,
one of the main drawbacks of transfer learning is its dependency on heavy architectures,
which are often excessive for specific problems. Thus, in this work, we introduce a series
of texture amortization map features and a novel geometric classification score. These
texture amortization map (TAM) features are based on the texture ideas that improve the
generation of new features, with inherent adaptability according to the input data. The
geometric classification score (GCS) is a score that can help to choose the best convolutional
layers or a combination thereof, given a pre-trained architecture and a training data set for
a specific classification problem.

2. Literature Review

In this section, the basic theoretical foundations are reviewed. First, we review
some of the basic techniques in machine learning, such as feature generation and se-
lection [6–8,30,31], and classification models [32–34]. Then, we review the basic CNN
architectures [9,35].

2.1. Noise in Data Sets

Noisy data have a large amount of additional meaningless information called noise [23].
The noise in the data can be produced by many different sources, such as the error in-
troduced in the instance attribute values, leading to contradictory examples [36]. As a
case in point, noise can be created by the same examples having different class labels,
where misclassifications can be seen as any data that a user system cannot understand and
interpret correctly.

2.2. Class Ambiguity

Class ambiguity, in a classification problem, refers to the lack of discrimination in some
classes using the given features by a classification algorithm [37]. Event-related potential
(ERP) detection involves noisier data primarily as the features are intrinsically inseparable.

For each classifier, the processes of features extraction and selection can affect this
ambiguity. Again, this operation represents the most informative item of the classes. Class
ambiguity can occur for only some input cases. The classes are ambiguous for at least some
cases and are said to have non-zero Bayes error [38], which sets a bound on the lowest
achievable error rate.

2.3. Characterization of Geometrical Complexity

The geometric complexity of class boundaries is one of the most-studied [39,40] topics
in the area of deep learning architectures in recent years. It is possible to define each
classification problem as represented by a fixed set of training data, consisting of points
in a d-dimensional real space Rd. A single set of training points are associated with their
respective class labels. Furthermore, these problems work with the assumption of a sparse
sample training set [41]. Thus, there are unseen points from the same source that follow
the same (unknown) probability distribution, representing the data in the classification
problem. Still, these unseen points are unavailable during the classifier design. These
finite and sparse samples limit our knowledge about the boundary complexity. Thus,
a measure that can describe the geometrical and topological characteristics of point sets
in high-dimensional spaces over sparse data sets would be useful. Such a measure can

Brain Sci. 2022, 12, 235 4 of 27

provide a basis for analyzing the behavior of the classifier beyond the estimates of error
tests. Some works have discussed several valuable measures for characterization in the
analysis of data sets [39].

2.4. Interpretability of Convolutional Neural Networks

Convolutional neural networks [42–45] have achieved superior performance in many
visual tasks, such as object classification and detection. Convolutional neural networks
learn abstract features and concepts from raw image pixels [46]. This is why CNNs are
also known as black box models; in the area of deep learning, model interpretability is
a crucial issue. In [47], the following question was asked: “Can we modify a CNN to
obtain interpretable knowledge representations in its convolutional layers?” Some studies
have focused on trying to define interpretability, in terms of the input data. For instance,
to define the curly concept, a set of hairstyles and texture images has been used [48]. In other
examples, researchers have tried to answer the question: “Does a CNN learn semantic parts
in its internal representation?” [49], by analyzing the response to the semantic parts of an
object from the trained filters of a CNN.

The approach to making the learned features explicit is called feature visualization [50].
Feature visualization for a unit of a neural network is achieved by finding the input that
maximizes the activation of that unit, as has been shown in several studies [47,51,52].
This process visualizes the features learned by the CNN architecture through activator
maximization. For this, it is assumed that the parameters of a CNN are fixed once it has
been trained. In that scenario, it is possible to search for a new image that maximizes the
activation of each neuron. However, feature visualization cannot explain if the patterns are
learned by the filters in the CNN. For this reason, the approach by [53] (network dissection)
quantifies the interpretability of a unit of a convolutional neural network. It links highly
activated areas of CNN channels with human concepts (objects, parts, textures, and colors).
Network dissection has three steps:

• Obtain images with human-labeled visual concepts (e.g., from stripes to skyscrapers);
• Measure the CNN channel activations for these images; and
• Quantify the alignment of activation and labeled concepts.

However, much research remains to be conducted in order to fully understand which
parts of the CNNs are involved in the classification tasks.

2.5. Transfer Learning

Transfer learning is a machine learning technique where a model trained for a specific
task is reused in a second, related task [26]; for example, knowledge gained while learning
to recognize cars can be applied when trying to recognize trucks. Thus, in recent years,
this type of technique has become popular, mostly due to the accurate results that can
be obtained, and as deep learning architectures have been increasing in size [35,54,55].
These architectures require large amounts of data, considerably increasing their training
complexity. Transfer learning consists of two main components: A label space Y and
an objective function f : X → Y . The function f can be obtained from any architecture
(e.g., VGG-16 [35]), through exchanging the last layer with the new samples of the label
space to be classified. Thus, the training is performed over the new samples to learn this
new data set {X ,Y}.

T = {Y , f (x)}, (1)

given a source domain DS and learning task TS , a target domain DT , and learning task TT ,
where DS 6= DT , or TS 6= TT . It is possible to transmit the knowledge learned from the
domain DS and the task TS to the new objective function in TT [56].

3. Filter Approximation and Design

Filter banks have been widely used in computer vision for feature extraction. The pur-
pose of a filter is to extract features and enhance the details of an image, even in the

Brain Sci. 2022, 12, 235 5 of 27

presence of noise. Therefore, such filters have been associated with the detection of sides or
edges [57].

Texture Filters

Traditional filter design techniques in computer vision have the objective to extract
specific features, usually going through a process of smoothing to eliminate textures
and preserve the shapes of objects to find other types of features. In this work, we will
concentrate on filters design based on texture. For this, we will take sample data in a
specific instant to visualize in Figure 1 where the information related to the texture in our
data is represented in a topological map showing the distribution of the data points in
our sample. It is possible to solve this classification problem from different perspectives.
For example, we can try an approach using CNNs. However, this type of architecture
needs a large amount of data and, for this specific problem, we have a limited number of
samples. This small amount of samples may result in inadequate data distribution, given
their sparsity. To overcome this problem, we propose kernels to adapt to the distribution of
the pixels in the images from fMRI data. A kernel, also known as convolution matrices or
mask, is a matrix that slides across the image and multiplies with the input. The output is
enhanced in a desirable manner, extracting features that allow us to find the patterns to
classify the response like in the fMRI data. This approach allows for increased control over
the generated features.

Figure 1. Topological map of brain activity obtained from fMRI. (a) Topological map of fMRI,
(b) Side view and (c) Top view.

For this, texture is one of the essential features used for identifying objects or regions
of interest in any image [58], regardless if the image is a photomicrograph, an aerial
photograph, or a satellite image.

In Figure 2, we compare diverse texture maps; for example, entropy and contrast.
We can see that each map extracts different features inside the brain area of the same
sample. The convolution works with the specific kernel of each texture, obtaining the
texture response. Thus, we can analyze some features based on the texture of the brain
activity and spatial information. For this, we need to define how we obtain these filters and
feature maps from the fMRI samples. Thus, we define the TAM to extract the texture maps
as follows (Equation (2)).

Definition 1. Let TAM(x, y) define a new image I(x, y)′, in terms of an existing image I(x, y)
in R2, for all locations or coordinates (x, y) ∈ R2 = (−∞, ∞) as follows:

TAM(x, y) = T(x, y)(K ∗ I(x, y)) = T(x, y)∑ ∑ K(u, v)I(x− u, y− u), (2)

where K is the kernel, I(x, y) is the input image, and T(x, y) is the texture measure of the image at
position (x, y).

To obtain the texture maps from TAM(x, y), we need to ensure that the input and
output behavior are independent of the specific spatial locations. This property is called
shift-invariant (or space-invariant) [59].

Brain Sci. 2022, 12, 235 6 of 27

The texture in images can be evaluated from different measurements that provide
different insights; based on different works analyzing textures in medical images [60–62].
Contrast, homogeneity, entropy, and energy were used in the work. The implementation
and objective of the expected features are described in detail in this chapter.

