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Abstract: The adoption of transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystalline
(Cry) proteins has reduced insecticide application, increased yields, and contributed to food safety
worldwide. However, the efficacy of transgenic Bt crops is put at risk by the adaptive resistance
evolution of target pests. Previous studies indicate that resistance to Bacillus thuringiensis Cry1A
and Cry1F toxins was genetically linked with mutations of ATP-binding cassette (ABC) transporter
subfamily C gene ABCC2 in at least seven lepidopteran insects. Several strains selected in the
laboratory of the Asian corn borer, Ostrinia furnacalis, a destructive pest of corn in Asian Western
Pacific countries, developed high levels of resistance to Cry1A and Cry1F toxins. The causality
between the O. furnacalis ABCC2 (OfABCC2) gene and resistance to Cry1A and Cry1F toxins remains
unknown. Here, we successfully generated a homozygous strain (OfC2-KO) of O. furnacalis with
an 8-bp deletion mutation of ABCC2 by the CRISPR/Cas9 approach. The 8-bp deletion mutation
results in a frame shift in the open reading frame of transcripts, which produced a predicted protein
truncated in the TM4-TM5 loop region. The knockout strain OfC2-KO showed much more than
a 300-fold resistance to Cry1Fa, and low levels of resistance to Cry1Ab and Cry1Ac (<10-fold),
but no significant effects on the toxicities of Cry1Aa and two chemical insecticides (abamectin and
chlorantraniliprole), compared to the background NJ-S strain. Furthermore, we found that the Cry1Fa
resistance was autosomal, recessive, and significantly linked with the 8-bp deletion mutation of
OfABCC2 in the OfC2-KO strain. In conclusion, in vivo functional investigation demonstrates the
causality of the OfABCC2 truncating mutation with high-level resistance to the Cry1Fa toxin in
O. furnacalis. Our results suggest that the OfABCC2 protein might be a functional receptor for Cry1Fa
and reinforces the association of this gene to the mode of action of the Cry1Fa toxin.
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Key Contribution: In vivo functional investigation demonstrates the causality of the ABCC2
truncating mutation with high level of resistance to the Cry1Fa toxin in Ostrinia furnacalis. Our results
suggest that O. furnacalis ABCC2 might be a functional receptor for Cry1Fa and reinforces the
association of this gene to the mode of action of the Cry1Fa toxin.

1. Introduction

Transgenic crops expressing Bacillus thuringiensis (Bt) insecticidal crystalline (Cry) proteins have
been commercialized worldwide since 1996. The global planting area of Bt crops reached 104
million hectares in 2018 [1]. The widespread Bt crop adoption has suppressed pest populations,
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reduced insecticide usage, promoted biocontrol services, and economically benefited growers [2].
However, the efficacy of Bt crops is put at risk from the adaptive evolution of resistance by the target
pests, and practical resistance to Bt crops has been documented at least in nine pest species in six
countries [3–5].

The European corn borer Ostrinia nubilalis (Hübner) and the Asian corn borer Ostrinia furnacalis
(Guenée) are two sibling species, both of which are economically important insect pests of corn, Zea
mays (L.) [6]. O. nubilalis is present in Europe, North Africa, Central Asia, and North America [7],
while O. furnacalis is distributed widely in East and Southeast Asia, Australia, and the Western Pacific
Islands [8]. Bt corn expressing Cry1Ab has been widely planted for the control of some lepidopteran
pests, including O. nubilalis, in North America since 1996, resulting in the suppression of target pest
populations and reduced insecticide applications in both Bt and non-Bt corn [9,10]. No practical
resistance to Cry1Ab has been identified in O. nubilalis field populations from North America for
more than 20 years [5]. Bt corn expressing Cry1F has been used commercially in North America since
2003, and the frequency of alleles conferring Cry1F resistance did not increase in field populations of
O. nubilalis sampled during 2003 to 2009 from the US corn belt [11]. However, practical resistance to
Cry1F was discovered in 2018 from O. nubilalis populations from Nova Scotia of Canada [4]. It indicates
that Bt resistane has already become a real threat to the long-term effectiveness of Bt corn for the control
of O. nubilalis.

