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Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients

in response to stimulation. Even when using the same stimulation parameters in the same

patient, wide variability in the duration of transient response has been reported. These

transients have long been considered important for themapping of the excitability levels in

the epileptic brain but their dynamic mechanism is still not well understood. To investigate

the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural

population model of epileptic spike-wave activity and study the interaction between

slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow

wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of

a region of bistability between a high amplitude oscillatory rhythm and the background

state. In vicinity of the bistability in parameter space, the model has excitable dynamics,

showing prolonged rhythmic transients in response to suprathreshold pulse stimulation.

We analyse the state space geometry of the bistable and excitable states, and find that

the rhythmic transient arises when the impending FoC bifurcation deforms the state

space and creates an area of locally reduced attraction to the fixed point. This area

essentially allows trajectories to dwell there before escaping to the stable steady state,

thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar

FoC bifurcation structure. Based on the analysis, we propose an explanation of why

stimulation induced epileptiform activity may vary between trials, and predict how the

variability could be related to ongoing oscillatory background activity. We compare our

dynamic mechanism with other mechanisms (such as a slow parameter change) to

generate excitable transients, and we discuss the proposed excitability mechanism in

the context of stimulation responses in the epileptic cortex.

Keywords: afterdischarge, epilepsy model, spike-wave, stimulation, transients

1. INTRODUCTION

Epileptic seizures are typically marked by abnormal rhythmic discharges of electrical activity in the
human brain. The rhythmicity is taken as an indication of an underlying deterministic nonlinear
oscillation. The transition from a disorganized background activity to the epileptic rhythm is
described as a state transition either due to a changing parameter (Breakspear et al., 2006); or due to
a cross-separatrix perturbation in a bistable situation (Lopes da Silva et al., 2003); or a combination
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of both (Wang et al., 2014). A problem that has not been
satisfactorily addressed is the nature of the termination of the
abnormal rhythm. Corresponding to the situation at rhythm
onset, rhythm termination could be equally be due to a parameter
change (Kramer et al., 2012), a cross-separatrix perturbation in
a bistable situation (Taylor et al., 2014) or a mixture of the
two. However, in the case of human EEG, no direct observation
for either the claimed (slow) parameter change or the cross-
separatrix perturbation has been provided, although we discuss
some indirect evidence later on.

Abnormal rhythmic discharges can also often be induced
in patients with epilepsy by stimulation. Well-known examples
are the reflex epilepsies, where epileptic rhythms are induced
by some form of motor-sensory stimulation (Koepp et al.,
2016), and the so-called afterdischarges following invasive
electrical stimulation of the cortex (Penfield and Jasper,
1954; Blume et al., 2004). Figure 1 is an example of an
abnormal spike-wave rhythm induced by transcranial
magnetic stimulation. As in the case of spontaneous
epileptic seizures, these rhythms typically self-terminate
and the dynamic mechanism of the termination remains
speculative.

A previous computational modeling study has suggested
that there is a third possibility to explain the termination
of an abnormal rhythm. Looking at the case of electrical
responses to cortical pulse stimulation, it was suggested that
prolonged rhythmic transients could be self-terminating in
spatially extended systems (Goodfellow et al., 2012a; Taylor
et al., 2013). This means that neither a parameter change
nor a cross-separatrix stimulus would be required for the
rhythm to stop. The transient abnormal rhythm would
then constitute an example of excitability of a dynamical
system. Excitability is a prominent feature of information-
processing systems (like neurons) as it allows self-resetting
after information has been delivered. It is unknown whether
the epileptic brain constitutes an excitable medium with
thresholds to epileptic discharges, but computational models
demonstrate that a large number of features surrounding
epilepsy can be recreated in heterogeneous excitable media
(Goodfellow et al., 2012b). However, a major problem
with high-dimensional spatio-temporal models is that the
mathematical nature of state space features is difficult to
unveil.

Here we study a previously proposed model of cortico-
thalamic interaction which ignores the spatial extension and
heterogeneities of the cortex as is typically done to describe
widely synchronized epileptiform rhythms shown in e.g., Blume
et al. (2004) and Kimiskidis et al. (2015), also see Figure 1

for an example. To investigate the dynamic mechanisms of
the transients in the thalamo-cortical model, we propose a
simplified version of it to demonstrate the possibility of
abnormal rhythmic transients in its low-dimensional state
space. With some variations, different types of transient
waveforms can be created in the full model, in particular
those known to occur in patients with epilepsy. With this
proposed alternative mechanism, we can explain the observation
of variability on stimulation response in the clinical setting,

and suggest a model based prediction to explain the variability.
Future computational studies of abnormal brain activity can
use these mechanisms to generate alternative predictions to
be compared to clinical observations (instead of attempting
to fit a single model to the data), c.f. Estrada et al.
(2016).