Thus, we can choose a texture function to convolve with the filtered image, where
T(x, y) in R2 is a transformation from I(x, y)′ in R2. This provides us with the transfor-
mation of the obtained filtered image. Thus, to measure the randomness of the pixel
distribution with respect to length or orientation, we measure the entropy of the image, so
as to take a higher value for a more random distribution measuring the amount of disorder
in the image (Equation (3)) [63]:

Figure 2. Comparison of texture maps. (a) Original slice of brain activity measure in fMRI, (b)
Entropy map and (c) Contrast map.

E = −∑ ∑ p(i, j)log(p(i, j)). (3)

Entropy maps are essential, as they produce a map of the possible configurations of
the brain activity, as shown in Equation (3). These maps measure some noise from the
images, but also evaluate the entropy. These differences in the features allow a machine
learning pipeline to identify the patterns for the classification task. Thus, visualization of
the topological entropy map (Figure 3) shows the detected activity in the brain response in
the fMRI. To obtain the feature map of the entropy, we substitute T(x, y) with Equation (3)
in TAM(x, y) (Equation (2)), obtaining Equation (4):

Figure 3. Brain activity topological entropy map. (a) Topological map of entropy, (b) Side view and
(c) Top view.

TAME(x, y) =

= TE(x, y)(K ∗ I(x, y))

= −∑ ∑ p(i, j)log(p(i, j))
MN

(K ∗ I(x, y)).

(4)

To continue the extraction of different feature maps, we measure the contrast to
determine the sample differences in color and brightness, in order to obtain the contrast [64]
in an image (Equation (5)):

Contrast = ∑ ∑ n2 p(i, j). (5)

Taking the expression of Equation (5) and substituting for T(x, y) in TAM(x, y)
(Equation (2)), we obtain the feature map of the contrast,

Brain Sci. 2022, 12, 235 7 of 27

TAMC(x, y) =

= TC(x, y)(K ∗ I(x, y))

= −∑ ∑ n2 p(i, j)
MN

(K ∗ I(x, y)).

(6)

Now, in contrast, we measure the difference in the distribution of the pixels. We
also obtain the homogeneity, which represents the gray-level distribution of the pixels
in the image sample, regardless of their spatial arrangement. With this measure, we can
compare the homogeneity changes. Thus, to obtain the homogeneity feature map, we use
the following definition [65]:

Homogeneity = ∑ ∑
1

1 + n2 p(i, j). (7)

Then, to compute the feature map of the homogeneity, we take Equation (2) and
substitute T(x, y) with Equation (7) to obtain Equation (8):

TAMH(x, y) =

= TH(x, y)(K ∗ I(x, y))

= ∑ ∑
1

(1 + n2)(MN)
(K ∗ I(x, y)).

(8)

The homogeneity feature map provides a uniform measure of the composition of the
fMRI data textures. In this analysis, we also focus on the energy calculation, as it is used
to describe a measure of information. The energy feature map corresponds to the mean
squared value of the signal (typically measured based on the global mean value) [66]. This
concept is usually associated with Parseval’s theorem [67], which allows us to consider the
total energy distributed among frequencies. Thus, one can say that an image has most of
its energy concentrated in low frequencies. To obtain the feature map of the energy, we use:

Energy =
√

ASM, (9)

with ASM defined as (Equation (10)),

ASM = ∑ ∑ p(i, j)2. (10)

Thus, to compute the feature map of the energy, we take Equation (2) and substitute
T(x, y) with Equations (9) and (10),

TAMP(x, y) =

= TP(x, y)(K ∗ I(x, y))

=
1

(MN)
(
√

∑ ∑ p(i, j)2)(K ∗ I(x, y)).

(11)

4. Geometric Classification Score (GCS)

In the present study, we work with different CNN architectures to optimize the
selection of features obtained from the convolutional layers. This analysis helped us to
understand what is happening during the training stage or inside a trained CNN. Not all
the convolutional layers or combinations thereof are the best transformations for the input
data. Sometimes, the aim is to identify which convolutional layers should be kept and
which should be removed, in order to obtain the best representation of the data.

For this, we can use the concept of an outlier. An outlier is defined as an observation
extremely far from the main set of observations. Thus, we need to identify and remove
them [68]. Outliers are frequently a source of noise in the data, thus affecting the classifica-
tion problem. We know that a point or set of points creates noise in the classes when they
are mixed under some parameters in the nearby class, as shown in Figure 4.

Brain Sci. 2022, 12, 235 8 of 27

Figure 4. Outlier observation with the range of their neighborhood.

An outlier will not necessarily invariably be defined as a noise point. In some cases,
these outliers are intrinsic to the phenomenon being modeled with the data. Furthermore,
in several instances, an outlier can be classified without any significant issues, as shown
in Figure 5, which shows how the blue point that is far from the rest of the data set is
considered an outlier however, it is not surrounded by points of the red class, which means
that the data can be linearly separated, even though an outlier is near the red class.

A crucial step is defining if the point in the map is noise, which directly depends on
some parameters that we use to measure the amount by which the classification is affected.
Remember that some problems are classified as linearly separable or non-linearly separable
data. We can analyze whether a point is noise, concerning the other class. For this, we take
a sample point of the blue class and draw a radius to analyze the points of the red class
within that neighborhood, delimited by the circle shown in Figure 5. We can see that the
blue point is an outlier, and the other class points do not surround it. This means that we
can draw a line between these data to achieve classification, and not consider this point
as noise.

Let us consider a finite data set of M samples with N features AM,N = {x1, x2, ..., xM}
and a set of hypotheses h ∈ H, such that h : A → {0, 1}. We can consider the data
set as a multi-class problem [69], when we have K classes for which there are subsets of
AM,N = {C1, C2, C3, ..., CK}. If we want to determine if a class Ck is noise, with respect
to the rest of the classes in the data set, we can extract class Ck from AM,N to form an
M−tuple to compare, with respect to Ck. In this scenario, we can consider the problem
as a dichotomy. As such, we need to define a measure, GCS, to determine if Ck is noise
concerning the new M−tuple.

Brain Sci. 2022, 12, 235 9 of 27

Figure 5. Points of observation with the range of their neighborhood.

Proposition 1. The GCS measures the number of noise points present in class one with respect to
class two, classifying each noise point of class one according to the number of points in class two
that surround each point.

Construction 1. To have a dichotomy generated by H on the set of points in AM,N , we extract
class Ck to measure the number of noise points with respect to the rest of the points. As such, we
obtain the subset Bk (Equation (12),

Bk =
⋃
j 6=k

Cj ∀ j = 1, 2, ..., K, (12)

where we can test if each point from subset Ck is noise with respect to the subset Bk. So, we
take a point from Ck that is the center of an n-sphere. An n-sphere (or n-hypersphere) is a
topological space that is homeomorphic to a standard n-sphere [70]. It is a set of points in
(n + 1)-dimensional Euclidean space situated at a constant distance r from a fixed point.
The n-hypersphere is a generalization of a circle (or a 2-sphere); for example, the usual
sphere is a 3-sphere [71]. For dimensions n ≥ 4, we can define a sphere as a set of n− tuples
of points (x1, x2, ..., xn), such that:

x2
1 + x2

2 + ... + x2
n = R2, (13)

where R is the hypersphere radius and represents the constant distance of its points to the
center. In terms of the standard norm, the n-sphere is defined as in Equation (14),

Sn =
{

x ∈ Rn+1 :‖ x ‖= 1
}

, (14)

and an n-sphere of radius r can be defined as:

Sn(r) =
{

x ∈ Rn+1 :‖ x ‖= r
}

. (15)

Brain Sci. 2022, 12, 235 10 of 27

The n-dimensional sphere is the surface or boundary of an (n + 1)-dimensional ball.
Topologically, an n-sphere can be constructed as a one-point compactification of

n-dimensional Euclidean space [72]. Briefly, the n-sphere can be described as Sn = Rn ∪ {∞},
which is an n-dimensional Euclidean space plus a single point, representing infinity in all
directions [70]. In particular, if a single point is removed from an n-sphere, it becomes
homeomorphic to Rn. This constitutes the basis for stereographic projection [73]. When
working with a Euclidean space, we denote it by En. If x ∈ En, then x has the shape of
x = (x1, x2, ..., xn) with xi ∈ R, and En is designated an inner product, given by:

En ×En −→ R

(x, y) −→ x · y =
n

∑
i=1

xiyi.
(16)

