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Abstract

The magnitude of connectedness among management units (e.g., flocks and herds) gives a

reliable estimate of genetic evaluation across these units. Traditionally, pedigree-based

methods have been used to evaluate the genetic connectedness in China. However, these

methods have not been able to yield a substantial outcome due to the lack of accuracy and

integrity of pedigree data. Therefore, it is necessary to ascertain genetic connectedness

using genomic information (i.e., genome-based genetic connectedness). Moreover, the

effects of various levels of genome-based genetic connectedness on the accuracy of geno-

mic prediction still remain poorly understood. A simulation study was performed to evaluate

the genome-based genetic connectedness across herds by applying prediction error vari-

ance of difference (PEVD), coefficient of determination (CD) and prediction error correlation

(r). Genomic estimated breeding values (GEBV) were predicted using a GBLUP model from

a single and joint reference population. Overall, a continued increase in CD and r with a cor-

responding decrease in PEVD was observed as the number of common sires varies from 0

to 19 regardless of heritability levels, indicating increasing genetic connectedness between

herds. Higher heritability tends to obtain stronger genetic connectedness. Compared to ped-

igree information, genomic relatedness inferred from genomic information increased the

estimates of genetic connectedness across herds. Genomic prediction using the joint versus

single reference population increased the accuracy of genomic prediction by 25% and lower

heritability benefited more. Moreover, the largest benefits were observed as the number of

common sires equals 0, and the gain of accuracy decreased as the number of common

sires increased. We confirmed that genome-based genetic connectedness enhanced the

estimates of genetic connectedness across management units. Additionally, using the com-

bined reference population substantially increased accuracy of genomic prediction. How-

ever, care should be taken when combining reference data for closely related populations,

which may give less reliable prediction results.
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Introduction

The reliability of genetic evaluations across management units (e.g., flocks and herds) depends

on the magnitude of connectedness among these units. Comparisons of estimated breeding

values (EBVs) tend to be biased when poor connectedness exists across units[1]. The lower the

connectedness across units, the larger the bias and thus, decreasing the accuracy of compari-

son of EBVs across units. It was reported that few highly selected sires from dairy cattle popu-

lations generally have strong genetic links owing to the wide use of artificial insemination (AI)

[2]. However, it is not the case in sheep, beef cattle or pig populations where AI is less used,

leading to poor or no genetic connectedness across management units. Therefore, it is neces-

sary to estimate connectedness among management in these species units before conducting

genetic evaluation across these units.

Traditionally, genetic connectedness can be calculated through pedigree-based method [1–

4]. However, the pedigree information used in China cannot guarantee its integrity and accu-

racy, which in turn may lead to lower or unreasonable estimates of genetic connectedness

across pig nucleus farms in China[3, 5, 6]. The lack of extensive and reliable pedigree informa-

tion is a general problem in developing countries[7], particularly in China, where the source of

the pigs are extremely complex (e.g., introduced pigs from Denmark, the United States, Can-

ada and France). Therefore, actual genetic connectedness among Chinese pig farms might not

be totally reflected by pedigree information due to the inconsistence pedigree recording system

between China and the foreign countries [2]. Moreover, Yu et al. [8] confirmed that genomic

relatedness inferred from genomic information (i.e., single nucleotide polymorphisms, SNPs)

increased the estimates of genetic connectedness across different management units, com-

pared with pedigree information. Therefore, with regards to the above opinions, it is possible

to ascertain genetic connectedness through genomic information, and this can be perceived as

a plausible solution to get more accurate estimates of genetic connectedness across pig farms

in China, as well as enhance the genetic improvement of Chinese pigs.

Recently, connectedness statistics have been used in genomic selection[9] for the sake of

optimizing the design of reference population[10, 11]. However, it is important to investigate

the effect of enhanced genetic connectedness estimated by genomic relatedness on the accu-

racy of genomic prediction, as noted by Yu et al.[8].