2. METHODS

2.1. Thalamocortical Model
We simulate thalamocortical interactions by following previous
modeling based on the known connectivity of this system (see
Figure 2B; c.f. Suffczynski et al., 2004; Breakspear et al., 2006).
Specifically, the neural mass approach by Suffczynski et al. (2004)
forms a neural population version of the detailed biophysical
model described by Destexhe (1998). In our macroscopic model,
we consider the activity changes in four neural populations.
The cortical pyramidal cell population (PY) is self-excitatory
(Amari, 1977) and excites the cortical inhibitory interneuron
population (IN) (Suffczynski et al., 2004). In addition, PY
excites the thalamocortical cell population in the thalamus
(TC), and a population of cells in the reticular nucleus of the
thalamus (RE) (Suffczynski et al., 2004; Yousif and Denham,
2005). The interneuron population IN inhibits the excitatory
cortical PY population (Suffczynski et al., 2004). Direct thalamic
output to the cortex comes exclusively from excitatory TC
connections to the PY population (Breakspear et al., 2006).
Intrathalamic connectivity is incorporated into the model as
follows: TC cells have excitatory projections to RE, which in
turn inhibits the TC population along with self-inhibition of RE.
This connectivity scheme is consistent with experimental results
reviewed in Pinault and O’Brien (2005) and summarized in their
Figure 1.

It was demonstrated in a minimal model of epileptic spike-
wave discharges (SWD) that at least one slow driver is required
in addition to the cortical PY and IN units (Wang et al., 2012).

There is experimental evidence for abnormal slow thalamic
processes (variations in a tonic inhibitory current), which may
be a common mechanism in typical absence seizures (Cope
et al., 2009). This is also supported by theoretical studies that
find slow timescales crucial for the generation of realistic SWD.
These studies either incorporate the slow timescale directly by
modeling the slower reaction of thalamic populations (Marten
et al., 2009; Taylor et al., 2013) or by incorporating explicit
delays (Breakspear et al., 2006). Marten et al. (2009) compares
these approaches and finds bifurcation structures leading to
the onset of SWD which are similar. As the exact dynamic
mechanisms underlying the emergence of the slow timescale is
still unclear, we assume here that the thalamic compartment
operates on a slower timescale in the abnormal condition of
increased susceptibility to undergo transitions to SWD. From a
theoretical point of view, this has the advantage that the model
can be analyzed in terms of slow-fast subsystems (Wang et al.,
2012).

The model uses the neural population approach based on
the neural field equations proposed by Amari (1977). Spike-
wave solutions are found following the analysis done in Taylor

Frontiers in Computational Neuroscience | www.frontiersin.org 2 April 2017 | Volume 11 | Article 25

http://www.frontiersin.org/Computational_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Computational_Neuroscience/archive


Baier et al. Understanding Epileptiform After-Discharges

FIGURE 1 | Clinically recorded self-terminating spike-wave discharges induced by transcranial magnetic stimulation. The stimulation was applied at the

red arrow. Spike and wave afterdischarges are observed. Figure is visualized from Kimiskidis et al. (2015).

FIGURE 2 | Connectivity scheme of the (A) simplified and (B) thalamocortical model. Excitatory connections are shown in green, inhibitory connections are shown

in orange.

and Baier (2011) and Taylor et al. (2013). The set of ordinary
differential equations is given as:

dPY

dt
= τ1(hpy − PY + C1 f [PY]− C3 f [IN]+ C9 f [TC])

dIN

dt
= τ2(hin − IN + C2 f [PY])

dTC

dt
= τ3(htc − TC + C7 f [PY]− C6 (s[RE]))

dRE

dt
= τ4(hre − RE+ C8 f [PY]− C4 (s[RE])+ C5 (s[TC]))

(1)

where hpy,in,tc,re are input parameters, τ1...4 are time scale
parameters and f [.] and s[.] are the activation functions:

f [u] = (1/(1+ ǫ−u)) (2)

s[u] = au+ b (3)

with u = PY , IN,TC,RE. The parameter ǫ determines the slope
of the sigmoid. Two activation functions are used here, one
sigmoid, one linear. This is because we found that in our previous
studies (Taylor et al., 2014) the RE and TC interactions mainly
happened in the linear range of the sigmoid activation function.

Hence we replaced them with a linear activation. This is also
useful to directly compare the slow thalamic subsystem to the
simplified model later, where we also use linear activation for
simplification.

Details about the parameters can be found in Tables S1, S2.
Code to simulate the model can be found online at https://
senselab.med.yale.edu/modeldb/showmodel.cshtml?model=
168856.

2.2. Simplified Model
To investigate mechanisms leading to bistability/excitability in
the model we use a simplified model of three variables which
allows for easier visualization (we will call it the 3V model -
Figure 2A). The simplified model preserves the important
aspects of themore detailedmodel including timescale separation
and bistability. Specifically, the two slow variables create a focus
in the slow subsystem, just like the full thalamo-cortical model.
The two fast cortical variables have been simplified to one,
effectively removing the Hopf bifurcation in the fast subsystem.
This is so that the full system is simplified to only display
simple oscillations, rather than slow-fast oscillations. Indeed, the
transient dynamics are built up by these two slow and one fast
variables. As we will show in results, the additional fast variable
in the full system just adds the Hopf bifurcation back into the
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system, allowing for transient slow-fast (spike-wave) oscillations.
The equations for the simplified system are as follows:

dX

dt
= τfast(hX − X + Cd f [Y])

dY

dt
= τslow(hY − Y − Ca Z + Cb X)

dZ

dt
= τslow(hZ − Z + Cc Y) (4)

where hX,Y ,Z are input parameters, τslow,fast are time scale
parameters and f [.] is the activation function above (Equation 2).