Now, consider the following geometric idea: When taking two points x1, x2 ∈ En

and performing a subtraction, we obtain the vector l that passes through x1 and x2. If we
take any other point x, such that l′ = x − x2 is perpendicular to l, we obtain the set
P = {x|(x1 − x2) · (x− x2) = 0}, which allows us to separate the Euclidean space En [74].
The Euclidean coordinates in (n + 1)-space, {x1, x2, ..., xn+1}, that define an n-sphere Sn,
are represented by Equation (17),

r2 =
n+1

∑
i=1

(xi − ci)
2, (17)

where c = (c1, c2, ..., cn+1) is the center point of the n-sphere with radius r. To calculate the
GCS, the point ~v in Bi is the center in Equation (17). The n-sphere (Equation (17)) exists in
(n + 1)-dimensional Euclidean space and is an example of an n-manifold. The volume, ω,
of an n-sphere of radius r is given in Equation (18) [73]:

ω =
1
r

n+1

∑
j=1

(−1)j−1xj max dxj = ∗dr. (18)

Thus, we create a subset of all the points inside each n-sphere measuring the Euclidean
distance dist of the point ~v in Bi, concerning all points ~wj in Ci, to obtain the new subset Mi
(Equation (19)),

Mi =
{
(~wj) ∀i = 1, 2, ..., N ∀~wj ∈ Ci|dist(~wj,~v) < r

}
. (19)

With this new subset, we obtain the subset of the closest neighbors to the center of
the n-sphere, in order to define whether the point will be labeled as noise or not. As we
are using an approximation of the coverage of all the points of this new subset Mi, having
the geometric shape of an n-sphere, which does not describe the real geometric shape of
the subset of points, the next step is to obtain the polytope that covers all the points of the
subset. The affine envelope of a subset D ⊂ En is the smallest affine space containing D.
Thus, if we have a set of points S in En, S is convex and, for any two points x1, x2 ∈ S, we
have a line segment connecting them inside the convex set:

x1x2 = {λx1 + (1− λ)x2 | 0 ≤ λ ≤ 1}. (20)

By definition, a polytope is the convex hull of a finite non-empty set in Rn [75]. Thus,
a polytope is the convex hull of a given set of points P = {p1, ..., pm}. Algebraically,
||X||2 = XTX must be minimized for all X of the form in Equation (21),

X =
m

∑
k=1

Pkwk,
m

∑
k=1

wk = 1, ∀ wk ≥ 0. (21)

Brain Sci. 2022, 12, 235 11 of 27

If k1, ..., kn are convex sets, then
⋂n

i=1 ki is convex. To see this, consider two points
x1 and x2 in

⋂n
i=1 ki. Since any ki is convex, the line segment x1x2 ∈ ki ∀ i. Thus,

⋂n
i=1 ki

is convex. The convex hull conv(k) of k ⊂ En is the smallest convex hull containing the
points, in view of:

conv(k) :=
⋂{

k′ ⊂ En | k ⊂ k′ with k′convex
}

, (22)

the convex hull of a finite set U = {u1, ..., un} ⊂ En of points; that is, the set has the form in
Equation (23),

conv({U}) =
{

N

∑
i=1

λi~ui|λi ≥ 0,
N

∑
i

λi = 1

}
. (23)

Accordingly, the convex hull is a finite set of points u1, uv, ..., un, which can be written
as a convex combination [76]:

C =

{
λ1u1 + ... + λnun |

N

∑
i=1

λi = 1 and λi ≥ 0 ∀ i

}
(24)

and

x =
N

∑
i=1

λiui, y =
N

∑
i=1

λi
′ui ∈ C. (25)

With the convex combination, we generate a polytope from the subset Mi, and we can
evaluate whether the point ~v is inside the polytope, to consider it (or not) as a noise point,
where NSk is the sum of the number of noise points for class k. We repeat that process for
all points in all the classes, as described in Algorithm 1. With this proposal, GCS allows us
to identify if a point in a data set is classifiable or not; finally, it is defined as Equation (26):

GCSk = 1− |NSk|
|Ck|

∀ k = 1, 2, ..., K.. (26)

Algorithm 1 Algorithm to obtain the GCS of a data set.

Input: AM,N , radius
Output: score
Method:
noiseCounter = 0
Normalize AM,N
for each xi in AM,N do

for j = 0 to M do
for i = 0 to N do

subset = {}
distance = (xi[j], B[i])
if distance < radius then

subset.append(xi[j])
end if

end for
Obtain convex hull(subset)
if Point xi[j] is in convex hull: then

noiseCounter ++
end if

end for
end for
Obtain score from noiseCounter
return score

Brain Sci. 2022, 12, 235 12 of 27

Obtaining a measure such as the GCS provides several possibilities, as well as ques-
tions to answer. For example, as mentioned in the Introduction, we know that many of the
applications of deep neural networks particularly CNN (see, e.g., [77–79]) depend on the
original architecture being trained with large amounts of data. These architectures trained
with large amounts of data sometimes need special hardware to handle this amount of
information, in order to process and train the architecture [20,21]. The question is then
not related to the amount of data or the hardware, but rather whether each layer within
the CNN provides valuable information for classification. This leads to another question:
Can the architecture be optimized? The typical approach is to use benchmarks to evaluate
the performance of the architectures when classifying, but that does not describe if the
architecture’s hidden layers are efficient. Thus, we can ask if the GCS can help us in this
task, by measuring the level of data classification according to each transformation for each
hidden layer within the deep learning architecture.

A deep architecture such as a CNN has the advantage of being able to generalize the
rules that characterize the classification problem being solved. Obtaining the set of rules
that describes this process is not new; it has been investigated in other areas, such as the
Vapnik–Chervonenkis theory [80], where the objective is to identify the rules that can be
generated within the hidden layers of a classification system and determine if this set of
rules is transmitted in each layer. Thus, we need to continue and define shattered sets.

Definition 2. Let X be a set and Y a collection of subsets of X. A subset A ⊂ X is shattered by Y if
each subset B ⊂ A of A can be expressed as the intersection of A with a subset T in Y. Symbolically,
then, A is shattered by S if, for all B ⊂ A, there exists some T ⊂ X for which T

⋂
A = B. If A is

shattered by Y, then Y shatters A if [81]:

P(A) = T
⋂

A : T ∈ Y, (27)

where P(A) denotes the power set of A, in the field of machine learning theory.

We usually consider the set A to be a sample of outcomes drawn according to a
distribution D, with the set Y representing a collection of known concepts or laws. In this
context, we can see the outputs of each hidden layer of a deep learning architecture as
different sets of possible rules, if we combine it with transfer learning techniques. Thus,
if we obtain the GCS measure in each layer, we obtain the best output candidate to solve the
classification problem. We can consider this output as a set of rules A, where A is shattered
by Y. As such, the set Y can explain the new rules obtained by solving the same job and
optimizing the architecture.

Hypothesis 1 (H1). Suppose we assume that all the data transformations in the inner layers of
a deep neural network still belong to a Euclidean space. In that case, we can evaluate the data
transformations inside the hidden layers and determine how classifiable they are, in order to evaluate
which are the best transformations of a CNN, for which Algorithm 2 is proposed. We can continue
exploring this type of transformation for future work and begin to observe even manifolds that
preserve belonging to a Euclidean space.

To analyze the representation of the data in each hidden layer of a trained CNN,
Algorithm 1 can be used to obtain the GCS measure of each layer. As such, we can compare
which layer or combination of layers can extract the best features in classification problems.
Thus, we can better understand the number of layers that do not contribute new information
to the solution. As soon as we obtain the GCS measures within the hidden layers of a
CNN architecture, we know which layers to remove and analyze and which layers are
generalizing the rules learned in the training stage.

In this section, we describe the two proposals of this work. First, we present the case
where, due to the nature of the type of fMRI data, traditional computer vision filters do not
obtain the best results. We observed that traditional filters attenuated the patterns to be

Brain Sci. 2022, 12, 235 13 of 27

recognized. Thus, we propose TAM, which is an amortized feature filter, depending on the
neighborhood of the pixels when extracting features and enhancing the patterns that we
are looking for, in order to solve the classification problem. Finally, we use deep learning
architecture techniques to help us classify these data, using TAM processing for these
classification problems. Still, we identified another problem: This type of architecture has
too many parameters to be trained. Sometimes, some layers do not contribute to solving
the classification problem; conversely, in some cases, some layers may even introduce noise.
Thus, we propose the novel GCS measure, which allows us to analyze the behavior of
the transformations within the hidden layers and provides a measure that allows us to
identify how classifiable the data set is in each hidden layer, thus allowing us to identify
which layers can be removed. Therefore, in the following section, we present the results
and analysis of testing the techniques mentioned in this section under different scenarios.

