
ORIGINAL RESEARCH
published: 23 March 2022

doi: 10.3389/fphys.2022.854887

Frontiers in Physiology | www.frontiersin.org 1 March 2022 | Volume 13 | Article 854887

Edited by:

Antonio Batista,

Universidade Estadual de Ponta

Grossa, Brazil

Reviewed by:

Ricardo Luiz Viana,

Federal University of Paraná, Brazil

Chao Bai,

Xi’an Technological University, China

Vagner Dos Santos,

Universidade Estadual de Ponta

Grossa, Brazil

*Correspondence:

Fei Liu

bwllf@163.com

Yu Qian

qianyu0272@163.com

Zhigang Zheng

zgzheng@hqu.edu.cn

Specialty section:

This article was submitted to

Fractal Physiology,

a section of the journal

Frontiers in Physiology

Received: 14 January 2022

Accepted: 21 February 2022

Published: 23 March 2022

Citation:

Lei Z, Liu J, Zhao Y, Liu F, Qian Y and

Zheng Z (2022) New Burst-Oscillation

Mode in Paced One-Dimensional

Excitable Systems.

Front. Physiol. 13:854887.

doi: 10.3389/fphys.2022.854887

New Burst-Oscillation Mode in Paced
One-Dimensional Excitable Systems
Zhao Lei 1,2, Jiajing Liu 1,2, Yaru Zhao 1,2, Fei Liu 1,2*, Yu Qian 1,2* and Zhigang Zheng 3,4,5*

1College of Physics and Optoelectronic Technology, Baoji University of Arts and Sciences, Baoji, China, 2 Advanced Titanium

Alloys and Functional Coatings Cooperative Innovation Center, Baoji, China, 3 Institute of Systems Science, Huaqiao

University, Xiamen, China, 4 School of Mathematical Sciences, Huaqiao University, Quanzhou, China, 5College of Information

Science and Engineering, Huaqiao University, Xiamen, China

A new type of burst-oscillation mode (BOM) is reported for the first time, by extensively

investigating the response dynamics of a one-dimensional (1D) paced excitable system

with unidirectional coupling. The BOM state is an alternating transition between two

distinct phases, i.e., the phase with multiple short spikes and the phase with a long

interval. The realizable region and the unrealizable region for the evolution of BOM are

identified, which is determined by the initial pulse number in the system. It is revealed

that, in the realizable region, the initial inhomogeneous BOM will eventually evolve to

the homogeneously distributed spike-oscillation mode (SOM), while it can maintain in

the unrealizable region. Furthermore, several dynamical features of BOM and SOM are

theoretically predicted and have been verified in numerical simulations. The mechanisms

of the emergence of BOM are discussed in detail. It is revealed that three key factors,

i.e., the linking time, the system length, and the local dynamics, can effectively modulate

the pattern of BOM. Moreover, the suitable parameter region of the external pacing (A, f )

that can produce the new type of BOM, has been explicitly revealed. These results may

facilitate a deeper understanding of bursts in nature and will have a useful impact in

related fields.
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INTRODUCTION

Burst oscillation is a compound dynamical behavior alternating between the active phase and
the silent phase (Desroches et al., 2012; Fallah, 2016). In the active phase, the system shows
rapid and successive spikes with a relatively large-amplitude. While in the silent phase, the
variables exhibit small-amplitude vibrations, which can be considered as the quiescent state. Burst
oscillation behaviors can be extensively observed in a variety of systems, ranging from physical,
chemical, biological, and neuronal systems (Decroly and Goldbeter, 1987; Sherman et al., 1988;
Cymbalyuk et al., 2002; DeShazer et al., 2003; Xie et al., 2003; Russella et al., 2010; Marino et
al., 2011). For example, Sherman et al. revealed the emergence of organized bursting in clusters
of pancreatic beta-cells induced by channel sharing (Sherman et al., 1988). Cymbalyuk et al.
reported the bursting in leech heart interneurons (Cymbalyuk et al., 2002). DeShazer et al. studied
the bursting dynamics of a fiber laser with an injected signal (DeShazer et al., 2003). Xie et al.
(2003) revealed the parabolic bursting induced by veratridine in rat injured sciatic nerves. In the
past decades, the topic of burst oscillation is one of the most important interdisciplinary issues
in nonlinear science and biology. It has been found that burst oscillation plays a key role in
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determining specific physiological processes. Steriade et al.
(1993) exposed the thalamocortical burst oscillations in the
sleeping and aroused brain. Lisman discovered that bursts as a
unit of neural information can make synapses reliable in signal
transmission (Lisman, 1997). Reinagel et al. (1999) revealed
the encoding of visual information by the bursts of the dorsal
lateral geniculate nucleus of the thalamus. Izhikevich et al. (2003)
found that bursts of action potentials might provide effective
mechanisms for selective communication between neurons.