In this study, we simulated two populations which were applied to mimic existing China

pig populations with the aim to measure genetic connectedness across management units (i.e.,

populations) by using genomic information and also investigate the effect of various levels of

genetic connectedness across herds on the accuracy of genomic prediction.

Materials and methods

Simulation

A simulation scheme presented by E.C. Akanno[12] was used to mimic pig breeding programs

in developing countries, which was adopted in our study to mimic the situation in China. The

software QMSim[13] was used to simulate the genomic data and the whole simulation process

was repeated nine times. QMSim software was designed to simulate a broad range of genetic

architectures and population structures in livestock. Large-scale genotyping datasets and mul-

tiple livestock pedigrees can be reliably simulated. Simulation of populations was carried out

in two steps: 1) to create historical population for establishing mutation-drift equilibrium, and

2) to simulate recent population, which can be very complex. A wide range of parameters (e.g.,

number of chromosomes, QTL and markers, crossover interference and location of QTL and
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markers) are available in order to simulate appropriate genome. This simulator is efficient in

time and memory[13].

Population structure. The populations were generated in three steps. In the first step,

1000 generations with a gradual decrease in population size from 5000 to 1050 were simulated,

and then the population size was further decreased from 1050 to 200 in the following 1000 gen-

erations for the purpose of creating initial linkage disequilibrium (LD) and establishing muta-

tion-drift equilibrium in historical population (HP).

In the second step, an expanded population (EP) was simulated by randomly choosing the

100 founder males and 100 founder females from the last generation of HP. Here, in order to

expand the population, six generations was simulated assuming 10 offspring per dam under

random mating.

In the third step, three recent populations (RP) (i.e., Herd1, Herd2 and Herd3) were sim-

ulated, and each of them with the population size of 20 founder males and 400 founder

females from the last generation of EP. The size defined above represented the median

group size for pig nucleus farms in China. The Herd1 population was composed of the top

20 males and top 400 females on the basis of their own phenotypic values from the EP. In

order to make Herd1 have no connection with Herd2, Herd2 was simulated by selecting

the last 20 males and the last 400 females from the EP. It is well recognized that genetic con-

nectedness among China pig herds was generally established through using of common

sires (i.e., sires with progeny in multiple herds or sires born in one herd with progeny in

another herd) or through transferring of seedstock from one herd to another[3]. Therefore,

to mimick the genetic connectedness created by common sires, 400 founder females of

Herd3 were all from the first generation of Herd2, while the 20 founder males of Herd3

came from Herd1 and Herd2. It is assumed that the number of males defined as common

sires from the founder males of Herd1 is n (0� n� 19), then the remaining males from

Herd2 is 20—n. Increasing n increased the genetic connectedness between Herd1 and

Herd3. Moreover, the RP parameters used in this study mimicked more closely to a real

Chinese pig production system with selection for high values of EBV and culling for low val-

ues of EBV with a replacement rate of 100% for sires and 40% for dams. Best linear unbiased

prediction (BLUP) method was used to estimate the breeding value by using the Hender-

son’s mixed model theory[14] for an animal model. In this study, three traits corresponding

number born alive, average daily gain and backfat were mimicked, whose heritability and

phenotypic variance were obtained from a previous study carried out by Akanno E et al.
[15]. Considering the computing time and memory requirements, only two generations of

each RP were simulated. Herd1 and Herd3 both had 2020 individuals, which were made up

of 420 founders and 800 progenies each from the first and second generation. Details of the

parameters used to generate genomic data are given in Table 1, while the simulation steps

are described in Fig 1.

Genome. The genome parameters were consistent with a previous study conducted by

[16]. In this study, in order to create more realistic pig genome size, each chromosome was

simulated to acquire an average length of 100 cM[17]. The marker density represented approx-

imately 60 K SNP chip currently available[18]. The parameters shown in Table 1 were used to

simulate the genome.