Algorithm 2 GCS cut

Input: trainData, testData, dnnLayers, dnnWeights
Output: errorRate
Method:
Build DNN architecture
Load weights from DNN architecture
for layer l in dnnLayers do

Get GCSli
end for
Obtain max score in GCSli to get idLayer
Cut DNN in idLayer
Add multiclass layer to obtain dnnCut
Train dnnCut with trainData
Obtain errorRate with testData in dnnCut

5. Results

In (Figure 6), we show a comparison between different data set examples. Different
scenarios have the same data, but various amounts of noise points. In this scenario, we
tested how classifiable a data set is through the score obtained from the GCS. We compare
these data sets, including examples of linearly separable or non-linearly separable data,
in order to analyze the behavior of the GCS. The GCS provides a value between −1 and 1.
Any value close to one, regardless of the sign, indicates how classifiable a data set is, and the
sign tells us if it is a linearly separable set or not. Otherwise, a value of zero indicates that
the data set is not classifiable. In this example (Figure 6), we can observe cases where there
is no added noise, as the GCS is close to 1 or −1. As we add noise to the data set, the GCS
value approaches 0. In this way, the GCS can tell us how classifiable the data set is.

We have now proven that the GCS provides a measure for estimating classification
accuracy. A data set may or may not have some data transformation, depending on the
pipeline that is being applied in data processing. We analyzed a deep learning architecture
scenario, as described in the previous section. We know that, between each hidden layer,
the input data suffer from data transformation. This led us to evaluate the effect of each data
transformation in each hidden layer, through the score obtained from the GCS. Considering
our initial hypothesis for the GCS, we assumed that the hidden layer transformations keep
the data in Euclidean space. As such, with GCS, we know which layers help to solve the
classification problem and which harm this training process. In order to obtain the results
in this work, we conducted four experiments, as presented in the following subsections.

5.1. MNIST Data set Classification

We tested the MNIST [82] data set, due to its comprehensive use in state-of-the-art
methods. In addition, a CNN architecture was designed, in order to analyze the behavior of
GCS (Figure 7), where a convolutional network was defined with the classic convolutional,
max-pooling, and fully-connected layers. As previously mentioned, the convolutional

Brain Sci. 2022, 12, 235 14 of 27

layers possess a composition of different filters defined locally, which are optimized by the
training process (Figure 7). This is achieved through the well-known back-propagation
process, through the use of automatic differentiation [11]. We know that the aim of the
convolution layers is to extract high-level features. This is why we obtain the GCS in the
elements inside this architecture, in order to compare the behavior of each type of layer
and determine how to optimize this architecture.

Figure 6. Non-linearly separable data examples. (a) Non-linearly data with low random noise and
(b) Non-linearly data with high random noise.

During training, these parameters/weights are changed, given the updates by the
forward and backward procedures of training. Thus, the convolutional layers act as
modifiable filters, extracting features first from a low level of interpretation to higher levels

Brain Sci. 2022, 12, 235 15 of 27

of interpretation. Thus, we had a GCS function at each of these layers, in order to score how
well the new features are separable. The aim of this was to score the layer’s importance
during the learning procedure. This allows us to decide whether or not to prune particular
layers of the deep neural network (DNN). For this, we combined the ideas of transfer
learning, using the GCS measure for each layer of the architecture.

912 params

7224 params
28,848 params

flatten

221,696

131,328

32,896

1290

Figure 7. Convolutional Neural Network (CNN) architectures for MNIST classification (CNN (a)).

First, we trained the architecture (Figure 7) and used the GCS score to decide which
layers are important in the classification effort to produce the GCS measure. This allowed
us to identify which layers provided the best transformations during data processing and
training. After training, we obtained the GCS score for each layer (Tables 1 and 2). Based on
those scores, we decided to prune certain layers. In the example in Figure 8, we can see the
new architecture and how the GCS score helped to decrease the complexity of the layers of
the DNN. This new architecture had a similar structure to that shown in Figure 7. Here,
we see that the layers in red were removed, and the retained layers were those with a GCS
measure value close to 1 or −1. For example, we compare the results obtained in Table 3,
where the number of parameters in the original architecture CNN (a) was 424,194 weights.
After GCS architecture reduction, the number the parameters decreased to 60,514. Thus,
we used only 14% of the original architecture parameters however, even with this smaller
architecture, the testing error decreased from 3.5% to 2.8%. We conclude that the GCS score
can help to reduce the number of parameters while maintaining the performance of the
original architecture.

Now, in more detail, we examine the two architectures used to prove this hypothesis
(Figures 7 and 8). In Table 3, we display the testing error of each architecture on the
validation set. The column Testing Error (%) shows the results for these architectures; in
row CNN (a), the testing error and number of parameters for the original CNN (Figure 7)
are given while, in row CNN-GCS (b), we see the results of the architecture after the
GCS architecture reduction, as shown in Figure 8. To test whether this result supported
our hypothesis, we experimented with an architecture similar to the first one in Figure 9,
by changing the number of neurons in the dense layers. These results can be observed
in row CNN (c); by applying the GCS architecture reduction through Algorithm 2, we
optimized this architecture (Figure 10) to obtain the results in row CNN-GCS (d), where
we can see a reduction in the number of parameters from 3,130,458 to 54,202. Basically,
98% of the parameters were eliminated, and testing error decreased from 2.5% to 2.4%.
Although the testing error percentage slightly decreased, the number of parameters was
considerably reduced.

Brain Sci. 2022, 12, 235 16 of 27

912 params

7224
28,848 params

flatten

23,530

Figure 8. CNN architecture after using the Geometric Classification Score (GCS) cut Algorithm 2
(CNN-GCS (b)).

1824 params

28,848 params

flatten 2,409,472

524,800

131,328

32,896

1290

Figure 9. Second CNN architecture proposal for MNIST classification (CNN (c)).

Brain Sci. 2022, 12, 235 17 of 27

1824 params

28,848

flatten

23,530

Figure 10. Second CNN architecture proposal after using the GCS cut Algorithm 2 (CNN-GCS (d)).

Table 1. GCS values in layers 0 to 4 in CNN architectures in Figures 7 and 9.

Layer Number 0 1 2 3 4

CNN (a) conv pool conv pool conv
CNN-GCS (b) 0.0585 0.5465 0.6720 0.4655 0.9990

CNN (c) conv pool conv pool flatten
CNN-GCS (d) 0.0005 0.0515 0.5460 0.7415 1.0

Table 2. GCS values in layers 5 to 9 in CNN architectures in Figures 7 and 9.

Layer Number 5 6 7 8 9

CNN (a) pool flatten fc fc fc
CNN-GCS (b) 0.4404 0.4404 0.9990 0.9999 1.0

CNN (c) fc fc fc fc fc
CNN-GCS (d) 0.9884 0.9239 0.8820 0.9570 1.0

Table 3. GCS comparison of validation results between the original architecture and the cut architecture.

Architectures Testing Error (%) No. of Param.

CNN (a) 3.5 0.42 M
CNN-GCS (b) 2.8 0.06 M

CNN (c) 2.5 3.13 M
CNN-GCS (d) 2.4 0.05 M

Brain Sci. 2022, 12, 235 18 of 27

The previous examples showed how GCS architecture reduction can improve the
performance of deep architectures. This is astonishing, as the new architectures have
considerably fewer parameters, even when compared to other state-of-the-art similar-sized
architectures [83,84]. Table 4 shows how the GCS score improved the architecture and the
performance; we compare the accuracy of our architectures after GCS architecture reduction
(Table 4, columns CNN-GCS (b) and CNN-GCS (d)). We observed that, for the MNIST
classification problem, when comparing our testing error to that of the other approaches,
our error was higher by approximately 2% and, within the two proposed architectures,
there was a variation of 0.4%. Compared to the others, this resulted in about 2 million fewer
parameters, and the difference in testing error was very low however, the objective of using
the GCS is optimization of the deep neural network architecture. Thus, we observed that
the architectures were optimized by removing several layers of the proposed architecture.
Notably, the proposed architectures were trained from scratch completely in the MNIST
data set only, and the reduction was performed using the GCS score. This is different from
the other architectures, as they are trained on much larger data sets [84]. Then, transfer
learning was performed in the MNIST, which is an advantage, as more general filters are
generated on the larger data sets, allowing them to perform better. After several failed
attempts to obtain those data sets, we decided to use only the MNIST data sets. Thus, this
is the reason for the difference of 1% or 2% between their architectures and our reduced
architectures however, even under those restrictions, we believe that the GCS-reduced
architectures are able to perform well, compared to larger architectures. This is important
for intelligent environments, where resources are scarce [26].