Theoretically, burst oscillations can be usually observed in
single dynamical systems with distinct timescales, and have
been extensively studied as the fast-slow Hodgkin-Huxley model
was proposed (Hodgkin and Huxley, 1952). Since the fast-slow
analysis method was proposed by Rinzel in 1985, which can
effectively expose the formation and the mechanism of burst
oscillation, great achievements have been made in this field.
Distinct modes of burst oscillation were identified in different
kinds of theoretical models and the corresponding mechanisms
were further revealed (de Vries, 1998; Perc and Marhl, 2003;
Zhang et al., 2007; Han and Bi, 2011; Yang and Hao, 2014; Vijay
et al., 2019; Ma et al., 2021; Qian et al., 2021b). For example,
Vries discovered multiple bifurcations of bursting oscillations in
a polynomial model (de Vries, 1998). Perc and Marhl discussed
diverse types of bursting calcium oscillations in non-excitable
cells (Perc and Marhl, 2003). Vijay et al. investigated different
transitions of bursting and mixed-mode oscillations in the
Liénard system with external sinusoidal forcing (Vijay et al.,
2019). Ma et al. reported the complex bursting dynamics in a van
der Pol-Mathieu-Duffing system with multiple-frequency slow-
varying excitations and revealed the pulse-shaped explosion as
a special route to bursting oscillations (Ma et al., 2021). Most
of these contributions are devoted to the burst oscillations in
the single systems. However, less dedications are made in the
complex systems with multi-units.

Since the small-world (Watts and Strogatz, 1998) and
scale-free (Barabási and Albert, 1999) network models were,
respectively, proposed by Watts and Barabási, the problems
of complex systems have become the central topics under
investigation due to their extensive applications, among which
the interplay between structure and dynamics is one of the most
important subjects. Tremendous contributions are achieved in
this aspect, and peoples have confirmed that network structure
does play a key role in determining the spatiotemporal dynamics
of the system (Zhou et al., 2007; Wang et al., 2008; Bogaard et al.,
2009; Pernice et al., 2011; Xu et al., 2013; Gonzalez et al., 2014;
Hütt et al., 2014; Jovanović and Rotter, 2016). For example, Zhou
et al. discussed the structure-function relationship in complex
brain networks expressed by hierarchical synchronization (Zhou
et al., 2007). Pernice et al. studied how structure determines
correlations in neuronal networks (Pernice et al., 2011). Xu
et al. investigated the control of self-sustained spiking activity
by adding or removing one network link (Xu et al., 2013). Hütt
et al. reviewed the network-guided pattern formation of neural
dynamics (Hütt et al., 2014).

Excitable dynamics is popular, it can implement a perfect
spiking as stimulated by a supra-threshold excitation. In the
last decades, excitable dynamics has been widely exploited to

study the issues of oscillation in the interdiscipline of physics
and biological science. Network structure determined oscillation
modes in diverse excitable complex networks are the hot topic in
this field, and lots of dedications have been accomplished (Qian
et al., 2010a,b, 2019, 2020, 2021a; Qian, 2014).

It is well known that the dynamical behaviors of electrical
activities in neurons are complicated. It had been exposed that,
with the change of intrinsic parameters or external environment,
a single neuron can exhibit multiple modes of electrical activities,
such as spiking, bursting, and even chaos oscillations. Different
from the abundant dynamical behaviors of neurons, a single
excitable cell can only perform spiking dynamics. To produce
burst oscillations, the excitable complex network is a feasible way
to achieve this goal. To our knowledge, this issue has not been
extensively discussed. Furthermore, it is also very interesting to
expose the topological structure conditions that can enable the
emergence of burst oscillations in excitable complex networks
and the corresponding bursting dynamical features.

The edges linking neurons in neuronal networks and brain
systems are extremely complicated. This definitely constitutes
complex network topologies, such as small-world or scale-free
structures. However, among these complex connections, there
exist huge numbers of one-dimensional (1D) topological rings.
More importantly, as we have confirmed, excitable waves can
propagate unidirectional along these 1D structures to form
1D unidirectional Winfree loops as the sources maintaining
the oscillations in excitable complex networks (Qian et al.,
2010a). So the investigation of the spatiotemporal dynamics
in 1D unidirectionally excitable system is of great importance.
Furthermore, the 1D system is also the simplest structure, which
is conducive to discuss and analyze. The conclusions obtained
from the 1D system are also instructive for understanding the
phenomena emerging in complex systems. In this paper, the
simplest model of an excitable complex network, i.e., the 1D
excitable system with external periodic pacing, is proposed.
The spatiotemporal dynamics with diverse pacings on this
straightforward network model are extensively studied, and
abundant response behaviors are exposed, among which a new
type of burst-oscillation mode (BOM) is revealed for the first
time.

The remainder of the paper is organized as follows. We first
introduce the mathematical model and the response dynamics of
the 1D paced excitable system and then discuss the emergence
of BOM and its dynamic features. We further reveal the
determinants for the BOM and give the effective parameter
region of external pacing in producing the BOM.

MATHEMATICAL MODEL AND RESPONSE
DYNAMICS

The 1D unidirectional excitable chain with periodic pacing is first
constructed. The Bär-Eiswirth (Bär and Eiswirth, 1993) model is
adopted as the local excitable dynamics.