We can essentially identify the slow subsystem (TC and RE)
with the slow subsystem in the 3V model (Y and Z). The cortical
system PY and IN can be considered the expansion of the
3V system variable X. The parameter values for the simplified
model were obtained through visual comparison of the state
space structures as described above. Or in other words, we
constructed the state space structures in the simplified model
with the parameters, such that they matched the the full system
as described above.

Details about the parameters can be found in Tables S1, S2.

2.3. Slow and Fast Manifolds
We will use the slow and fast manifolds in state space to explain
some of the phenomena and mechanisms we observe. The slow
manifold is technically defined as the manifold in state space
on which the change in the fast subsystem is zero, i.e., the
slow dynamics dominate. For the 3V model, this would be the

condition dX
dt

= 0, hence (hX − X + Cd f [Y]) = 0, hX +

Cd f [Y] = X. This means the manifold is a sigmoid-shaped plane
(green plane in Figure 3). For the full thalamo-cortical system,

this would be the conditions dPY
dt

= 0, dIN
dt

= 0. Essentially the
fixed point of the fast subsystem. However, in our analysis, we
have expanded this definition of slow manifold, by also including
limit cycles of the fast subsystem in the slow manifold (blue
mesh in the later Figures 6–8). This is justified in more detail
in Wang et al. (2012), but essentially we assume that the time
scale separation is sufficient to separate the slow dynamics from
the fast oscillations. We obtained the slow manifold for the full
system numerically by obtaining the fixed points and limit cycles
of the fast subsystem. The numerical simulation approach was
used here (as opposed to continuation), as routine for detecting
fixed points and limit cycles could be reused for the detection
of transient events with small adaptations. In both cases we
essentially detect if trajectories stay in the proximity of each other.

The fast manifold, in contrast, is where the slow dynamics are

essentially zero. For the 3V system thismeans dY
dt

= 0 and dZ
dt

= 0.
This gives (hY −Y −Ca Z+Cb X) = 0 and (hZ − Z+Cc Y) = 0.
If expressed as dependent on X we get: Z = hZ + Cc Y and
Y = (−Ca ∗ hZ + Cb ∗ X + hY )/(1 + Ca ∗ Cc). In other
words, the fast manifold is a line in the state space (orange line
in Figure 3). For the full thalamocortical system, we have the

conditions: dTC
dt

= 0, dRE
dt

= 0. This gives a linear equation
system, where the solution is the set of fixed points of the slow
subsystem (orange line in Figure 6F).

3. RESULTS

3.1. Analysis of a Slow-Fast Subsystem
To begin our analysis, we will look at the 3V simplified system
to illustrate the main dynamic mechanisms before applying the
analogous analysis to the full thalamo-cortical model.

The reduced three-dimensional model is a slow-fast system,
with one fast variable (X) and two slow variables (Y ,Z). Previous
studies of such slow-fast systems have shown that Fenichels
Theorem (Fenichel, 1979) is a powerful tool of analysis. The
theorem essentially states that the (stable of unstable) fixed points
of the fast subsystem form a manifolds in the full state space
with similar properties. By analysing these manifolds, one can
understand the dynamics of the full system in state space.

Using Fenichels Theorem, and the slow and fast manifolds,
the behavior of the system can be understood geometrically
(Izhikevich, 2000; Desroches et al., 2012; Wang et al., 2012).
These slow and fast manifolds are shown in Figures 3A–D as
green and red manifolds, respectively. The slow manifold (i.e.,
where the change in the fast subsystem is zero, dX/dt = 0)
is a green sigmoid shaped plane, which is attractive in the
direction of X. The fast manifold (i.e., where there is no change
in the slow subsystem, dY/dt = 0 and dZ/dt = 0) is a
red line indicating a stable focus in the slow subsystem. The
intersection of these two manifolds is a fixed point of the full
system (blue dot in Figures 3A–D). Additionally, when the fast
manifold (red) is positioned near the non-linear part of the slow
sigmoidal manifold (green), the interplay between the fast and
slow dynamics can create a stable limit cycle in the full system
(indicated in magenta in Figures 3A–D) that is bistable to the
fixed point (blue). The bistability is additionally demonstrated
in Figures 3E,F by perturbing the fixed point and showing
the following trajectory evolving to the limit cycle; and by a
subsequent perturbation from the limit cycle back to the fixed
point. Note that the bistable limit cycle is created around (and
due) to the non-linearity in the sigmoidal slow manifold.

The stable fixed point and the stable limit cycle are separated
by a saddle cycle (indicated in orange in Figures 3A–D). We
additionally show the stable direction of the saddle cycle as a gray
tube manifold in Figures 3A–D. This manifold also represents
the separatrix between the fixed point and limit cycle.