Table 4. Percentage of error in image classification on MNIST.

Architecture CNN + HFC SOPCNN VGG-5 CNN CNN
(Spinal FC) GCS (b) GCS (d)

Testing Error (%) 0.16 0.17 0.28 2.8 2.4
No. of Params. 1.5 M 1.4 M 3.6 M 0.0 6M 0.05 M

In this subsection, we show that architecture optimization by GCS reduces the number
of parameters and, in some cases, also reduces the error on the testing set. Thus, in the fol-
lowing sections, we propose combining the improved TAM filters, deep learning, and GCS
score to improve classification in the ERP data set.

5.2. Deep Learning Architecture Optimization by GCS for ERP Detection

In this subsection, we present a classification problem for ERP measurement using
fMRI data. This data set is composed of BOLD fMRI records of individuals with specific
labeled images [85]. These images (Figure 11) show different scenarios, such as people,
animals, landscapes, and so on. Thus, the data set was composed of the fMRI record
together with the image and correct labeling of that image. Specifically, the data obtained
from the BOLD fMRI recording produced by the ERP brain response generates a data cube
that provides 18 layers of images, where each image (Figure 12) is a slice of the brain with
dimensions of 64 × 64 pixels. This cube, with dimensions of 64 × 64 × 18, is the result of
scanning the brain activity through the entire experiment described in [86].

We propose the full integration of TAM and the GCS score in a deep learning architec-
ture. First, we designed a simple deep learning architecture with the input 3D data and
eight dense layers (Figure 13). This architecture obtains the cubes from the fMRI. Then, it
uses the architecture to solve the ERP classification problem.

Table 5 lists the accuracy results obtained from the proposed architecture with a testing
error of 23.05%, which is unsatisfactory. Here, we had two options: Change the input
samples from the original data set for TAM features or reduce the proposed architecture
using this methodology. We obtained the results in Table 6 for the GCS score. Even when
the values from the layers obtained a GCS measure close to 1 or−1, we could not assure that
the classifier would obtain 100% accuracy, as DNNs have different possible architectures

Brain Sci. 2022, 12, 235 19 of 27

with several different hyperparameters that provide different values in the prediction.
Observing the results, we found that the value increased slightly as the number of layers
increased until layer seven, where the value decreased. From this, we inferred that each
transformation until the seventh layer helped to improve the classification performance of
the CNN. Thus, we propose using the algorithm for the GCS score Algorithm 2 to select
the correct set of layers for GCS architecture reduction.

Table 5. Parameter comparison of the architecture to detect ERPs.

Architecture Parameters

Testing Error (%) 23.05
No. of Param. 0.42 M

Testing Error after cut (%) 21.03
No. of Param. after cut 0.41 M

Figure 11. Samples input images such as people, animals, landscapes, etc. for the generation of the
functional magnetic resonance imaging (fMRI) data.

Brain Sci. 2022, 12, 235 20 of 27

Figure 12. Sample layer of BOLD fMRI data of 64 × 64 pixels.

Input

flatten

262,400

65,792

32,896

16,512 16,512 16,512 16,512

1290

Figure 13. Architecture proposal from fMRI data for event-related potential (ERP) classification.

Table 6. GCS measure for hidden layers in Figure 13.

layer 0 layer 1 layer 2 layer 3 layer 4 layer 5 layer 6 layer 7 layer 8

0.7516 0.8551 0.8389 0.8154 0.8465 0.8458 0.8598 0.9014 0.8802

Figure 14 displays the new architecture after the reduction, in which we compare the
number of layers against the original architecture (Figure 13), where the removed dense
layers are indicated in red. In this scenario, the reduction only occurred in one layer. This
indicates that the input data involve a complex classification problem, where each layer
is helping to solve the classification problem or the input features that are not suitable to
solve the problem. After implementing the GCS architecture reduction, the values did not
change much (Table 5). The number of hyperparameters decreased from 0.42 million to
0.41 million, and the testing error decreased from 23.05% to 21.03%. Thus, we could not
conclude whether GCS helped to optimize the deep learning architecture. This may be due

Brain Sci. 2022, 12, 235 21 of 27

to different factors, such as the input data not having features that facilitate classification.
The following subsection analyzes how TAM features with deep learning architectures can
help us to solve this classification problem.

5.3. TAM Features and CNN Architecture Optimization by GCS for ERP Detection

We tested deep learning architectures to classify ERPs. Thus, we evaluated the combi-
nation of deep learning architectures and the different TAM features to identify the best
one to solve the ERP classification problem. We also used the GCS measure to evaluate the
features obtained. For this, we processed each TAM feature separately, and introduced it
into the proposed deep learning architecture. This created a scenario with which to test
each of the different TAM features entropy, energy, contrast, and homogeneity with a deep
learning architecture (Figure 15), and to use GCS architecture reduction. Table 7 shows the
GCS scores from the data TAM layer features through all the layers.

Input

flatten

262,400

65,792

32,896

16,512 16,512 16,512

1290

Figure 14. Architecture proposal after cut from original fMRI data for ERP classification.

Input

features maps

flatten

262,400

65,792

32,896

16,512 16,512 16,512 16,512

1290

Figure 15. Architecture proposal using texture amortization map (TAM) features for ERP classification.

Brain Sci. 2022, 12, 235 22 of 27

Input

features maps

flatten

262,400

2570

Figure 16. Architecture proposal using TAM features for ERP classification after cutting with the
GCS measure.

Table 7. Measure of GCS in architecture for each texture feature.

layer Entropy Energy Contrast Homogeneity

0 0.8623 0.8830 0.8773 0.8342
1 0.9054 0.9124 0.9162 0.8932
2 0.9388 0.9722 0.9313 0.9260
3 0.9523 0.9733 0.9483 0.9413
4 0.9483 0.9225 0.9598 0.9414
5 0.9648 0.9563 0.9670 0.9541
6 0.9648 0.9563 0.9670 0.9541
7 0.9955 0.9877 0.9864 0.9873
8 0.9938 0.9879 0.9895 0.9911

Table 7 shows how the GCS measurements in each hidden layer slightly varied how-
ever, these variations are not incremental; they increase and decrease due to the different
transformations through each layer. Additionally the GCS score shows that some layers
obtained better features, and other transformations seem to add noise. Then, it was possible
to reduce the proposed architecture to obtain Figure 16.

The results obtained by this reduction were compared to the original architecture that
classified the TAM features individually in Table 8. We can observe that the value of the
testing error did not vary substantially however, we observed that the same error values
could be obtained with much smaller architectures (Figure 16). We compare the number
of layers that we removed through GCS architecture reduction in red in Figure 15. Thus,
the results confirm our original hypothesis. We evaluated the data transformations in the

Brain Sci. 2022, 12, 235 23 of 27

hidden layers and optimized the number of parameters with GCS architecture reduction.
This provides opportunities to address countless questions and new ideas, for example,
how to obtain the best optimization of this type of architecture. This is mentioned in the
Discussion Section 6 .

Table 8. Architecture optimization based on feature maps.

Architecture Error (%) Error/Cut (%) No. of Params. No. of Params./Cut

Entropy 14.43 14.14 0.42 M 0.26 M
Energy 14.71 14.86 0.42 M 0.26 M

Contrast 17.59 15.14 0.42 M 0.26 M
Homogeneity 14.28 15.0 0.42 M 0.26 M

6. Discussion

The fMRI data obtained from brain ERP activity are not part of the standard data
sets used in computer vision. These data change through time, so they are sensitive to
the application of traditional filters. Thus, the use of the proposed TAM filter based on
texture ideas improved the generation of new features due to the inherent adaptability of
these filters. In this work, only some texture measures were analyzed because the main
objective is the reduction of DNN architectures with the GCS and evaluating the impact
that the TAM features can help on this reduction process. Thus, it is necessary to analyze
the different measurements of textures that extract the best features within this case study
for future work.