China is a major corn producer in the world and its corn acreage was 41.5 million hectares in
2018 [12]. O. furnacalis is the domiant pest and widely distributed in most of the corn-growing regions
of China, while O. nubilalis is limited to some regions of northwestern China [13]. Although the
commercial planting of Bt corn has not yet been approved in China, two Bt corn events (DBN9936
and Shuangkang12-5) obtained biosafety certificates in 2019 (MARA, 2020) [14], which is considered a
prerequisite and landmark for commercial production. To be prepared for the switch to the adoption
of Bt corn in the near future, a number of investigations have been conducted in China to assess
resistance risk and cross-resistance by laboratory selection of O. furnacalis with Bt proteins. Under
laboratory selection conditions, O. furnacalis developed high levels of resistance to various Cry1 toxins,
including Cry1Ab, Cry1Ac, Cry1Ah, Cry1F, and Cry1Ie [15–18], proving its potential to develop Bt
resistance in the field. Symmetrical cross-resistance was found among Cry1Ab, Cry1Ac, Cry1Ah,
and Cry1F [15–18]. Asymmetrical cross-resistance was observed between Cry1Ie and other Cry1
toxins. Selection with Cry1Ab, Cry1Ac, Cry1Ah, or Cry1F did not confer cross-resistance to Cry1Ie,
but selection with Cry1Ie resulted in high-level cross-resistance to Cry1F [15–19]. These results are
valuable for the future designing of resistance management strategies for Bt corn in China. However,
the resistance mechanisms underlying Bt resistance of O. furnacalis remain elusive.

Several proteins have been identified and characterized as receptors for Cry toxins, including
cadherins, aminopeptidase N (APN), alkaline phosphatases (ALP), and ATP-binding cassette (ABC)
transporters [20]. One of the major mechanisms of resistance to Cry toxin is reduced toxin binding
to their specific larval midgut receptors through the disruption of the receptor genes [21]. Since the
disruption of the ABC transporter subfamily C2 (ABCC2) gene was first identified to confer Cry1Ac
resistance in Heliothis virescens [22], mutations of the homologous ABCC2 genes associated with Cry1A
and/or Cry1F resistance have been found in several lepidopteran insects, including Plutella xylostella,
Trichoplusia ni [23], Bombyx mori [24], Helicoverpa armigera [25], Spodoptera exigua [26], and Spodoptera
frugiperda [27–29]. Recently, the CRISPR/Cas9 system has been applied to investigate the in vivo role of
insect ABCC2 in the mode of action and resistance mechanisms of Bt toxins. The causal relationship
between ABCC2 knockout and Cry1A/Cry1F resistance has been confirmed in P. xylostella [30],
S. frugiperda [31], and S. exigua [32]. Interestingly, the knockout of either ABCC2 or ABCC3 of H. armigera
did not confer Cry1Ac resistance, whereas the knockout of ABCC2 and ABCC3 together resulted in
extremely high levels of resistance to Cry1Ac [33]. However, until now, whether or not the ABCC2
gene of O. furnacalis (OfABCC2) is involved in Bt resistance development remains unknown.
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In this study, we knocked out the OfABCC2 employing the CRISPR/Cas9 system and constructed
a homozygous mutant strain (OfC2-KO). Next, we performed toxicity bioassays and found that the
OfABCC2 knockout obtained a resistance to Cry1Fa greater than 300-fold compared to the wild-type
control strain. Finally, we accessed the inheritance mode of the acquired resistance and confirmed the
linkage between manipulated gene deletion and high-level resistance to Cry1Fa in the OfC2-KO strain.

2. Results

2.1. CRISPR/Cas9-Mediated Mutagenesis of OfABCC2 in O. Furnacalis

A total of 572 newly laid eggs (< 2 h) were injected with a mixture of the synthesized sgRNA
and Cas9 protein. A total of 150 injected embryos (~26%) hatched and developed to 5th instar larvae.
In order to obtain individuals with edited genomes as quickly as possible, the genomic DNA of 90
exuviates of the final instar larvae were isolated, and OfABCC2 genotypes were identified by the direct
sequencing of PCR products flanking the target site. Sequencing chromatograms revealed that 7.8%
(7/90) of the examined G0 individuals were mutagenized at the target site with a stretch of double
peaks. Then, the seven chimeras (six females and one male) were single crossed with the wild-type
NJ-S moth, respectively (G0, Figure 1).