In order to understand the type of bifurcation leading to this
bistability, we slowly vary the parameter hX , which controls how
close the fast manifold (red line) is shifted toward the nonlinear
part of the sigmoid-shaped slow manifold (green plane). We
find that the new coexisting limit cycle arises in a fold of cycles
bifurcation (marked as FoC1 in Figure 4A), as the fast manifold
approaches the nonlinear part of the sigmoidal slow manifold.
When hX is further increased, the stable fixed point becomes
unstable in a subcritical Andronov-Hopf bifurcation, where also
the saddle cycle disappears (marked as H1 in Figure 4A). Due
to the symmetry in the sigmoid slow manifold, both bifurcations
occur again as the fast manifold passes through the upper part of
the sigmoid (marked as H2 and FoC2 in Figure 4A).

Interestingly, the impending fold of cycles bifurcation
introduces a slowing/trapping in the local state space, which is
well documented for the fold or saddle-node types of bifurcations
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FIGURE 3 | Bistability in the 3V model. (A–D) state space diagrams of the 3V system in different projections showing the fast (red line), slow (green), and separating

(gray) manifolds, and the fixed point (blue dot) and limit cycle (magenta line). (E) Time series of the system when stimulated to transition from the fixed point to the limit

cycle, and back. (F) Y-Z state space showing the trajectory in (E). Black arrows indicate the stimulation points. Parameter values used can be found in Table S1.

(see e.g., Damme and Valkering, 1987). In the case of a fold of
cycles bifurcation, this means that long transients of oscillations
can be observed prior to the bifurcation. Figure 4B shows an
example of such a long transient lasting for 14 cycles (over 5
model time seconds). Figure 4C shows the same time series in
state space. In this projection the slowing/trapping in state space
becomes particularly clear, as the trajectories dwell in the region
in state space, where the stable and saddle limit cycle are to be
born.

We additionally measured the length of these transients
for different values of hX and find a sudden increase just
prior to the FoC bifurcation in parameter space, (Figure 5,
first column). This behavior changes quantitatively with other
parameters. For example, as the bifurcation point in hX shifts
with the parameter τslow, the parameter region in hX supporting
long transients also increases. In other words, long transients
can be found further away from the FoC point in hX as
τslow decreases (Figure 5A). When analysing properties of the
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FIGURE 4 | Excitability in the 3V model. (A) Bifurcation diagram for the parameter hX showing minimum and maximum values of Y . The red line indicates the

parameter setting for (B,C). FoC indicates a fold of cycles bifurcation. H indicates a subcritical Andronov-Hopf bifurcation. The zoom-in shows the FoC bifurcation in

the variables Y and Z. The unstable limit cycle is shown in the zoomed panel in blue, with the stable limit cycle in pink. (B) An example of a transient following a

stimulus (black arrow) at a parameter setting before the FoC bifurcation (red line in A). (C) The same transient is shown in the state space of the variables y and z.

Parameters used here can be found in Table S1.

transients further, we observe that indeed the oscillation appears
to become slower with decreasing τslow (Figure 5B). This results
in a roughly constant number of oscillations for different τslow
(Figure 5C). However, this effect is not observed in another
parameter (e.g., Cc, Figures 5D–F). The parameter region in
hX showing long transients appears to stay about the same
for different Cc (Figure 5D), but the number of oscillations
increases substantially with different Cc (Figure 5F). These two
examples illustrate that the properties of the transients near the
FoC bifurcations in hX can be modulated by other parameters.
Particularly, the properties of the duration of the transient and
the number of oscillations in the transient can be modified. We
found that the modification essentially works by the mechanism
of changing the flow in state space near the ghost of the
saddle cycle. More precisely, the local flow creating the dwelling
behavior in state space (near where the saddle node of cycles
bifurcation will happen) determines how the transients will
appear. This local flow is influenced by other parameters of the
system, such as Cc and τslow.

3.2. Analysis of the Full Model
We now turn our attention to the full thalamo-cortical system.
We can essentially identify the slow subsystem (TC and RE) with
the slow subsystem in the 3V model (Y and Z). The cortical
system PY and IN can be considered the expansion of the 3V

system variable X. This identification is possible through the
analysis of the geometry of the fast and slow manifolds in state
space (compare Figure 3with Figure 6). Where the fast manifold
in the 3Vmodel was a stable focus, this is exactly preserved in the
full system (by design of the 3V system, see Section 2). Where the
slow manifold in the 3V model was previously a simple sigmoid
manifold, it is now a manifold that partly resembles a sigmoid
manifold, only with a Hopf bifurcation at one end creating an
additional limit cycle manifold in the fast subsystem. Note again,
the bistable limit cycle is created around the non-linearity (or
bend) of the slow manifold—as in the simplified model.