We proposed the novel GCS score to measure the ability of each layer in a deep
architecture to classify MNIST and fMRI data sets. Even though additional tests need
to be performed, we think that the GCS score can assist in the compression of simple
feed-forward deep learning architectures. This is based on the GCS score, identifying
which transformation/layer helps after the training process in the proposed architecture.
This can be achieved as the GCS score helps to identify whether layers are learning noise
or classifiable features, as demonstrated by the experiments, where the TAM and GCS
score compressed the proposed deep architecture by at most 90%, while maintaining its
accuracy performance.

We acknowledge that the proposed GCS score requires considerable improvement,
in order to successfully identify the best architecture for the problem at hand, which takes
a trained architecture and identifies which layers help to solve the problem. Nevertheless,
this method can help to optimize simple feed-forward architectures, but further research is
needed to integrate and improve the GCS score into the training process to identify not
only layers, but also neurons helping in the classification process.

The detection of ERPs is a problem that has a future in neuroscientific research. In this
work with TAM features, we demonstrated that they help to improve the accuracy of deep
learning architectures. However, our future objective is to integrate the TAM features in the
training of a CNN to focus the learned texture features on the ERP and lead the training
stage with the GCS score. Here, the question is whether TAM features can optimize kernels
within the convolution layer of a CNN to produce better features than TAMs.

For this, we propose:

1. To integrate the GCS score into the training process to neuron-level granularity;
2. To test the GCS score with different distances, other than Euclidean;
3. To integrate the GCS score in recurrent deep learning architectures; and
4. To integrate TAM features into the training stage of a CNN.

Brain Sci. 2022, 12, 235 24 of 27

Author Contributions: Conceptualization, R.A.-G. and A.M.-V.; Methodology, R.A.-G.; Software,
R.A.-G.; Validation, R.A.-G. and A.M.-V.; Formal Analysis, R.A.-G.; Investigation, R.A.-G.; Resources,
A.M.-V.; Data Curation, R.A.-G.; Writing—Original Draft Preparation, R.A.-G.; Writing—Review &
Editing, R.A.-G. and A.M.-V.; Visualization, R.A.-G.; Supervision, A.M.-V.; Project Administration,
A.M.-V.; Funding Acquisition, A.M.-V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Acknowledgments: The authors would like to thank CINVESTAV and Conacyt for the financial support.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network
GCS Geometric Classification Score
TAM Texture Amortization Map
ERP Event Related Potential
fMRI Functional Magnetic Resonance Imaging

References
1. Song, H.; Rosenberg, M.D. Predicting attention across time and contexts with functional brain connectivity. Curr. Opin. Behav. Sci.

2021, 40, 33–44. [CrossRef]
2. Deniz, F.; Nunez-Elizalde, A.O.; Huth, A.G.; Gallant, J.L. The Representation of Semantic Information Across Human Cerebral

Cortex During Listening Versus Reading Is Invariant to Stimulus Modality. J. Neurosci. 2019, 39, 7722–7736. [CrossRef] [PubMed]
3. Paszkiel, S. Data Acquisition Methods for Human Brain Activity. In Analysis and Classification of EEG Signals for Brain-Computer

Interfaces. Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2020; Volume 852, pp. 3–9.
4. Raj, V.; Sharma, S.; Sahu, M.; Mohdiwale, S. Improved ERP Classification Algorithm for Brain–Computer Interface of ALS Patient.

In Resistance Training Methods; Springer: Singapore, 2020; pp. 141–149.
5. Zhao, H.; Yang, Y.; Karlsson, P.; McEwan, A. Can recurrent neural network enhanced EEGNet improve the accuracy of ERP

classification task? An exploration and a discussion. Health Technol. 2020, 10, 979–995. [CrossRef]
6. Al-Tashi, Q.; Rais, H.M.; Abdulkadir, S.J.; Mirjalili, S.; Alhussian, H. A Review of Grey Wolf Optimizer-Based Feature Selection

Methods for Classification. Algorithms Intell. Syst. 2019, 273–286. [CrossRef]
7. Solorio-Fernández, S.; Carrasco-Ochoa, J.A.; Martínez-Trinidad, J.F. A review of unsupervised feature selection methods. Artif.

Intell. Rev. 2020, 53, 907–948. [CrossRef]
8. Alirezanejad, M.; Enayatifar, R.; Motameni, H.; Nematzadeh, H. Heuristic filter feature selection methods for medical datasets.

Genomics 2020, 112, 1173–1181. [CrossRef]
9. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
10. Bengio, Y.; Grandvalet, Y. No unbiased estimator of the variance of k-fold cross-validation. J. Mach. Learn. Res. 2004, 5, 1089–1105.
11. Dong, H.; Zou, B.; Zhang, L.; Zhang, S. Automatic design of CNN’s via differentiable neural architecture search for PolSAR image

classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6362–6375. [CrossRef]
12. Garg, I.; Panda, P.; Roy, K. A Low Effort Approach to Structured CNN Design Using PCA. IEEE Access 2019, 8, 1347–1360.

[CrossRef]
13. Lou, G.; Shi, H. Face image recognition based on convolutional neural network. China Commun. 2020, 17, 117–124. [CrossRef]
14. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. arXiv 2015,

arXiv:1506.01497.
15. Zhang, Y.; Zhang, Y.; Shi, Z.; Zhang, J.; Wei, M. Design and Training of Deep CNN-Based Fast Detector in Infrared SUAV

Surveillance System. IEEE Access 2019, 7, 137365–137377. [CrossRef]
16. Ho, T.-Y.; Lam, P.-M.; Leung, C.-S. Parallelization of cellular neural networks on GPU. Pattern Recognit. 2008, 41, 2684–2692.

[CrossRef]
17. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G.; Lv, J. Automatically Designing CNN Architectures Using the Genetic Algorithm for Image

Classification. IEEE Trans. Cybern. 2020, 50, 3840–3854. [CrossRef]

http://doi.org/10.1016/j.cobeha.2020.12.007
http://dx.doi.org/10.1523/JNEUROSCI.0675-19.2019
http://www.ncbi.nlm.nih.gov/pubmed/31427396
http://dx.doi.org/10.1007/s12553-020-00458-x
http://dx.doi.org/10.1007/978-981-32-9990-013
http://dx.doi.org/10.1007/s10462-019-09682-y
http://dx.doi.org/10.1016/j.ygeno.2019.07.002
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/TGRS.2020.2976694
http://dx.doi.org/10.1109/ACCESS.2019.2961960
http://dx.doi.org/10.23919/JCC.2020.02.010
http://dx.doi.org/10.1109/ACCESS.2019.2941509
http://dx.doi.org/10.1016/j.patcog.2008.01.018
http://dx.doi.org/10.1109/TCYB.2020.2983860

Brain Sci. 2022, 12, 235 25 of 27

18. Vahid, K.A.; Prabhu, A.; Farhadi, A.; Rastegari, M. Butterfly Transform: An Efficient FFT Based Neural Architecture Design.
In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA,
13–19 June 2020; pp. 12021–12030.

19. Hong, Z.; Fang, W.; Sun, J.; Wu, X. A fast GA for automatically evolving CNN architectures. In Proceedings of the 2020 Genetic
and Evolutionary Computation Conference Companion, Cancún, Mexico, 8–12 July 2020; ACM Press: New York, NY, USA, 2020;
pp. 213–214.

20. Mehmood, A.; Khan, M.A.; Sharif, M.; Khan, S.A.; Shaheen, M.; Saba, T.; Riaz, N.; Ashraf, I. Prosperous Human Gait Recognition:
An end-to-end system based on pre-trained CNN features selection. Multimed. Tools Appl. 2020. [CrossRef]

21. Ji, M.; Liu, L.; Zhang, R.; Buchroithner, M.F. Discrimination of Earthquake-Induced Building Destruction from Space Using a
Pretrained CNN Model. Appl. Sci. 2020, 10, 602. [CrossRef]

22. Thanapol, P.; Lavangnananda, K.; Bouvry, P.; Pinel, F.; Leprevost, F. Reducing Overfitting and Improving Generalization in
Training Convolutional Neural Network (CNN) under Limited Sample Sizes in Image Recognition. In Proceedings of the 2020
5th International Conference on Information Technology (InCIT), Chonburi, Thailand, 21–22 October 2020; pp. 300–305.