This excitable model has typical intrinsic simplicity
and low dimensionality, it possesses the key property of
excitable dynamics and can imitate the main dynamical
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features of complicated neuron dynamics with essentially
lower computational costs. Importantly, several important
contributions are achieved based on this model (McGraw and
Menzinger, 2011; Gu et al., 2013; Mi et al., 2013), among which
Mi et al. revealed the long-period rhythmic synchronous firing
in a Barabási-Albert-like scale-free network and proposed a
Hebbian learning mechanism leading to topologically similar
neuronal networks as the basis for the memorization of
information encoded in long temporal intervals (Mi et al., 2013).

Here, an external periodic pacing Asin(2π ft) with A and
f being the amplitude and frequency is introduced, which is
applied to the fast variable of the first node u1(t). The evolution
of the paced excitable unidirectional chain satisfies the following
equations

dui(t)

dt
=

{

1
ε
g(ui, vi)+ Asin(2π ft) for i = 1,

1
ε
g(ui, vi)+ D[ui−1(t)− ui(t)] for i = 2, . . . , L,

(1)

dvi(t)

dt
= F[ui(t)]− vi(t), (2)

where

g(u, v) = u(1− u)(u−
v+ b

a
). (3)

Here F(u) is a piecewise function with the following form

F(u) =







0 u < 1
3 ,

1− 6.75u(u− 1)2 1
3 ≤ u ≤ 1,

1 u > 1.

(4)

In the above equations, the subscript i (i = 1, 2, . . . , L) denotes
the position of the excitable node, where L is the length of the
system. The variables ui and vi are the fast and slow variables
of the ith cell, respectively. The symbols a, b, and ε are three
dimensionless parameters that can effectively control the local
dynamics of the system. D is the coupling strength, which
describes the action intensity between linking neighbors. For a
suitable set of parameters, e.g., a = 0.84, b = 0.07, ε = 0.04,D =

1.0, and L = 500 (this parameter selection will be adopted
throughout this paper if there is no special explanation), a typical
1D paced unidirectional excitable chain can be built.

Based on the above model, we can construct the 1D paced
unidirectional excitable ring by introducing a one-way link from
the end node i = L to the head node i = 1 of Equation (1).
The linking time TLink is introduced and defined as the time we
add this additional unidirectional connection. When t ≥ TLink,
Equation (1) can be transformed into

dui(t)

dt
=

1

ε
g(ui, vi)+ δi,1Asin(2π ft)+ D[ui−1(t)− ui(t)] (5)

for i = 1, . . . , L.

Here δi,j is a function, which is defined as δi,j = 1 if i = j, and
δi,j = 0 otherwise.

In the following numerical studies, the above mathematical
model is integrated by the forward Euler method with the time

step 1t = 0.02. Here, we should mention that the same results
can also be obtained for smaller time steps. The initial values of
the fast and slow variables of each node are set as ui(t = 0) = 0
and vi(t = 0) = 0. This means that, initially, the 1D system is in
the homogeneous rest state.

Let us first study the dynamics of the unidirectional excitable
chain under the drive of the periodic pacings with different
amplitudes and frequencies. Figures 1A,B, respectively, display
the response dynamics of u1(t) for the 1D unidirectional excitable
chain paced by two specific sets of pacing parameters (A, f ) =

(2.5, 4.5) (Figure 1A) and (A, f ) = (1.0, 4.5) (Figure 1B). It is
shown that, for different pacings, two distinct oscillation modes
with discrepant response amplitudes are observed. Figure 1A
shows a typical oscillation mode of the excitable dynamics with
a large amplitude, which is identified as the supra-threshold
spiking. On the contrary, an abnormal oscillation of excitable
dynamics with a small amplitude is detected in Figure 1B,
and we identify this kind of oscillation mode as the sub-
threshold vibration. It is exposed in Figures 1A,B that, with
different pacings, distinct oscillation modes with large or small
amplitudes can be gained. This means that the external pacing
is an effective factor to control the response mode of the paced
excitable dynamics.

Now, we discuss the response dynamics in the 1D paced
unidirectional excitable ring instead of the chain topology.
Figures 1C,D, respectively, display the response results with the
same pacing parameter as Figure 1A [i.e., (A, f ) = (2.5, 4.5)]
and different boundary conditions. The linking time is selected
as TLink = 0. Figure 1C shows the response trajectory for
the fixed boundary condition uL(t) = vL(t) = 0. Based
on the results shown in Figures 1A,C we can find that, by
introducing a unidirectional link on the paced 1st node and
adding the fixed boundary condition, the initial supra-threshold
oscillation is suppressed, and the response dynamics changes
from the supra-threshold spiking to the sub-threshold vibration.
Figure 1D exhibits distinct response dynamics attained with
the periodic boundary condition ui+L(t) = ui(t), vi+L(t) =

vi(t), where the alternate oscillation between the supra-threshold
spiking and the sub-threshold vibration is exposed. This new
type of oscillation mode is absolutely different from the
response dynamics observed in Figures 1A–C, which is similar
to the bursts observed in the dynamical systems with distinct
timescales. This kind of new oscillation mode emerged in the 1D
paced unidirectional excitable ring can be called the BOM. Based
on these discussions we can conclude that, the network structure
and the boundary conditions are two key points to regulate the
response dynamics of the paced excitable dynamics.