Using the knowledge from the three-dimensional reduced
model, the analysis of the four-dimensional system can proceed
in an analogous manner. Figures 6C–F show the state space
projections of the full model, which can be compared to
Figures 3A–D qualitatively. The fast manifold is still a stable
focus, shown as an orange line in the projection of Figures 6C,D.
The fast subsystem is now richer in dynamics. With respect
to the slow modulation from the thalamic subsystem, the
fast cortical system can undergo a supercritical Andronov-
Hopf bifurcation. This means that the slow manifold is more
complex in structure. Figures 6C–F show the slow manifold as
a blue mesh. Particularly in Figures 6C,E,F the cone structure
of the slow manifold is visible, which occurs due to the
supercritical Andronov-Hopf bifurcation in the fast subsystem.
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FIGURE 5 | Properties of the transients in parameter space of the 3V model. (A–C) Scanning hX and τslow. (D–F) Scanning hX and Cc. (A,D) Duration of the

transient shows the total duration of the induced transient in seconds. In the dark red area, the FoC1 bifurcation is already passed and the limit cycle is stable. (B,E)

Shows that some parameters can change the period of the oscillatory transient, e.g., low values of τslow can prolong the period. (C,F) The number of oscillations in

the transient can also change depending on the parameters, e.g., at very high values of Cc. Parameter values can be found in Table S1.

The intersection of the fast and slow manifold again forms a
stable fixed point. The interaction of the slow and fast subsystem
additionally creates a limit cycle. The limit cycle is not only
a simple slow oscillation as in the reduced system, but also
includes an additional fast spike. The fast spike arises due to the
Andronov-Hopf oscillation in the fast subsystem. The attractor
(black line in Figures 6C–F) can be characterized as having a
spike-and-wave morphology (Figure 6A). The basin of attraction
for the fixed point is now more complex than in the three-
dimensional case, and more difficult to visualize as it is four-
dimensional. We have illustrated it in Figures 6C–F as a dot
cloud, and also as Video S1.

The bistability between the fixed point and the spike-wave
limit cycle is additionally demonstrated in Figures 6A,B. The
red and blue bars indicate two perturbations, which induce a
transition to and from the spike-wave limit cycle.

The mechanism by which the bistable spike-wave limit cycle
arises is, as in the three-dimensional case, through a fold of cycles
bifurcation. The bifurcation scan of the system with respect to htc
and hre are shown in Figures 7A,B. Analogous to the 3V case,
just prior to the FoC bifurcation, the transient length increases
(Figures 7C,D). Figure 7E shows an example time series of such
a transient. As the impending bifurcation will create a limit cycle
of spike-wave morphology, the transients also show a spike-wave
oscillation. Figure 7F shows the same time series in state space,

again showing the dwelling in the region where the stable and
saddle limit cycles will appear.

Desroches et al. (2012) and other studies have shown that in
slow-fast systems of bursting, adjusting the time scale ratio can
increase the winding numbers of the spikes in a cycle of spike and
wave. In our system this is indeed the case as well. By adjusting
the time scale ratio we can produce a poly-spike-wave limit cycle
that is bistable to the fixed point (Figures 8A,C). Prior to the
FoC, we can also observe transient poly-spike-wave oscillations
(Figures 8B,D).

3.3. Implication for Clinical Application
As an outlook, we present a prediction for the clinical
application in afterdischarges. When testing for afterdischarges
clinically, variability in the stimulation response duration is
often observed (e.g., in single pulse stimulation such as in
Valentín et al., 2002), despite using the same stimulation
parameters. In Figure 9A we show that in our 3V model
of excitable transients simulated with low level noise input,
similarly variable stimulation responses can be observed. It is
important to note that the noise is of such a low level that
on its own, it does not provoke high amplitude oscillatory
transients in our total simulation time of 1,500 s. We stimulate
such a system every 15 s, and indeed see that the response
is not the same every time. Rather, short and long transients
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FIGURE 6 | Bistability in the 4V model. (A) Time series of the full thalamo-cortical system when stimulated to transition from the fixed point to the spike-wave limit

cycle, and back. (B) PY-RE-TC state space showing the trajectory in (A). Blue and red arrows indicate the stimulation points. (C–F) State space projection of the

four-dimensional thalamo-cortical system. Blue mesh shows the slow manifold (attractors of the fast subsystem), and the orange dashed line shows the fast manifold

(attractors of the slow subsystem). The intersection of the blue mesh and orange line is the fixed point for the full system (gray dot). The black line shows the

spike-wave limit cycle of the full system. The colored dots outline the state space area that is the basin of attraction for the fixed point of the full system. As this basin

is a 4D structure, we show a 3D slices of it here, and the slice point is a point on the SWD attractor, marked by the red star. Parameters used here can be found in

Table S2.

are seen, despite using the same stimulation and system
parameters.