After G0 oviposited, the genomic DNA of randomly selected eight–nine exuviates from each
single-pair progeny were prepared, and their OfABCC2 genotype was identified as described above.
Among the 60 exuviates genotyped, 46 samples were wild-type homozygotes, seven individuals
were heterozygotes harboring a wild-type allele and an 8-bp deletion allele, three samples were
heterozygotes carrying a wild-type allele and a 1-bp insertion allele, and the genotype of the rest of
the four individuals could not be identified by visual checks based on the sequencing chromatogram.
We therefore confirmed efficient mutagenesis induced by CRISPR/Cas9 system had occurred in
OfABCC2 and the genome-edited alleles were transmitted to G1.
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Figure 1. Diagram of the crossing strategy used to obtain the knockout strain homozygous for the
8-bp deletion mutation in exon 4 of OfABCC2. (+/-) means heterozygote (0/-8), (-/-) means mutant
homozygote (-8/-8).

2.2. Construction of a Homozygous Strain with OfABCC2 Knocked Out

The mass mating was made among the above seven heterozygotes (three males and four females)
that were harboring a wild-type allele and an 8-bp deletion allele (+/-) in G1 (Figure 1). The genomic
DNA of 30 exuviates from G2 progeny were isolated and the genotype of OfABCC2 was screened, and 21,
five, and four samples were respectively identified as wild-type homozygotes (+/+), heterozygotes
(+/-), and mutant homozygotes (-/-). The four moths (three females and one male) harboring both the
8-bp deletion alleles were mass crossed and their progeny (G3) was reared to form a homozygous
knockout strain named OfC2-KO (Figure 1). Subsequently, the TA-clone sequencing of the PCR
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products using both gDNA and cDNA from the OfC2-KO larvae were performed, and confirmed the
OfABCC2 carrying the 8-bp deletion at the desired site (data not shown).

Based on the deduced peptide sequences, the 8-bp deletion at exon 4 caused a pre-mature
stop codon (Figure 2a,b). The consequence of this 8-bp deletion is predicted to lose TM5-TM12
transmembrane segments and two nucleotide-binding domains (NBDs) (Figure 2c). In view of the
absence of about 70% of the protein structure, the ABCC2 gene in the OfC2-KO strain is predicted to be
defective and most likely non-functional.
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Figure 2. CRISPR/Cas9-mediated editing of the OfABCC2 gene. (a) A diagram of the OfABCC2 gene
and sgRNA targeting site. The white boxes represent predicted exons through sequence alignment with
ABCC2s from Heliothis virescens and Plutella xylostella. The sgRNA targeting site was located at exon 4,
containing a proto spacer and a protospacer adjacent motif (PAM) sequence (TGG, in red). (b) The
deduced peptide sequences from partial exon 4 to exon 6 of OfABCC2. The stop code is shown by a red
asterisk. (c) A schematic diagram of the 12 transmembrane domains (TM1–TM12). The cleaved site
induced by CRISPR/Cas9 is located at TM4, resulting in a frame shift of the transcript. The predicted
protein produced from this mutant allele would be truncated in the intracellular TM4–TM5 loop
of OfABCC2.

2.3. Impact of OfABCC2 Disruption on the Susceptibility of O. Furnacalis to Bt Toxins and Chemical
Insecticides

Toxicity assays with larvae from the mutagenesis OfC2-KO strain and the background NJ-S strain
against four Bt Cry toxins and two insecticides were carried out with the aim of assessing the impact
of disrupted OfABCC2 on larvae’s susceptibility. The bioassay results indicate that the OfC2-KO
strain showed low levels of resistance to Cry1Ac (8.1-fold) and Cry1Ab (3.6-fold), but no significant
resistance to Cry1Aa (1.4-fold) compared to the NJ-S strain based on LC50 values (Table 1). However,
because the susceptibility of the OfC2-KO strain to Cry1Fa was reduced to a large extent, the LC50

cannot be obtained by bioassay. The mortality of the OfC2-KO larvae was only 4% when treated
by 120 µg/g Cry1Fa, and the estimated resistance ratio was much more than 300-fold. In contrast,
the two strains exhibited approximately equal susceptibility to two chemical insecticides (abamectin
and chlorantraniliprole) with 0.6- and 1.3-fold difference of LC50s. Our findings provide strong reverse
genetics evidence for OfABCC2 involved in the toxicity and mode of action of Cry1Fa.
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Table 1. Toxicity response to four Bt toxins and two chemical insecticides of larvae from the original
NJ-S and OfC2-KO strains of O. furnacalis.