THE BOM AND ITS DYNAMICAL
FEATURES

Diverse response dynamical behaviors have been identified in
Figure 1 in the 1D paced unidirectional excitable chain/ring with
appropriate periodic pacings and different boundary conditions.
The finding of the new type of BOM is very interesting. It is well
known that typical dynamical behavior of burst is the existence
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FIGURE 1 | The response dynamics of u1 (t) in the one-dimensional (1D) periodically paced unidirectional excitable chain (A,B) and ring (C,D). The external periodic

pacing Asin(2π ft) is applied on u1. (A,B): The distinct response dynamics in the chain with two specific sets of pacing parameters: the supra-threshold spiking with

pacing (A, f ) = (2.5, 4.5) (A) and the sub-threshold vibration with pacing (A, f ) = (1.0, 4.5) (B). (C,D): The distinct response dynamics in the ring with the same pacing

parameter as (A) and different boundary conditions: the transition from the supra-threshold spiking to the sub-threshold vibrations with the fixed boundary condition

uL(t) = vL(t) = 0 (C), and the burst-oscillation mode (BOM) with the periodic boundary condition ui+L(t) = ui (t), vi+L(t) = vi (t) (D). The insets in (B) and (C) show the

local amplification in the time interval t ∈ [0, 20].

of multiple spikings in one oscillation period. However, the BOM
shown in Figure 1D only has one pulse in a period. It is thus
important whether there exists the BOM with multiple pulses in
this model.

As shown in Figures 1A,C, the supra-threshold spiking will
be suppressed immediately as the unidirectional link from the
end node i = L to the head node i = 1 is added. It is
possible to observe the BOM with multiple pulses by modulating
the time of constructing the 1D unidirectional ring. Figure 2
shows the interesting multiple-burst behavior in 1D periodically
paced unidirectional excitable ring by modulating the linking
times TLink, where the response dynamics of u1(t) [left column
(a), (d), (g)] and u500(t) [middle column (b), (e), (h)], and the
response spatiotemporal pattern [right column (c), (f ), (i)] are
presented. The periodic pacing is selected as (A, f ) = (2.5, 4.5)
(the same as Figure 1A), and is acted on u1. Figures 2A–C show
the BOM with TLink = 50, where a bundle of 7 pulses in one
burst period are obtained. Importantly, this new type of BOM
can propagate along the ring persistently (see the spatiotemporal
pattern shown in Figure 2C). As TLink is increased (as shown
in Figures 2D–F for TLink = 100), the pulse number in one
burst period NPulse increases remarkably (NPulse = 14) and
the interval time between two successive burst periods TInterval

decreases. The labels 1st, 2nd, and 3rd in Figure 2D, respectively,
denote the first three burst periods of BOM. When the linking
time increases to TLink = 150 (corresponding to Figures 2G–I),

NPulse becomes larger, and TInterval becomes remarkably shorter.
These results indicate that the linking time is a key factor in
determining the pattern of BOM in the 1D paced unidirectional
excitable ring, especially the pulse number in one burst period
and the interval time between two successive burst periods. By
adjusting the linking time, diverse BOMs with different patterns
can be achieved.

It is important to analyze the dynamical features and the
evolution of this new type of BOM for a given linking time. Here,
we choose the BOM pattern at the linking time TLink = 100
shown in Figure 2D as our example, and the analysis of the
corresponding 1st burst period is displayed in Figure 3A. It is
shown that there are NPulse = 14 pulses in one burst period,
which consists of NPulse − 1 short spikes (named as the spike
phase) and a long interval (called the interval phase). We first
discuss the period of the spike phase of BOM, and the periods
of each short spike in the 1st burst period of Figure 3A are
displayed in Figure 3B, where the oscillation periods of these
NPulse − 1 short spikes labeled by Tn

Spike (n = 1, 2, . . . ,NPulse −

1) are different. It is shown that as the short spike excited by
the external periodic pacing evolves, the oscillation period of
the corresponding nth spike Tn

Spike decreases obviously and
saturates to a stable value (around 7.46). To depict the period
of the spike phase of BOM uniquely, let us introduce the
average period of these NPulse − 1 short spikes in one burst

period as TSpike =
1

NPulse−1

∑NPulse−1
n=1 Tn

Spike. Figure 3C gives
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FIGURE 2 | (Color online) Diverse BOM patterns in the 1D paced unidirectional excitable ring with different linking times TLink. (A–C): TLink = 50; (D–F): TLink = 100;

(G–I): TLink = 150. The left, middle, and right columns, respectively, present the response dynamics of u1(t), u500(t), and the response spatiotemporal pattern. The

labels 1st, 2nd, and 3rd in (D) denote the first three burst periods.

the dependence of TSpike on the sequence number of burst-

oscillation, where TSpike increases with the bursts and approaches
a fixed value of about 12.50.