23. Reddy, C.K.; Gopal, V.; Cutler, R.; Beyrami, E.; Cheng, R.; Dubey, H.; Matusevych, S.; Aichner, R.; Aazami, A.; Braun, S.; et al. The
INTERSPEECH 2020 Deep Noise Suppression Challenge: Datasets, Subjective Testing Framework, and Challenge Results. arXiv
2020, arXiv:2005.13981.

24. Zhao, Y.; Wang, Z.; Yin, K.; Zhang, R.; Huang, Z.; Wang, P. Dynamic Reward-Based Dueling Deep Dyna-Q: Robust Policy
Learning in Noisy Environments. In Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA,
7–12 February 2020; Volume 34, pp. 9676–9684.

25. Colón-Ruiz, C.; Segura-Bedmar, I. Comparing deep learning architectures for sentiment analysis on drug reviews. J. Biomed.
Inform. 2020, 110, 103539. [CrossRef]

26. Kaur, T.; Gandhi, T.K. Automated Brain Image Classification Based on VGG-16 and Transfer Learning. In Proceedings of the 2019
International Conference on Information Technology (ICIT), Shanghai, China, 20–23 December 2019; pp. 94–98.

27. Asghar, M.A.; Fawad; Khan, M.J.; Amin, Y.; Akram, A. EEG-based Emotion Recognition for Multi Channel Fast Empirical Mode
Decomposition using VGG-16. In Proceedings of the 2020 International Conference on Engineering and Emerging Technologies
(ICEET), Lahore, Pakistan, 22–23 February 2020; pp. 1–7.

28. Qu, Z.; Mei, J.; Liu, L.; Zhou, D.-Y. Crack Detection of Concrete Pavement With Cross-Entropy Loss Function and Improved
VGG16 Network Model. IEEE Access 2020, 8, 54564–54573. [CrossRef]

29. Muhammad, U.; Wang, W.; Chattha, S.P.; Ali, S. Pre-trained VGGNet Architecture for Remote-Sensing Image Scene Classification.
In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China, 20–24 August 2018;
pp. 1622–1627.

30. Kou, G.; Yang, P.; Peng, Y.; Xiao, F.; Chen, Y.; Alsaadi, F.E. Evaluation of feature selection methods for text classification with small
datasets using multiple criteria decision-making methods. Appl. Soft Comput. 2020, 86, 105836. [CrossRef]

31. Tang, J.; Wang, Y.; Fu, J.; Zhou, Y.; Luo, Y.; Zhang, Y.; Li, B.; Yang, Q.; Xue, W.; Lou, Y.; et al. A critical assessment of the
feature selection methods used for biomarker discovery in current metaproteomics studies. Brief. Bioinform. 2019, 21, 1378–1390.
[CrossRef] [PubMed]

32. Kotsiantis, S.B.; Zaharakis, I.; Pintelas, P. Supervised machine learning: A review of classification techniques. Emerg. Artif. Intell.
Appl. Comput. Eng. 2007, 160, 3–24.

33. Dreiseitl, S.; Ohno-Machado, L. Logistic regression and artificial neural network classification models: A methodology review.
J. Biomed. Inform. 2002, 35, 352–359. [CrossRef]

34. Vedaldi, A.; Lenc, K. Matconvnet: Convolutional neural networks for matlab. In Proceedings of the 23rd ACM International
Conference on Multimedia, Brisbane, Australia, 26–30 October 2015; pp. 689–692.

35. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
36. Zeng, J.; Shan, S.; Chen, X. Facial expression recognition with inconsistently annotated datasets. In Proceedings of the European

Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 222–237.
37. Jiang, Z.; Li, Y.; Shekhar, S.; Rampi, L.; Knight, J. Spatial ensemble learning for heterogeneous geographic data with class

ambiguity: A summary of results. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in
Geographic Information Systems, Beach, CA, USA, 7–10 November 2017; pp. 1–10.

38. Yasodharan, S.; Loiseau, P. Nonzero-sum adversarial hypothesis testing games. arXiv 2019, arXiv:1909.13031.
39. Ho, T.K.; Basu, M.; Law, M.H.C. Measures of geometrical complexity in classification problems. In Data Complexity in Pattern

Recognition; Springer: London, UK, 2006; pp. 1–23.
40. Mulder, D.; Bianconi, G. Network Geometry and Complexity. J. Stat. Phys. 2018, 173, 783–805. [CrossRef]
41. Kenny, P.; Boulianne, G.; Dumouchel, P. Eigenvoice modeling with sparse training data. IEEE Trans. Speech Audio Process. 2005, 13,

345–354. [CrossRef]
42. Eickenberg, M.; Gramfort, A.; Varoquaux, G.; Thirion, B. Seeing it all: Convolutional network layers map the function of the

human visual system. NeuroImage 2017, 152, 184–194. [CrossRef]
43. Zhang, Z. Derivation of Backpropagation in Convolutional Neural Network (CNN); University of Tennessee: Knoxville, TN, USA, 2016.
44. Saveliev, A.; Uzdiaev, M.; Dmitrii, M. Aggressive Action Recognition Using 3D CNN Architectures. In Proceedings of the 2019

12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia, 7–10 October 2019; pp. 890–895.

http://dx.doi.org/10.1007/s11042-020-08928-0
http://dx.doi.org/10.3390/app10020602
http://dx.doi.org/10.1016/j.jbi.2020.103539
http://dx.doi.org/10.1109/ACCESS.2020.2981561
http://dx.doi.org/10.1016/j.asoc.2019.105836
http://dx.doi.org/10.1093/bib/bbz061
http://www.ncbi.nlm.nih.gov/pubmed/31197323
http://dx.doi.org/10.1016/S1532-0464(03)00034-0
http://dx.doi.org/10.1007/s10955-018-2115-9
http://dx.doi.org/10.1109/TSA.2004.840940
http://dx.doi.org/10.1016/j.neuroimage.2016.10.001

Brain Sci. 2022, 12, 235 26 of 27

45. Ryu, J.; Yang, M.-H.; Lim, J. DFT-based Transformation Invariant Pooling Layer for Visual Classification. In Proceedings of the
European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 89–104.

46. Albawi, S.; Mohammed, T.A.; Al-Zawi, S. Understanding of a convolutional neural network. In Proceedings of the 2017
International Conference on Engineering and Technology (ICET), Antalya, Turkey, 21–24 August 2017; pp. 1–6.

47. Zhang, Q.; Wu, Y.N.; Zhu, S.-C. Interpretable Convolutional Neural Networks. In Proceedings of the 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8827–8836.

48. Kim, B.; Wattenberg, M.; Gilmer, J.; Cai, C.; Wexler, J.; Viegas, F. Interpretability beyond feature attribution: Quantitative testing
with concept activation vectors (tcav). In Proceedings of the International Conference on Machine Learning, Stockholm Sweden,
10–15 July 2018; pp. 2668–2677.

49. Gonzalez-Garcia, A.; Modolo, D.; Ferrari, V. Do Semantic Parts Emerge in Convolutional Neural Networks? Int. J. Comput. Vis.
2018, 126, 476–494. [CrossRef]

50. Springenberg, J.T.; Dosovitskiy, A.; Brox, T.; Riedmiller, M. Striving for Simplicity: The All Convolutional Net. arXiv 2014,
arXiv:1412.6806..

51. Zhou, B.; Bau, D.; Oliva, A.; Torralba, A. Interpreting deep visual representations via network dissection. IEEE Trans. Pattern Anal.
Mach. Intell. 2018, 41, 2131–2145. [CrossRef]

52. Saini, U.S.; Papalexakis, E.E. Analyzing Representations inside Convolutional Neural Networks. arXiv 2020, arXiv:2012.12516.
53. Bau, D.; Zhou, B.; Khosla, A.; Oliva, A.; Torralba, A. Network dissection: Quantifying interpretability of deep visual representa-

tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017;
pp. 6541–6549.