Toxin/Insecticide Strain N 1 Slope ± SE LC50 (µg/g) 95% Fiducial Limits RR 2

Cry1Aa NJ-S 312 3.714 ± 0.519 0.391 0.320-0.455 1
1.4OfC2-KO 384 2.583 ± 0.386 0.527 0.359-0.737

Cry1Ab NJ-S 360 2.978 ± 0.362 0.116 0.074-0.177 1
3.6OfC2-KO 384 2.339 ± 0.286 0.414 0.259-0.585

Cry1Ac NJ-S 720 3.248 ± 0.427 0.100 0.069-0.136 1
8.1OfC2-KO 384 3.531 ± 0.572 0.808 0.676-0.947

Cry1Fa 3 NJ-S 408 4.488 ± 0.505 0.411 0.349-0.466 1
>300OfC2-KO 48 - - -

Abamectin
NJ-S 192 2.221 ± 0.227 0.118 0.090-0.153 1

1.3OfC2-KO 432 1.937 ± 0.171 0.153 0.122-0.188

Chlorantraniliprole NJ-S 432 2.106 ± 0.217 0.031 0.025-0.037 1
0.6OfC2-KO 432 1.387 ± 0.137 0.018 0.013-0.023

1 Numbers of larvae used in bioassay; 2 RR (resistance ratio) = LC50 (OfC2-KO)/LC50 (NJ-S); 3 LC50 for OfC2-KO
could not be determined because of an insufficient dose response (only 4% mortality at 120 µg/g of Cry1Fa treatment).

2.4. Dominance of Cry1Fa and Cry1Ac Resistance in the OfC2-KO Strain

To investigate the inheritance of different levels of resistance to Cry1Fa (high) and Cry1Ac (low)
in the OfC2-KO strain, it was crossed with the susceptible NJ-S strain, and the responses of the two
strains and their F1 progeny were determined at a diagnostic concentration of Cry1Fa (2 µg/g) and
Cry1Ac (1 µg/g), respectively (Table 2). For Cry1Fa, the F1a and F1b progeny had a high mortality
(100% and 98.3%) at 2 µg/g, and the dominance parameters (h) were 0 and 0.02. Similarly, for Cry1Ac,
the corresponding mortality was 100%, and both of the two h values were 0. The results indicated that
either a high level of resistance to Cry1Fa or a low level of resistance to Cry1Ac in OfC2-KO strain was
inherited as a recessive mode.

Table 2. Mortality and dominance of the susceptible NJ-S strain, OfC2-KO strain, and their F1 progeny
from reciprocal crosses to the diagnostic concentration of Cry1Fa and Cry1Ac, respectively.

Strain/cross Treatment N 1 Survival Number h 2

NJ-S Cry1Fa 72 0
Cry1Ac 48 0

OfC2-KO
Cry1Fa 72 67
Cry1Ac 96 37

F1a (OfC2-KO♀×NJ-S♂) Cry1Fa 120 0 0
Cry1Ac 120 0 0

F1b (OfC2-KO♂×NJ-S♀) Cry1Fa 120 2 0.02
Cry1Ac 120 0 0

1 Numbers of larvae measured at the Cry1Fa (2 µg/g) or Cry1Ac (1 µg/g) diagnostic concentration; 2 The degree
of dominance (h) = (survival of F1 - survival of NJ-S)/(survival of OfC2-KO - survival of NJ-S). h = 0, completely
recessive; h = 1, completely dominant.