The duration of the interval phase of BOM TInterval is another
important quantity in describing the firing process. Let us define
the time that the excitable wave needs to fulfill a complete
propagation along the ring as TLength. For a given BOM, TLength

consists of the periods of the spike phase and the interval phase,
which can be approximatively expressed as

TLength ≈ (NPulse − 1) ∗ TSpike + TInterval. (6)

In this formula, we use the average period TSpike to
approximatively represent NPulse − 1 different spike periods in
one burst period. Then, the interval time of BOM is

TInterval ≈ TLength − (NPulse − 1) ∗ TSpike. (7)

This implies that the interval time of BOM TInterval is related
to TLength, NPulse, and TSpike. Because of the fixed values of

TLength and NPulse at a certain set of parameters and the feature

of TSpike shown in Figure 3C, TInterval at a specific linking time
should decrease as the BOM evolves. Theoretical predictions
according to Equation (7) (red curve) and numerical results
(black dots) of TInterval are plotted in Figure 3D, and they
coincide well with each other. It can also be found that as
BOM evolves TInterval decreases remarkably and tends to the
time that equals the long-term average period of the spike
phase, i.e., TInterval=TSpike=12.50. This means that the interval
phase of BOM may vanish and the initial inhomogeneous
BOM will eventually evolve to the homogeneous spike-oscillation
mode (SOM) with uniform oscillation period. Therefore, the
BOM in the 1D paced unidirectional excitable ring may be a
transient state.

To test this conjecture, the relaxation time that the initial
inhomogeneous BOM evolves to the homogeneous SOM tc
should be taken into account. In Figure 4A, the relationship
between tc and the initial pulse number of BOM NPulse is
presented. The inset of Figure 4A displays the local amplification
in the region NPulse ∈ [16, 22]. It can be found that tc increases
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FIGURE 3 | (Color online) (A) The illustration of the 1st burst period of the BOM pattern of Figure 2D. (B) The oscillation periods of the NPulse − 1 short spikes TnSpike
of (A). (C,D) The dependence of TSpike (C) and TInterval (D) of BOM on the sequence number of burst-oscillation. Red line and black dots in (D) correspond to

theoretical prediction and numerical results, respectively.

FIGURE 4 | (Color online) The dependence of the relaxation time tc (A) and the limit period of SOM TLimit (B) on the initial pulse number of BOM NPulse in the realizable

parameter region. The inset in (A) displays the local amplification in the region NPulse ∈ [16, 22]. Red line and black dots in (B) correspond to theoretical prediction and

numerical results, respectively.

sharply as NPulse decreases gradually, implying that the fewer
the initial pulse number is, the more time it takes for the BOM
finally evolving to the SOM. Let us present some more detailed
discussion of this topic. As shown in Figure 4A, for the pulse
number NPulse = 22, it takes tc ≈ 1.5 × 103 time units (t.u.) for
the BOM to realize the relaxation. WhenNPulse decreases to 16, tc
slightly increases to 6.2× 104 t.u. However, when to NPulse = 10,
the initial inhomogeneous BOMneeds about tc ≈ 7.5×106 t.u. to

evolve to the SOM, which is much longer than the former cases.
More importantly, for the case of NPulse < 10, the evolution
time tc tends to diverge to infinite. Therefore, two parameter
regions for the BOM whether it can evolve to the SOM, i.e., the
realizable region (NPulse ∈ [10, 22]) and the unrealizable region
(NPulse < 10), can be identified. Consequently, we think that
the new type of BOM revealed in this paper is not necessarily a
transient state and is worth deeper discussions.
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To further reveal the dynamical features of the homogeneous
SOM, it is valuable to study the corresponding oscillation period
of the SOM, which is called as the limit period TLimit. The
dependence of TLimit on NPulse in the realizable parameter
region is displayed in Figure 4B, where red line and black
dots correspond to theoretical prediction and numerical results,
respectively. Based on the long-term uniform periods of the spike
phase and the interval phase shown in Figures 3C,D, we can
infer that, in the realizable region, the initial inhomogeneous
BOM containing both the spike and interval phases will self-
organize and evolve to the homogeneous SOM with an equal
period. This means that the initial inhomogeneous NPulse pulses
will be evenly distributed in the 1D paced unidirectional excitable
ring in the end, which is definitely an interesting phenomenon.
So, the limit period of SOM TLimit should be determined by the
initial pulse number of BOMNPulse and the propagation time that
the excitable wave needs to travel through the ring denoted by
TLength, and the predicted limit period in the realizable parameter
region can be calculated according to

TLimit = TLength/NPulse. (8)

The coincidence between theoretical prediction and numerical
results shown in Figure 4B confirms our conjecture. These
results indicate that the initial pulse number in the 1D ring is not
only a key factor to achieve different parameter regions for BOM,
but also can determine the period of SOM in the realizable region.

This gives us a clue to produce the homogeneous distributed
SOM in the 1D paced unidirectional excitable ring with a
given period, which may have useful applications in the related
practical systems.

THE DETERMINANTS OF BOM

The above discussions revealed that the pulse number NPulse,
the average period of the spike phase TSpike, and the interval
time between two successive burst periods TInterval are three
main quantities that can effectively depict the pattern of
BOM. Consequently, it is promising for us to reveal the
determinants of BOM by investigating the factors influencing
these three quantities.

Linking Time
In Figure 2, the response BOM patterns for different linking
times TLink have been revealed. It is shown that, as TLink

increases, the pulse number NPulse in one burst period increases.
On the contrary, the interval time between two successive burst
periods TInterval decreases remarkably. This indicates that the
linking time plays a key role in determining the burst pattern,
which is closely related to the pulse number NPulse and the
interval time TInterval.