54. Xiong, W.; Wu, L.; Alleva, F.; Droppo, J.; Huang, X.; Stolcke, A. The Microsoft 2017 conversational speech recognition system.
In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,
Canada, 15–20 April 2018; pp. 5934–5938.

55. Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning.
In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017.

56. Lin, Y.-P.; Jung, T.-P. Improving EEG-Based Emotion Classification Using Conditional Transfer Learning. Front. Hum. Neurosci.
2017, 11, 334. [CrossRef] [PubMed]

57. Cimpoi, M.; Maji, S.; Vedaldi, A. Deep filter banks for texture recognition and segmentation. In Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 3828–3836.

58. Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural features for image classification. IEEE Trans. Syst. Man Cybern. 1973, 6,
610–621. [CrossRef]

59. Zhang, R. Making convolutional networks shift-invariant again. In Proceedings of the International Conference on Machine
Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 7324–7334.

60. Mabrouk, M.A.; Sheha, M.S.; Sharawy, A. Automatic Detection of Melanoma Skin Cancer using Texture Analysis. Int. J. Comput.
Appl. 2012, 42, 22–26. [CrossRef]

61. Castellano, G.; Bonilha, L.; Li, L.; Cendes, F. Texture analysis of medical images. Clin. Radiol. 2004, 59, 1061–1069. [CrossRef]
[PubMed]

62. Dhruv, B.; Mittal, N.; Modi, M. Study of Haralick’s and GLCM texture analysis on 3D medical images. Int. J. Neurosci. 2019, 129,
350–362. [CrossRef]

63. de Albuquerque, M.P.; Esquef, I.; Mello, A.G. Image thresholding using Tsallis entropy. Pattern Recognit. Lett. 2004, 25, 1059–1065.
[CrossRef]

64. Kim, Y.-T. Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 1997, 43,
1–8. [CrossRef]

65. Sun, Y.; Cheng, H.-D. A hierarchical approach to color image segmentation using homogeneity. IEEE Trans. Image Process. 2000, 9,
2071–2082. [CrossRef]

66. Sonka, M.; Hlavac, V.; Boyle, R. Cengage Learning. In Image Processing, Analysis and Machine Vision; Springer: Boston, MA,
USA, 2014.

67. Ramkumar, S.; Emayavaramban, G.; Navamani, J.M.A.; Devi, R.R.; Prema, A.; Booba, B.; Sriramakrishnan, P. Human Computer
Interface for Neurodegenerative Patients Using Machine Learning Algorithms. In Advances in Computerized Analysis in Clinical
and Medical Imaging; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019; pp. 51–66.

68. Hawkins, D.M. Identification of Outliers; Chapman and Hall: London, UK, 1980; Volume 11.
69. Aly, M. Survey on multiclass classification methods. Neural Netw. 2005, 19, 1–9.
70. Steenrod, N. Vector fields on the n-sphere. In Complexes and Manifolds; Elsevier BV: Amsterdam, The Netherlands, 1962;

pp. 357–362.
71. Antoine, J.-P.; VanderGheynst, P. Wavelets on the n-sphere and related manifolds. J. Math. Phys. 1998, 39, 3987–4008. [CrossRef]
72. Kruglov, V.E.; Malyshev, D.S.; Pochinka, O.V.; Shubin, D.D. On Topological Classification of Gradient-like Flows on an sphere in

the Sense of Topological Conjugacy. Regul. Chaotic Dyn. 2020, 25, 716–728. [CrossRef]
73. Flanders, H. Differential Forms with Applications to the Physical Sciences by Harley Flanders; Elsevier: Amsterdam, The Netherlands, 1963.
74. Grosche, C.; Pogosyan, G.S.; Sissakian, A.N. Path Integral Discussion for Smorodinsky-Winternitz Potentials: I. Two-and Three

Dimensional Euclidean Space. Fortschr. Der Phys. /Prog. Phys. 1995, 43, 453–521. [CrossRef]
75. Lawrence, J. Polytope Volume Computation. Math. Comput. 1991, 57, 259–271. [CrossRef]

http://dx.doi.org/10.1007/s11263-017-1048-0
http://dx.doi.org/10.1109/TPAMI.2018.2858759
http://dx.doi.org/10.3389/fnhum.2017.00334
http://www.ncbi.nlm.nih.gov/pubmed/28701938
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.5120/5817-8129
http://dx.doi.org/10.1016/j.crad.2004.07.008
http://www.ncbi.nlm.nih.gov/pubmed/15556588
http://dx.doi.org/10.1080/00207454.2018.1536052
http://dx.doi.org/10.1016/j.patrec.2004.03.003
http://dx.doi.org/10.1109/30.580378
http://dx.doi.org/10.1109/83.887975
http://dx.doi.org/10.1063/1.532481
http://dx.doi.org/10.1134/S1560354720060143
http://dx.doi.org/10.1002/prop.2190430602
http://dx.doi.org/10.1090/S0025-5718-1991-1079024-2

Brain Sci. 2022, 12, 235 27 of 27

76. Chand, D.R.; Kapur, S.S. An Algorithm for Convex Polytopes. J. ACM 1970, 17, 78–86. [CrossRef]
77. Ravanbakhsh, M.; Nabi, M.; Mousavi, H.; Sangineto, E.; Sebe, N. Plug-and-Play CNN for Crowd Motion Analysis: An Application

in Abnormal Event Detection. In Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision (WACV),
Lake Tahoe, NV, USA, 12–15 March 2018; pp. 1689–1698.

78. Jia, W.; Tian, Y.; Luo, R.; Zhang, Z.; Lian, J.; Zheng, Y. Detection and segmentation of overlapped fruits based on optimized mask
R-CNN application in apple harvesting robot. Comput. Electron. Agric. 2020, 172, 105380.. [CrossRef]

79. Kutluk, S.; Kayabol, K.; Akan, A. A new CNN training approach with application to hyperspectral image classification. Digit.
Signal Process. 2021, 113, 103016. [CrossRef]

80. Blumer, A.; Ehrenfeucht, A.; Haussler, D.; Warmuth, M.K. Learnability and the Vapnik-Chervonenkis dimension. J. ACM 1989, 36,
929–965. [CrossRef]

81. Abu-Mostafa, Y.S. The Vapnik-Chervonenkis Dimension: Information versus Complexity in Learning. Neural Comput. 1989, 1,
312–317. [CrossRef]

82. Cohen, G.; Afshar, S.; Tapson, J.; van Schaik, A. EMNIST: Extending MNIST to handwritten letters. In Proceedings of the 2017
International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017; pp. 2921–2926.

83. Assiri, Y. Stochastic optimization of plain convolutional neural networks with simple methods. arXiv 2020, arXiv:2001.08856.
84. Kabir, H.M.; Abdar, M.; Jalali, S.M.J.; Khosravi, A.; Atiya, A.F.; Nahavandi, S.; Srinivasan, D. Spinalnet: Deep neural network

with gradual input. arXiv 2020, arXiv:2007.03347.
85. Kay, K.; Naselaris, T.; Prenger, R.J.; Gallant, J.L. Identifying natural images from human brain activity. Nature 2008, 452, 352–355.

[CrossRef]
86. Kay, K.N.; Naselaris, T.; Gallant, J. (2011): fMRI of Human Visual Areas in Response to Natural Images. CRCNS.org. Available

online: http://dx.doi.org/10.6080/K0QN64NG (accessed on 15 December 2021).

http://dx.doi.org/10.1145/321556.321564
http://dx.doi.org/10.1016/j.compag.2020.105380
http://dx.doi.org/10.1016/j.dsp.2021.103016
http://dx.doi.org/10.1145/76359.76371
http://dx.doi.org/10.1162/neco.1989.1.3.312
http://dx.doi.org/10.1038/nature06713
http://dx.doi.org/10.6080/K0QN64NG

	Introduction
	Literature Review
	Noise in Data Sets
	Class Ambiguity
	Characterization of Geometrical Complexity
	Interpretability of Convolutional Neural Networks
	Transfer Learning

	Filter Approximation and Design
	Geometric Classification Score (GCS)
	Results
	MNIST Data set Classification
	Deep Learning Architecture Optimization by GCS for ERP Detection
	TAM Features and CNN Architecture Optimization by GCS for ERP Detection

	Discussion
	References