2.5. Genetic Association between the 8-bp Deletion of OfABCC2 and Cry1Fa Resistance

To clarify the causal relationship of the 8-bp deletion in exon 4 of OfABCC2 with high levels of
Cry1Fa resistance, a set of genetic crosses was performed (Figure 3a). By using direct-sequencing
analysis of the target PCR products (see typical chromatogram in Figure 3b), the genotype of 25
individuals from NJ-S were homozygous for the wild-type (ss) and that of 30 individuals from the
OfC2-KO strain were homozygous for the 8-bp deletion of OfABCC2 (rr) (Table 3). When treated with
2 µg/g of Cry1Fa in F2 progeny, 22.6% (38/168) of the larvae survived after 7 days of treatment. All the
detected 21 survivors randomly selected from the F2-treated group were homozygous for the 8-bp
deletion of OfABCC2 (rr), and the F2-untreated individuals were separated into wild-type homozygous
(ss: 7), heterozygous (rs: 13), and 8-bp deletion homozygous (rr: 9). Our results clearly demonstrated
that the 8-bp deletion of OfABCC2 is significantly linked (Fisher’s exact test, p < 0.0001) with Cry1Fa
resistance in the manipulated OfC2-KO strain.
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Figure 3. Linkage analysis of Cry1Fa resistance in the OfC2-KO strain of O. furnacalis. OfABCC2
genotypes: ss = wild type; rs = heterozygous mutant; rr = homozygous mutant (8-bp deletion). (a) The
crossing design used to generate F2 progeny (1ss: 2rs:1rr). (b) The direct sequencing chromatograms of
PCR products amplified from a fragment of gDNA flanking the 8-bp deletion site (red box) of OfABCC2.

Table 3. Genetic linkage between the 8-bp deletion of OfABCC2 and resistance to Cry1Fa in O. furnacalis.

F2 Progeny 1 Number of Individuals for Each Genotype 2

ss rs rr

NJ-S 25 0 0
OfC2-KO 0 0 30
F2-untreated larvae (n = 29) 7 13 9
F2-treated survivors (n = 21) 0 0 21

1 F1 progeny between the susceptible NJ-S and Cry1Fa-resistant OfABCC2 strains were crossed to produce F2
progeny. 168 larvae from the F2 progeny were treated with 2 µg/g of Cry1Fa toxin. 21 of 38 survivors and 30
untreated larvae were genotyped individually by direct sequencing of the PCR products; 2 ss represent homozygous
for the wild type OfABCC2, while rs means heterozygous for the 8-bp deletion allele of OfABCC2, and rr represent
homozygous for the 8-bp deletion allele of OfABCC2.

3. Discussion

In the current study, we successfully induced a deletion mutation of 8-bp into the OfABCC2
gene of O. furnacalis by the CRISPR/Cas9 genome editing system, and characterized Bt resistance
properties of the knockout OfC2-KO strain. We found that the OfC2-KO strain acquired a high level
of resistance to Cry1Fa (>300-fold) and low levels of resistance to Cry1Ab and Cry1Ac (< 10-fold).
We also confirmed the genetic association between the 8-bp deletion of OfABCC2 and the obtained
resistance to Cry1Fa in the knockout strain. These findings provide strong evidence that OfABCC2
plays a major role in meditating the toxicity of Cry1Fa in O. furnacalis. Moreover, the cross-resistance
and inheritance pattern results provide helpful information for designing of resistance management
strategies for future adoption of Bt corn in China. Furthermore, the OfC2-KO strain can be employed
in an F1 screen program to investigate the diversity and frequency of the OfABCC2 mutant alleles in
field populations of O. furnacalis.

ABCC2 proteins have been identified as receptors for Bt toxins Cry1A and/or Cry1F in a number
of lepidopteran insects, but they have differential contributions to the toxicities for individual Cry1
toxins. The CRISPR-mediated knockout of P. xylostella ABCC2 conferred high levels of resistance to
Cry1Aa, Cry1Ab, and Cry1Ac [30]. The double knockout of ABCC2 and ABCC3 of H. armigera confers
a >15,000-fold resistance to Cry1Ac [33]. A point mutation in the ABCC2 of B. mori resulted in high
levels of resistance to Cry1Ab and Cry1Ac, but not to Cry1Aa [24]. The CRISPR-mediated knockout of
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S. frugiperda ABCC2 conferred a 118-fold resistance to Cry1F [31], and the knockout of S. exigua ABCC2
resulted in high levels of resistance to both Cry1Fa and Cry1Ac [32]. In our study, the knockout of
ABCC2 in O. furnacalis produced high-level resistance to Cry1Fa, low levels of resistance to Cry1Ab
and Cry1Ac, and no resistance to Cry1Aa. The present study provides a new case for the investigation
of the interaction between lepidopteran ABCC2 receptors and Bt Cry1 toxins.