Figure 5A displays the relationship between the pulse number
of BOM NPulse and the linking time TLink on a 1D paced
unidirectional excitable ring with the length L = 500 and the

FIGURE 5 | (Color online) (A,B) The dependence of the pulse number NPulse (A) and the interval time TInterval (B) of BOM on the linking time TLink. Here, we should

mention that the interval time TInterval is measured from the 2nd burst period so as to avoid the influence from the initial external pacing. (C,D) The theoretical

predictions (hollows) and numerical results (solids) of the lower (red circles) and upper (blue squares) thresholds of linking time vs. NPulse (C) and TInterval (D).

Frontiers in Physiology | www.frontiersin.org 7 March 2022 | Volume 13 | Article 854887

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Lei et al. Burst-Oscillation Mode

pacing parameters (A, f ) = (2.5, 4.5). It is shown that NPulse

increases stepwisely with the increase of TLink. Moreover, there
exists a maximum pulse number for a given length of the 1D
excitable ring. For example, NMax

Pulse
= 23 for L = 500 shown

in Figure 5A. The closer the pulse number NPulse approaches to
its maximum value, the faster the initial inhomogeneous BOM
evolves to the evenly distributed SOM. This interprets why the
transition time tc in the realizable parameter region closing to
NMax
Pulse

is very short (shown in Figure 4A).
Now, we discuss the influence of the linking time on the

interval time of BOM. According to Equation (7) and the
stepwise behavior ofNPulse shown in Figure 5A, we can speculate
that TInterval should decrease in a similar stepwise manner
for a certain set of system parameters. Figure 5B exhibits the
dependence of TInterval on TLink, where the stepwise decrease of
TInterval is exposed explicitly. This indicates that the more pulses
created on the BOM, the fewer interval time will be obtained.

We can also infer from Figures 5A,B that, in each step of
NPulse and TInterval, there exist a certain range of TLink that can
produce a specific BOMwith the same pulse number and interval
time. This indicates that there exists two critical values for the
linking time to realize the same BOM pattern. Because the supra-
threshold spiking will be suppressed as long as a unidirectional
link from the end node i = L to the head node i = 1 is applied
(shown in Figures 1A,C). So, the number of supra-threshold
spiking pulses, which is retained in the process of constructing
the 1D ring, is the key point to produce the BOM pattern
with the same NPulse. More importantly, due to the existence of
the oscillation period of a single supra-threshold pulse, we can
realize a specific BOM pattern with the same pulse number in a
certain range of the linking time. Therefore, the lower and upper
thresholds of the linking time that can realize the BOM with a
given NPulse can be estimated as

TChain ∗ (NPulse − 1) < TLink < TChain ∗ NPulse. (9)

Here, TChain represents the response period of a single supra-
threshold pulse in the unidirectional chain of Figure 1A. For
a pacing with (A, f ) = (2.5, 4.5), TChain ≈ 7.43. To test
the validity of (9), the numerically lower and upper thresholds
of TLink are obtained based on the data shown in Figure 5A.
Theoretical predictions (hollows) and numerical results (solids)
of the lower (red circles) and upper (blue squares) thresholds
of the linking time varying with the pulse number in Figure 5C

clearly show the coincidence between theoretical predictions and
experimental results.

We can also use the interval time of BOM to predict the two
corresponding critical values of the linking time. By combining
Equations (7) and (9), we can obtain the corresponding
prediction formula of TLink based on the given interval time of
BOM TInterval as

TChain

TSpike

(TLength − TInterval) < TLink <
TChain

TSpike

(10)

(TLength − TInterval + TSpike).

Figure 5D displays the theoretical and numerical thresholds of
TLink based on the interval time TInterval. The consistency further

confirms the above theoretical predictions. The results shown
in Figure 5 indicates that the linking time is a key factor in
determining the new type of BOM in the 1D paced unidirectional
excitable ring. Importantly, the pattern of BOM can be accurately
created by choosing a suitable linking time according to the given
pulse number or interval time.

System Length
Here, we study the effect of the system length L on the
response dynamics of the 1D paced excitable system. According
to Equations (7)-(11), we can find that TChain and TLength are two
key indices in determining the dynamical features of BOM. Let
us first discuss the impacts of L on TChain and TLength, which
are shown in Figure 6A, where the left and right vertical axes
denote TChain and TLength, respectively. It is shown that as L
increases from 300 to 700, TChain always keeps at 7.43, while
TLength increases from 104.65 to 244.19. This means that system
length has no effect on the response period of a single supra-
threshold pulse, while remarkably increasing the propagation
time of an excitable wave along the ring.

Furthermore, for a given set of TChain and TLength, one can

derive the maximum pulse number in the 1D ring NMax
Pulse

as

NMax
Pulse ≈

TLength

TChain
. (11)

Based on Equation (11) and the TChain ∼ L and TLength ∼ L
relationships shown in Figure 6A, we can theoretically predict
the relationship between NMax

Pulse
and L. As displayed in Figure 6B,

theoretical prediction (red line) and numerical results (black
dots) of NMax

Pulse
vs. L are presented. It is shown that as the system

length L increases, the maximum pulse number NMax
Pulse

increases
stepwise. Clearly, the coincidence of theoretical prediction and
numerical results further confirms the formula (9) of NMax

Pulse
.