Genetic connectedness criteria

We used prediction error variance (PEV) of differences (PEVD), generalized coefficient of

determination (CD) and prediction error correlation (r) defined below to investigate genetic

connectedness between Herd1 and Herd3. Here, the PEV were obtained from the Henderson’s
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mixed model equation (MME) [14] and the PEV of ith individual is given by

PEVi ¼ Dii
22

s2

ε

Where Dii
22 is the ith diagonal element of D22 coefficient matrix which is defined as the inverse

of the MME coefficient matrix (D) corresponding to genetic values. s2
ε is the residual variance.

A detailed description of the genetic connectedness criteria was provided by Yu et al [8].

PEVD, the average PEV of all pairwise EBV differences between the individuals across

management units[2], which is calculated as

PEVDðûi� ûjÞ ¼ PEVðûiÞ þ PEVðûjÞ � 2PECðûi;ûjÞ ¼ ðD
ii
22
þDjj

22
� 2Dij

22
Þs2

ε

Where ûi and ûj represent genetic value for individual i and individual j, respectively. PECij

Table 1. Parameters of the simulation process.

Population structure Parameters

Step1: Historical population (HP)

Number of generations (size)–phase 1 1000 (1050)

Number of generations (size)–phase 2 1000 (200)

Step2: Expanded population (EP)

Number of males from HP 100

Number of females from HP 100

Number of generations 6

Number of offspring per dam 10

Step3: Recent populations (RP)

Number of males from EP 20

Number of females from EP 400

Number of offspring per dam 2

Ratio of male 0.5

Number of generations 2

Replacement ratio for males 100%

Replacement ratio for females 40%

Selection /culling EBV

Breeding value estimation method BLUP

Traits

Number born alive h2 = 0.08, s2
p = 7.73

Average daily gain, g/d h2 = 0.28, s2
p = 10361.20

Backfat, mm h2 = 0.63, s2
p = 20.88

Genome

Number of chromosomes 18

Genome length per chromosome 100 cM

Number of markers per chromosome 3300

Number of QTL per chromosome 25

Minor allele frequency (MAF) � 0.05

Mutation rate of marker locus 2.5 × 10-3

Mutation rate of QTL locus 2.5 × 10-5

EBV: estimated breeding value; BLUP: best linear unbiased prediction; h2: heritability; s2
p : phenotypic variance; QTL:

quantitative trait loci.

https://doi.org/10.1371/journal.pone.0201400.t001
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indicates the prediction error covariance (PEC) defined by the off-diagonal element of the

PEV matrix. The PEVD is used as a criterion to measure the genetic connectedness because

poor connectedness among individuals will have higher prediction error than strong connect-

edness. In this study, a scaled PEVD was used for further analysis based on Kuehn’s suggestion

[19]. Smaller PEVD indicated stronger connectedness.

CD, generalized coefficient of determination[20], is calculated as follows

CDij ¼ 1 � λ
Dii

22
þDjj

22
� 2Dij

22

RiiþRjj� 2Rij

Fig 1. A sketch map of simulation process. Note: Ne: effective population size; LD: linkage disequilibrium.

https://doi.org/10.1371/journal.pone.0201400.g001
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Where λ, Dii
22, Djj

22, Dij
22 are the same values defined above, and R is a relationship matrix which

measures the relationship between individuals (defined below). This statistic ranging from 0 to

1 with larger values represented stronger connectedness.

And the r between genetic values of individuals from different management units is derived

as[4].

rij ¼
PEC ðûi;ûjÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PEV ðûiÞ PEV ðûjÞ

q

Similar to CD, the statistic r also ranged from 0 to 1 and larger r indicated stronger connected-

ness across management groups.

Relationship matrix

Connectedness is determined in BLUP framework using the genetic relationship matrix. The

information about the covariance structures among individuals is required to estimate the

relatedness of the three genetic connectedness criteria stated above[8]. In this study, four rela-

tionship matrices (R) measuring the relationship among individuals are the same as previous

study provided by Yu et al [8] and are defined below.