To understand if there is any regularity to when shorter or
longer transients are provoked, we project the simulated time
series into state space in Figure 9B (note this is essentially the

same as Figure 4C, only simulated with noise and zoomed in).
We find the majority of the time series around the background
state (fixed point) in state space. The stimuli every 15 s are seen
as large displacements in the stimulation direction. We assumed
the stimulation direction, i.e., to what extent each variable is
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FIGURE 7 | Excitability in the 4V thalamo-cortical model. (A,B) Numerical bifurcation scan of the full thalamo-cortical model (see Section 2 for details) for the

parameters htc and hre. (C,D) Numerical scan of the transient length before the FoC bifurcations (marked by the green and blue lines) in htc and hre. (E) Time series of

an example of a excitable spike-wave transient. Stimulation is shown as a red arrow. The corresponding parameters are marked as dashed red lines in (C,D). (F)

Same trajectory as in (E) shown in the PY, TC, RE state space. Parameters used here can be found in Table S2.

affected by the stimulus, to be constant. The transient oscillatory
responses are then seen as trajectories around the background
state. To determine from where in state space long (vs. short)
transients are provoked, wemarked the stimulation position with
dots in Figure 9B. The color of the dots indicates the provoked
response length. With such a projection, we indeed see that the
longer stimulation responses tend to be clustered, and located on
the right hand side of the figure.

With our knowledge of the deterministic 3V system described
earlier, this is easy to understand: the stimuli need to be from
a position in state space that is near the ghost of the basin
boundary of the background state. The stimulation direction and
strength then determine where the long oscillatory transients can
be provoked from. The remaining degree of variability can finally
be attributed to the noisy nature of the simulation. In terms
of clinical prediction, our results indicate that if we projected
clinical EEG into a state space equivalent (e.g., using Taken’s
reconstruction Takens, 1981; Taylor et al., 2014), wemight be able
to observe a similar pattern, where a particular area of state space

is producing long afterdischarges. The implication of this is that,
whilst clinically one may simply see a varied response, a phase
space reconstruction of the response may explain why there is
a varied response. An alternative interpretation of the results is:
if the background state has a dominant oscillatory component,
then we predict that afterdischarges might be more readily found
in a particular phase of this ongoing oscillation. This finding also
holds for the full system (Figure S1).

4. DISCUSSION

We demonstrated that excitable transients can be provoked near
a fold of cycles bifurcation in a reduced thalamocortical model.
We also showed that this helps to explain the occurrence of
excitable complex transients in the full thalamocortical model.
The thalamocortical model thereby generates time series that
resemble the different waveform morphologies of transient
dynamics provoked by stimulation in patients (Blume et al.,
2004). Hence we hypothesize that excitability in the vicinity of
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FIGURE 8 | Excitability in the 4V model. (A,B) 3D state space projections of the 4D thalamocortical system. The slow and fast manifolds (blue mesh and orange

dashed line) are shown exactly as in Figure 6. (A) A bistable poly-spike-wave can also be created from the same ingredients as in the spike-wave case, simply by

increasing the relative time scale of the fast vs. the slow subsystem. The trajectory of the poly-spike-wave limit cycle is shown as a blue line. (B) By the same

procedure as (A) the spike-wave excitable transient can also be transformed into an excitable poly-spike-wave transient. The trajectory of the poly-spike-wave

transient is shown as a red line. (C,D) Time series of the trajectories in (A,B), respectively. Parameters used here can be found in Table S2.

a FoC bifurcation is a potential dynamic mechanism underlying
the clinically observed abnormal transients.

4.1. Mechanism of Excitable Transients
The study of neural dynamics has traditionally focused on the
analysis of stable states, either fixed points or limit cycles. Little
effort has been devoted to the analysis of transient dynamics,
with the exception of a few studies (Nowacki et al., 2011,
2012; Goodfellow et al., 2012a; Osinga and Tsaneva-Atanasova,
2013), although they were successful to explain other biological
phenomena (e.g., gene expression regulation Süel et al., 2006).
Traditionally, excitability in neural systems is divided in two
classes: type I, and type II excitability. The distinction is
made based on how the frequency of the oscillation following
stimulation changes with the strength of stimulation. This has
classically also been mapped to different bifurcations, near which
the excitable transients are found. Type I excitability is found
near saddle-node on invariant circle (SNIC) bifurcations, and
type II excitability is found near an Andronov-Hopf and a fold
of cycles bifurcation (Izhikevich, 2000; Buri et al., 2005). Our

mechanism of excitability is very similar to the type II fold of
cycles bifurcation, however the configurations of the surrounding
state space are such that the dwelling behavior as described in
Results is much more prominent than in other system. The
dwelling behavior is mainly determined by the phase space
flow, which in turn is controlled by connectivity and time scale
parameters (see Figure 5).

In this type II of excitability, there is a soft threshold (unlike
in type I excitability, where it is a hard threshold, which is the
stable manifold of the saddle). The soft threshold in our case
is essentially the state space area, where the stable manifold of
the saddle cycle (gray tube in Figure 3) will form. Perturbation
beyond this area will be followed by an excitable transient,
which settles in an oscillation with almost stable frequency for
a substantial amount of time before returning to the stable
fixed point. The impending bifurcation essentially introduces
a local deformation in state space that allows trajectories to
dwell in the “ghost” of the to-be-born cycles (Figure 4). The
frequency and amplitude of the excitable transient is essentially
determined by the cycle that will form. Of course, this directly
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FIGURE 9 | Afterdischarge duration depends on where in state space

the system is when stimulated. (A) Simulation of repeated stimuli every 15 s

to provoke after discharges in the 3V model with noise input. All parameters

are unchanged between stimuli. Purple markers indicate the timing of the

stimulus. (B) When plotting the time series from (A) in state space (white lines),

we see the background state as a dense concentration of trajectories, and the

stimulations occasionally cause bigger deviations beyond the background

state. Overlayed, we show the state space position where stimuli were applied

as dots. The color of the dots indicate the duration of the ensuing response.