It is necessary to discuss the influences of the system length
L on the BOM (characterized by TSpike and TInterval) and the
SOM (characterized by TLimit). The pulse number NPulse = 14 is
adopted as an example, which is located in the realizable region.
Figure 6C displays the dependence of TSpike (left vertical axis)

and TInterval (right vertical axis) on L. It is shown that TSpike

always keeps constant while TInterval increases linearly with the
increase of L. This means that, for the BOM, the system length L
has no effect on the average period of the spike phase and has a
linear relationship with the interval time. This coincides with our
theoretical result given by Equation (7).

Figure 6D exhibits the theoretical prediction (red line) and
numerical results (black dots) of TLimit of the SOM on L. Perfect
coincidence indicates that with a given initial pulse number, the
oscillation period of SOM will increase as the system length L is
increased. This well confirms that the system length is a key factor
in determining the response dynamics of the 1D paced excitable
system, including the propagation time of an excitable wave along
the loop, the maximum pulse number, the interval time of BOM,
and the limit period of SOM. All these key quantities exhibit
linear relationships with the system length.
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FIGURE 6 | (Color online) (A) The dependence of TChain (left vertical axis) and TLength (right vertical axis) on the system length L. (B) The theoretical prediction (red line)

and numerical results (black dots) of the maximum pulse number NMax
Pulse vs. L. (C,D) The dependence of TSpike [left vertical axis in (C)] and TInterval [right vertical axis in

(C)] of the BOM (measured from the 2nd burst period), and the theoretical prediction [red line in (D)] and numerical results [black dots in (D)] of TLimit of the SOM on L

with NPulse = 14.

Local Dynamics
Now, we discuss the impact of the local dynamics on the response
behavior. We choose the dynamical parameter a as the testing
parameter, and similar discussions as Figure 6 are carried out.
Figure 7A displays the dependence of TChain (left vertical axis)
and TLength (right vertical axis) on the local dynamical parameter
a with system length L = 500. It is shown that TChain and TLength

decrease remarkably with increasing a. Theoretical prediction
(red line) and numerical results (black dots) of the maximum
pulse number NMax

Pulse
vs. a are presented in Figure 7B, where the

stepwise increase of NMax
Pulse

is exposed. Importantly, the larger the
a is, the broader the step is. Based on the distinct variations of
these three quantities induced by the local dynamical parameter
a, the dramatic response dynamics of the BOM and the SOM can
be expected.

To verify the above speculation, let us take the pulse number
NPulse = 14 as an example. Figure 7C displays the dependence
of TSpike (left vertical axis) and TInterval (right vertical axis) of
the BOM on a. It is shown that the average period of the spike
phase of BOM decreases with increasing a, and consequently the
interval time of BOM increases. Figure 7D gives the theoretical
prediction (red line) and numerical results (black dots) of the
limit period of SOM on a, where TLimit decreases with the
increase of the local dynamical parameter. These results strongly
indicate that the local dynamics is also a determinant of the
response dynamics in the 1D paced unidirectional excitable ring,

which can effectively control the patterns of BOM and SOM by
regulating the dynamics of the local excitable model.

THE PARAMETER REGION FOR BOM

It has been shown in Figure 1 that distinct responses in the 1D
periodically paced unidirectional excitable chain and ring can
be obtained with different pacings. It is important to study the
external pacing as a key factor and the effective parameter region
of external pacing in producing BOM. Furthermore, as shown
in Figures 1C,D, the boundary condition is also very important,
where the mode transition from the supra-threshold spiking to
the sub-threshold vibration with different boundary conditions
is a vital point to expose the effective pacing parameter region for
BOM. Consequently, revealing the typical parameter regions of
the supra-threshold spiking and the sub-threshold vibration with
different boundary conditions will help us expose the available
parameter combinations for BOM.

Figure 8A displays the distinct parameter regions in (A, f )
plane for the supra-threshold spiking and the sub-threshold
vibration in the 1D paced unidirectional excitable ring with the
periodic boundary condition ui+L(t) = ui(t), vi+L(t) = vi(t).
It is shown that the parameter region of the supra-threshold
spiking is larger (red domains) than that of the sub-threshold
vibration (blue domains). For the fixed boundary condition
uL(t) = vL(t) = 0, the phase diagram of (A, f ) given in
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FIGURE 7 | (Color online) (A): The dependence of TChain (left vertical axis) and TLength (right vertical axis) on the local dynamical parameter a with L = 500. (B): The

theoretical prediction (red line) and numerical results (black dots) of the maximum pulse number NMax
Pulse vs. a. (C,D): The dependence of TSpike [left vertical axis in (C)]

and TInterval [right vertical axis in (C)] of the BOM (measured from the 2nd burst period), and the theoretical prediction [red line in (D)] and numerical results [black dots

in (D)] of TLimit of the SOM on a with NPulse = 14.