A laboratory-selected strain of O. nubilalis developed a >1200-fold resistance to Cry1F, and the
Cry1F resistance trait is controlled by a single quantitative trait locus (QTL) on linkage group 12 [34].
The subsequent fine mapping of the Cry1F resistance QTL identified a genomic region containing
the ABCC2 locus tightly linked with Cry1F resistance [35]. Practical resistance to Cry1F was recently
documented in some field populations of Canadian O. nubilalis [4]. It will be interesting to check
whether there are mutations in the ABCC2 gene in both the laboratory-selected strain and field-derived
resistant populations of O. nubilalis. The identification of the specific gene for Cry1F resistance of
O. nubilalis is urgently needed for developing molecular tools to monitor the spreading of the practical
resistance in the field.

Several studies reported the potential mechanisms of Cry1Ab and Cry1Ac resistance in the
laboratory-selected strains of O. furnacalis, such as the up-regulation of the V-ATPase catalytic subunit
A and heat shock 70 kDa proteins [36], the down-regulation and mutation of a cadherin gene [37],
the differential expression of the miRNAs targeting potential Bt receptors [38], and the reduced
expression of APN and ABC subfamily G transcripts [39]. The CRISPR-mediated knockout approach
established for O. furnacalis in the present study can be used to evaluate the functional role of the
candidate genes relating to Bt resistance.

The characterization of the inheritance of Bt resistance will provide important information for
evaluating the risks of evolution of resistance and will make it possible to formulate effective resistance
management strategies. Based on previous reports, resistance to Cry1-type toxins mediated by ABCC2
mutations was recessive or incompletely recessive [22–24,27,28,30,32,33]. Consistent with these results,
both the high-level resistance to Cry1Fa (>300-fold) and low-level resistance to Cry1Ac (~8-fold) were
inherited as a recessive mode in the knockout OfC2-KO strain of O. furnacalis.

In the present work, the obtained Cry1Fa resistance was confirmed to be genetically associated
with the 8-bp deletion of OfABCC2, which excludes the CRISPR-mediated off-target effects on resistance
phenotype. We analyzed 18 research cases that employed the CRISPR/Cas9 system to manipulate
the resistance genes to Bt toxins or insecticides, and found that only five of them performed linkage
analysis between acquired resistance and the introduced mutation, including the knockout of the
cadherin gene in H. armigera [40], nicotinic acetylcholine receptor α6 subunit in P. xylostella and S.
exigua [41,42], the ryanodine receptor G4946E mutation in Drosophila melanogaster [43], and a CYP9M10
gene in Culex quinquefasciatus [44]. We therefore recommend that when CRISPR-based gene editing
is conducted to verify the function of a candidate gene, it is necessary to perform a genetic linkage
analysis in order to clarify whether there are off-target effects.

4. Materials and Methods

4.1. Insect Strains and Rearing

The susceptible NJ-S strain was originally collected from Nanjing, China, in May 2010, and has
been maintained in the laboratory without exposure to any insecticides or Bt toxins. By using the
CRISPR/Cas9 genome-editing system, the OfABCC2 gene in the background strain NJ-S was knocked
out to construct a manipulated strain denoted as OfC2-KO. The genome-edited OfC2-KO strain is
homozygous for the 8-bp deletion in exon 4 of OfABCC2, which was predicted to produce a truncated
and loss-of-function protein.