Larger deviations tend to cluster on the right hand side of the background

state. The direction of simulated stimulation is shown with the blue arrow.

depends on the parameter setting of the model (Figure 5).
The absolute duration of the excitable transient depends on
the proximity to the bifurcation (as expected, as the local
state space deformation nearer the bifurcation is stronger).
If perturbed beyond the soft threshold the stimulus intensity
will not significantly impact the morphology of the rhythmic
transient, except for the initial return to the dwelling area in state
space.

These properties make the excitable transients in our model
an attractive candidate for modeling stimulus induced seizure-
like events (SLE). As these SLE are often referred to as complex
discharges following stimulation, they are usually of a substantial
duration (i.e., not a simple return to the background state). We

are not aware of consistent reports of the dependency of the
response amplitude or frequency on stimulus intensity. However,
usually a threshold phenomenon is reported in the stimulus
intensity (Lesser et al., 1984). All these properties are fulfilled
in our rhythmic transient, but not in the traditional type I and
type II transients (Izhikevich, 2000; Buri et al., 2005). To test if
the state space setup in our model is a good candidate, a similar
approach as in Jia and Gu (2012) could be used, where the system
is driven by noise input. The statistics of noise induced transients
(interval distributions) could hint at the type of excitability and
state space setup in the data, which can be compared to real
experiments, where a noisy input is provided to brain tissue.

We also highlight here, that our mechanism of creating
transient oscillatory behavior is different to that of e.g., Jirsa
et al. (2014). Our slow timescale does not simply serve as
the slow variable change (i.e., our slow time scale is not the
ultraslow time scale in variable z in Jirsa et al., 2014). Indeed,
we show with our model that the ultraslow time scale/slow
parameter change is not needed to create transient oscillatory
behavior. This point may also have important implications for
the biophysics of transient epileptiform afterdischarges, where so
far the hypothesized mechanism of creating transient behavior
is through such ultra-slow variables. Our model proposes that
such ultra-slow variables—often hypothesized to be quantities
such as extracellular potassium, or pO2 Jirsa et al. (2014)—may
not be needed. In this context, it is of course important to
acknowledge that ultraslow time scales may still play a crucial
role in the termination of seizure events or even stimulation
triggered epileptiform events. For example, one compelling piece
of evidence in the context of seizures is provided by Bauer et al.
(2017).

Finally, we also show that the waveform morphology can be
modified to reflect the various waveforms that are observed in
clinical settings (Blume et al., 2004). In Figure 7 we showed
that, in addition to slow oscillations, the excitable transient can
take the form of a train of spike-waves, similar to the clinical
picture in Figure 1. This is possible through the addition of
another fast variable, and the required dynamic mechanism is
the introduction of a supercritical Andronov-Hopf bifurcation
in the fast system during each cycle of the slow oscillation
(Figure 6). The global bifurcation mechanism of generating the
excitable transient in the first place remains the same as in
the 3V system, i.e., through the fold of cycles. By adjusting
the time scale separation of the two time scales, additional
spikes can be added between successive waves, leading to
the appearance of poly-spike-waves, also observed clinically.
This spike-adding mechanism through the time-scale ratio has
been well-documented in previous studies of slow-fast systems
(Desroches et al., 2012).

4.2. Stimulation Provoked Events as
Transients
In a more general context, the question arises whether excitable
transients are a good model of stimulus induced seizure-
like activity at all. Particularly in the context of clinical
seizures, the established concept is that seizures are oscillatory
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attractors that a neural system can reach either through some
underlying parameter change (bifurcation) (Wendling et al.,
2002; Breakspear et al., 2006) or through perturbation from a
coexisting stable background state (bistability) (Lopes da Silva
et al., 2003; Lytton, 2008).

However, as we pointed out in the introduction, the
bifurcation-based explanation requires the change of an
underlying parameter for the start and termination of the
seizure. This is often illustrated as a “path through parameter
space” (Wendling et al., 2002; Breakspear et al., 2006; Nevado-
Holgado et al., 2012). The particular attraction of the parameter
variation hypothesis is that seizures (and also a small percentage
of afterdischarges for that matter Blume et al., 2004) can evolve
in their waveform morphology over seconds, which would
point to a slow change in parameter. However, such a path
has never been confirmed through direct measurements in
a clinical context. Some indirect evidence exists in animal
models and human EEG (Kramer et al., 2012; Jirsa et al.,
2014). So, although this concept can be useful in some
applications, it still needs further consolidation in order to
provide a mechanistic explanation of seizure onset/offset. In
the context of stimulation induced activity, such as that shown
in Figure 1, this concept becomes particularly difficult. For
the onset, the parameter change would have to take effect
instantaneously triggered by the stimulus, and the termination
would involve a parameter change that is not stimulation
triggered. Although conceivable in theory, it is difficult to
identify processes that could be measured and manipulated
directly to test this hypothesis. In terms of biophysical
interpretation, we essentially suggest that a slow parameter
change (e.g., extracellular potassium, or pO2) may not be
necessary to produce stimulation induced transient epileptiform
activity.