Figure 8B clearly shows that the distinct parameter regions of
the supra-threshold spiking and the sub-threshold vibration have
a slight shift. This comparison indicates that, as the boundary
condition varies, the response dynamics with a specific parameter
combinations of (A, f ) will change, and the mode transition
from the supra-threshold spiking to the sub-threshold vibration
will occur.

To explicitly expose this interesting mode-transition region,
Figure 8C gives the same response dynamics regions (large pink
regions) and the different response dynamics regions (small
yellow hexagonal regions). It is shown that the specific parameter
region of oscillationmode transition does exists, and the new type
of BOM can be realized in the 1D paced unidirectional excitable
ring with these pacing parameter combinations. To quantitatively
give the relationship between A and f in this effective parameter
region for BOM, several combinations of (A, f ) are studied, which
are shown by the black dots in Figure 8D. Linear fitting gives the
relationship as f = −0.04+ 1.80 ∗ A (red line).

CONCLUSION

In this paper, we extensively investigate the abundant response
dynamics of the simplest 1D lattice of paced excitable systems
with unidirectional coupling. Distinct oscillation modes, such
as the supra-threshold spiking, the sub-threshold vibration,
and the mode transition from the supra-threshold spiking to
the sub-threshold vibration, have been observed by adjusting

external pacings. Furthermore, a new type of BOM is revealed
in the 1D unidirectional excitable ring for certain pacing
parameters, which to our knowledge should be reported for the
first time. It is shown that the BOM contains two distinct phases,
i.e., the phase withmultiple short spikes and the phase with a long
time interval.

We further study the evolution of BOM, and two parameter
regions, i.e., the realizable region and the unrealizable region
are exposed, which is determined by the initial pulse number
in the system. It is revealed that, in the realizable region,
the initial inhomogeneous BOM will eventually evolve to the
homogeneously distributed SOM, and the relaxation time tc
will decrease sharply as NPulse closes to its maximum value.
This means that the more the initial pulse number is, the
fewer relaxation time it takes for the BOM evolving to the
SOM. However, in the unrealizable region, the BOM can still
maintain. This confirms that the new type of BOM revealed
in this paper is not necessarily a transient state and is worth
further discussions. Consequently, several dynamical features of
BOM and SOM, such as the average period of the spike phase
TSpike, the interval time TInterval of BOM, and the limit period of
SOM TLimit, are theoretically predicted and have been verified in
numerical simulations.

The mechanisms of the emergence of BOM are also studied

in detail. It has been exposed that the linking time, the system
length, and the local dynamics are three key factors that can
effectively determine the dynamics of BOM. Specifically, the
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FIGURE 8 | (Color online) (A,B) The distinct parameter regions in (A, f ) plane for the supra-threshold spiking (red domains) and the sub-threshold vibration (blue

domains) in the 1D paced unidirectional excitable ring with different boundary conditions: the periodic boundary condition ui+L(t) = ui (t), vi+L(t) = vi (t) (A) and the fixed

boundary condition u(L) = v(L) = 0 (B). (C) The same response dynamics regions (large pink regions) and the different response dynamics regions (small yellow

hexagonal regions) for the periodic and the fixed boundary conditions. (D) Several parameter combinations of (A, f ) (black dots) to produce the BOM. The linear fitting

gives the relationship as f = −0.04+ 1.80 ∗ A (red line).

linking time TLink can directly decide the pattern of BOM,
especially the pulse number NPulse and the interval time TInterval.
Importantly, the lower and the upper thresholds of the linking
time, which can produce the given BOM, are theoretically
predicted. The system length L can determine the dynamics
of BOM by mainly impacting on the propagation time of an
excitable wave along the loop TLength, the maximum pulse

number NMax
Pulse

, the interval time of BOM TInterval, and the limit
period of SOM TLimit. These four key quantities exhibit linear
relationships with the length of the system. The local dynamical
parameter can primarily influence the excitable dynamics of
local cell, which will make a remarkable impact on the response
dynamics of the 1D paced excitable systems. Consequently, the
dynamical features of BOMand SOMwill be affected obviously as
the local parameter varies. Finally, the pacing parameter regions
of (A, f ), which can effectively produce the new type of BOM,
have been explicitly exposed, and the relationship between A and
f in this significant domain is quantitatively given.

Nowadays, the issue of burst oscillation in nonlinear science is

a hot topic under investigation due to its extensive applications in

a wide variety of natural systems. Different from the well-known

bursts in single dynamical systems with distinct timescales,
which are induced by the complex interactions between local
fast and slow variables, we have proposed a network method to
produce a new mode of burst oscillation in excitable complex

networks. This kind of new BOM can keep the original perfect
spiking dynamics of the local excitable system, and be easily
regulated by manipulating the related key factors. This means
that we can produce the BOM with specific dynamical features
we wanted in real situations, especially the pulse number, the
period of the spike phase, and the interval time, which are
the main characteristic determinants of burst oscillation. It
overcomes the difficulty that the mode of burst oscillation in a
usual single dynamical system is hard to regulate and may have
useful applications in practical systems in biology, chemistry,
and physics. Our research extends the diversity of bursting types
and provides more ways to bursting dynamics. We hope our
contribution can shed light on a deeper understanding of bursts
in nature and will have a useful impact in related fields.
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