The larvae of O. furnacalis were reared on an artificial diet with corn and soybean powder as
major ingredients at 27 ± 1 ◦C, 80% relative humidity (RH), and a photoperiod of 16 h light:8 h dark.
The pupae were transferred to mating cages with more than 80% RH and a photoperiod of 16:8 h (L: D).
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Adults were supplied with 10% sugar solution to replenish energy. About 5–6 pieces of waxed papers,
as substrate for oviposition, were placed on the top of the cage, and the bottom sheet was collected
daily. Egg masses were incubated in plastic boxes lined with moistened filter paper until hatching.

4.2. Diet Bioassay

The activated Cry1Aa, Cry1Ab, Cry1Ac, and Cry1Fa toxins were purchased from Marianne
Pusztai-Carey (Case Western Reserve University, Cleveland, OH, USA). Abamectin (20 g/L EC)
was obtained from the Institute of Plant Protection, Guangdong Academy of Agricultural Sciences,
Guangzhou, Guangdong Province, China. Chlorantraniliprole (200 g/L SC) was purchased from
DuPont Agricultural Chemicals Ltd. (Wilmington, DE, USA).

We used the diet incorporation method to evaluate the toxicity of Cry toxin or chemical insecticide
to O. furnacalis. Briefly, 5 to 7 concentrations of Bt or insecticide test solutions were first diluted in
distilled water. Then, we added the solution (or distilled water for control) to a proper amount diet in
a clean mixing bowl and thoroughly mixed all the ingredients together until a soft, smooth dough was
obtained. Next, we dispensed the toxin-incorporated diet into each well of a 24-well plate. After the
diet cooled and solidified, one O. furnacalis larva (neonate for Cry toxin susceptibility test and 2nd
instar larva for chemical insecticide bioassay) was placed in each well. All the plates were kept at an
illumination incubator set at 27 ± 1 ◦C, 80% RH, and a photoperiod of 16:8 h (L:D). For Cry toxin, the
mortality was recorded after 7 days of treatment, and the larvae were considered dead if they died or
weighed less than 5 mg. For abamectin and chlorantraniliprole, the mortality was recorded after 2 days
of treatment, and the larvae were considered dead if they did not move after gentle prodding with a
brush. The data were analyzed with PoloPlus (LeOra Software) [45] to estimate the LC50 with 95%
fiducial limits (FL), as well as the slopes of the concentration–mortality lines. Resistance ratios (RR)
were calculated by dividing the LC50 for a particular strain by the LC50 for the susceptible NJ-S strain.

4.3. Design and Preparation of sgRNA

In our previous work, the full-length sequences of OfABCC2 mRNA (GenBank no. MN783372)
had been obtained from the susceptible NJ-S strain of O. furnacalis. By scanning the GN19NGG motifs,
we identified a sgRNA target site (5′-GCACCTTTCGTTGGACTTTTTGG-3′) in predicted exon 4 of
OfABCC2 (Figure 2a). A PCR-based approach was employed to prepare sgRNA according to the
instructions [46]. In brief, a forward oligonucleotide encoding a T7 polymerase-binding site and
the sgRNA target sequences GN19 (OfC2_sgF, Table 4) and a universal oligonucleotide encoding
the remaining sgRNA sequences (OfC2_sgR, Table 4) were designed at first. The OfC2_sgF and
OfC2_sgR were fused by PCR to generate a sgRNA DNA template. The PCR reaction mixture (50 µL)
contained 10 µL of 5 × PCR buffer, 4 µL of 2.5 mM dNTP, 4 µL of 10 µM OfC2_sgF, 4 µL of 10 µM
OfC2_sgR, 0.5 µL of PrimeSTAR polymerase (TaKaRa, Dalian, China), and 27.5 µL of Nuclease-free
water. PCR was performed at 98 °C for 30 s, 30 cycles (98 °C 5 s, 60 °C 30 s, 72 °C 15 s), 72 °C for
10 min, and holding at 4 °C. After identification by electrophoresis, the PCR products were purified by
a QIAprep® Spin Miniprep Kit (QIAGEN, Hilden, Germany). A MEGAshortscript™ T7 High Yield
Transcription Kit (Ambion, Foster City, CA, USA) was used for sgRNA in vitro transcription according
to the manufacturer’s protocol.

Table 4. Primers used in this study.