The bistability-based explanation has the advantage that
stimuli can indeed induce a transition without the need for
underlying parameter changes. However, for the termination,
the bistable model still required a terminating stimulus, or a
parameter change. Hence, excitable transients appear well suited
as a deterministic model to describe stimulation induced seizure
like activity. However, in a noise-driven system, the picture
is more complicated. If we assume that local brain activity is
modeled by noise-driven dynamics (see e.g., Breakspear et al.,
2006; Deco et al., 2009; Taylor et al., 2014), even a bistable
system could terminate the transient activity just through the
noise input. However, this will depend on the noise level
and we suggest that again, a detailed analysis of the event
statistics (e.g., distribution of duration of after discharges)
might offer insights into the exact dynamic mechanism. One
study uses this approach and presents some indirect evidence
that seizure onset may be described by a random walk
process, but not seizure offset (Suffczynski et al., 2006). This is
particularly interesting, as they describe seizure offset to have a
deterministic component, which would fit with the excitability
model.

For low noise levels (low meaning transitions induced just
by the noise alone is extremely unlikely), the distinction of
bistable vs. excitable would still make sense. It is easy to see

that for low noise levels, the duration of afterdischarges will
be much longer in the bistable case, compared to that of the
excitable case. For medium levels of noise, more complex and
non-trivial phenomena can arise (Lindner et al., 2004), which
can be studied in future work, and matched to experimental
finding (Lesser et al., 2008). In this context, it has for example
been noted that an afterdischarge increases the likelihood of the
following afterdischarge in the same stimulation location within a
certain time window (Lee et al., 2010). Such a phenomenon is for
example imaginable for an intermediate noise level driving the
fast system, which can stabilize a state space region around the
fixed point (see e.g., Muratov et al., 2005), enabling an increased
likelihood for a subsequent excitable transient.

In this context, we also offer a prediction for the
observation and interpretation of afterdischarges. Assuming
that afterdischarges are indeed excitable transients, then in
the presence of low level noise, the response to stimulation
is variable (as observed in the clinical setting). We predict
that part of this variability may be explained by the state of
the ongoing background activity (Figure 9). If our prediction
proves to be true, it does not only support our theory, but also
has wide-ranging implications. For the evaluation of cortical
stimulation and afterdischarges, it means that these need to be
considered carefully with regards to the ongoing activity (e.g.,
phase of the ongoing background oscillations), and ideally over
several trials. This may indeed be at the heart of the discrepancy
that afterdischarges do not seem to overlap well with seizure
onset zone (Blume et al., 2004).

Finally, this leads us to comment on the relationship of the
stimulation induced seizure-like events, and naturally occurring
seizure activity. To our knowledge, there is no direct link between
the two phenomena (Blume et al., 2004), although they may be
related on a fundamental level (Penfield and Jasper, 1954; Kovac
et al., 2016). From the modeling perspective, the generation of
excitable transients through stimulation reflects a general level
of propensity/ability of the human cortex to generate seizures
(as the system is near a bifurcation to seizure-like activity).
However, the dynamic mechanism of seizure onset could be
entirely different (as discussed, specific parameter changes could
drive onset and offset, or a bistability could occur). This might
explain that although afterdischarges and seizures appear to have
some commonalities, the spatial sites and networks involved do
not necessarily overlap. In other words, afterdischarges might
be a general (not necessarily spatial) indicator of proximity to
the seizure attractor, but the actual seizure onset and evolution
could (through active parameter changes) involve sites that differ
from those activated by local stimulation. A careful evaluation of
stimulation and afterdischarges over several repeated trials might
unlock the true mechanism underlying afterdischarges, and link
it mechanistically to seizures.
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Figure S1 | Afterdischarge duration depends on where in state space the

system is when stimulated. (A) Simulation of repeated stimuli every 10 s to

provoke afterdischarges in the 4V model with noise input. All parameters are

unchanged between stimuli. (B) When plotting the time series from (A) in state

space (white lines), we see the background state as a dense concentration of

trajectories, and the stimulations occasionally cause bigger deviations beyond the

background state. Overlayed, we show the state space position where stimuli

were applied as dots. The color of the dots indicate the duration of the ensuing

response. Larger deviations tend to cluster on the right hand side of the

background state. The direction of simulated stimulation is shown with the blue

arrow.

Table S1 | Parameter values used to produce the figures for the reduced

3D system in this manuscript.

Table S2 | Parameter values used to produce the figures for the full

thalamo-cortical system in this manuscript.

Video S1 | Basin of attraction for the full thalamo-cortical system. The basin

of attraction for the full model is a 4D object. In each frame of the video, we project

the basin into 3D state space of PY, IN, TC (into PY TC RE for the inset video). The

slice point through the 4D space for each frame is shown as a red dot, and the

video shows the full basin, where the fourth dimension is projected onto time.
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