Primer Name Primer Sequences (5′ to 3′)

OfC2_sgF GAAATTAATACGACTCACTATAGCACCTTTCGTTGGACTTTTGTTTTAGAGCTAGAAATAGC
OfC2_sgR AAAAGCACCGACTCGGTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACTTGCTATTTCT

AGCTCTAAAAC
4Ex_F TAAACCAAGTGTCCATAGGAGACG
5Ex_R TTCGTTTGTCTGTTCGTGTCGC
4In_R GCTGACTATGACATCCACAAAGACAA
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4.4. Egg Collection and Microinjection

Mated female moths of O. furnacalis were allowed to lay egg masses on pieces of wax paper
previously placed on the top of the mating cage. Fresh egg masses (within 2 h after oviposition)
were immediately collected by cutting the wax paper. Then, the eggs were lined on double-sided
adhesive tape on a microscope slide. About 1 nL of mixture containing 150 ng/µL of Cas9 protein
(GeneArt™ Platinum™ Cas9 Nuclease, Thermo Fisher Scientific, Shanghai, China) and 300 ng/µL
of sgRNA were injected into each egg using a FemtoJet and InjectMan NI 2 microinjection system
(Eppendorf, Hamburg, Germany). After injection, the embryos were incubated in an incubator as
described above. The hatched larvae were fed an artificial diet without any toxin.

4.5. Generation of OfABCC2 Mutation Mediated by CRISPR/Cas9

After embryo injection, the genomic DNAs of exuviate from 90 5th-instar larva were isolated
individually using an AxyPrep Multisource Genomic DNA Miniprep Kit (Axygen, Hangzhou, China)
following the manufacturer’s instruction. To identify the indel mutations at predicted exon 4 of
OfABCC2, the intron 4 sequences was first amplified by a specific pair of primers (4Ex_F and 5Ex_R,
Table 4) and then by using the primers of 4Ex_F and 4In_R (Table 4) to amplify a 280-bp region flanking
the desired cleavage site. The second PCR reaction mixture contained 1 µL of template, 1 µL of each
of the 4Ex_F or 4In_R primer, 12.5 µL of 2× Taq Master Mix (TaKaRa, Dalian, China), and 9.5 µL of
PCR-grade water in a final volume of 25 µL. PCR was performed at 95 °C 3 min, 35 cycles (95 °C 30 s,
55°C 30 s, 72 °C 1 min), 72 °C for 10 min, and 4 °C forever, and then the PCR products were directly
sequenced with 4Ex_F (sequencing primer) by TSINGKE Biological Technology (Nanjing, China).
Direct sequencing chromatograms of mutant OfABCC2 have double peaks around the cutting site
at G0 generation. To detect the detailed deletion information of G2 genomic DNAs, the 280-bp PCR
products were subcloned into pTOPO-T vector (Aidlab Biotechnologies, Beijing, China) and sequenced
by TSINGKE Biological Technology. The acquired 8-bp deletion in OfABCC2 was reconfirmed by clone
sequencing using genomic DNA and mRNA templates from the knockout strain OfC2-KO.

4.6. Inheritance Model Determination and Genetic Association Analysis

The sex of O. furnacalis was visually determined based on the bottom characters of the pupa. Male
adults (30 moths) from the original strain NJ-S were mass crossed with virgin female adults (30 moths)
of the knockout strain OfC2-KO and vice versa. The degree of dominance (h) was estimated using the
formula: h = (Srs − Sss)/(Srr − Sss), where Srs, Sss, and Srr are the survival rate for F1 hybrids, the NJ-S
strain, and the OfC2-KO strains, respectively. The h varies from 0 for completely recessive resistance to
1 for completely dominant resistance [47].

For genetic association analysis between the 8-bp deletion of OfABCC2 and Cry1Fa resistance
phenotype, the F1 progeny from the reciprocal crosses were pooled and mass crossed to produce F2

progeny (Figure 3a). A total of 168 newly hatched larvae of the F2 progeny were treated with 2 µg/g
of Cry1Fa toxin. The survivors (F2-treated) were collected after 7 days of treatment. The DNA from
random selected parents (NJ-S and OfC2-KO), F2-treated survivors, and F2-untreated individuals were
extracted for OfABCC2 genotyping.
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