Firstly, R = APED, the usual numerator relationship matrix. When genetic evaluation is

under an animal model, connectedness occurs due to APED[2]. The APED is directly calculated

from the known pedigree and denotes the probability of inheritance of alleles from a common

ancestor indicating that they are identical by descent (IBD). The off-diagonal elements are

twice coefficients of kinship and are equivalent to the numerators of Wright’s correlation coef-

ficients[21].

Secondly, R = GBASE, basic genomic relationship matrix GBASE was constructed according

to the method (method 1) described by VanRaden[22], i.e., GBASE ¼ MM
0

X
2pið1 � piÞ

, where

elements in column i of M are 0-2pi, 1-2pi and 2-2pi for genotypes A1A1, A1A2 and A2A2,

respectively, and pi is the allele frequency of A2 at locus i, calculated from the available marker

data, as negative values generated in this scenario, R = G0.5 (i.e., the third matrix), which sup-

poses the MAF in the base population is unknown and 0.5 is used for all pi. The G0.5 con-

structed in this way does not create any negative values for simulated data.

Fourthly, when comparing marker-based with pedigree-based relationship matrices,

scaling of genomic relationship matrices is needed for interpretation of genetic connect-

edness criteria. A reasonable rescaling may be achieved by using genomic elements that

ranged between 0 and 2, which are the minimum and maximum values of APED, respec-

tively. Therefore, to render GBASE on the same scale as APED, a scaled GBASE matrix (GS)

was created and the scaled genomic relationship between ith and jth individual was given

by

Gsij ¼
ðGsmax� GsminÞðGij� GminÞ

Gmax� Gmin
þGsmin

Where Gsij is a scaled element of the GBASE and Gij is a typical element of GBASE. Gsmax =

2 and Gsmin = 0 are the maximum and minimum values elements that the scaled matrix is

allowed to take, respectively, while Gmax and Gmin are the maximum and minimum ele-

ment of the GBASE. In this case, GS does not create any negative values.

Finally, in order to simulate a more realistic scenario where not all the individuals were gen-

otyped in the population, the H matrix (i.e., relationship matrix with pedigree and genomic
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information) was given by [23–25]

Η ¼
Gω GωA� 1

11
A12

AT
12

A� 1

11
Gω A22 þ AT

12
A� 1

11
ðGω� A11ÞA

� 1

11
A12

" #

where the A11, A22 and A12 are submatrices of A matrix representing relationships among gen-

etyped, among non-genotyped, and between genotyped and non-genotyped individuals

respectively, and the superscript T represents the transpose of a matrix. The Gω matrix indi-

cates relationship of genotyped individuals and defined as

Gω¼ ð1 � ωÞGþ ωA11

where the ω represents the fraction of the genetic variance not captured by markers, and

G = GBASE, G0.5 and GS defined above. In this study, we assumed that individuals at generation

0–1 (N = 2440) as non-genotyped individuals while individuals from generation 2 (N = 1600)

were genotyped. This simulated a real scenario, where individuals from more recent genera-

tion were likely to be genotyped with a relatively small sample size compared with individuals

from earlier generations.

Population structures of the simulated populations

Principle component analysis (PCA) was used to investigate the population structure of Herd1

and Herd3. PCA was performed using PLINK software[26] and the PC plots were drawn by

the ggplot2 package[27].

Prediction of genomic breeding values

In order to investigate the impact of various genetic connectedness inferred from genomic

information on the accuracy of genomic prediction, the genomic breeding values were pre-

dicted using GBLUP, with different genomic matrices (GBASE, G0.5 and GS) defined above. In

addition, we also examined the predictive ability of other two relationship matrices (i.e., APED

and H) to better understanding the possible effects of genomic connectedness on genomic pre-

diction. The model was the same as the GBLUP model shown below but genomic relationship

matrices were replaced by APED and H when predicting the (G) EBV.

The basic GBLUP model [22, 28] was defined as:

y ¼ 1μþ Ζgþ ε

Where y is simulation phenotypes, μ is the population mean, g is the vector of breeding values,

ε is the vector of residuals, Z is an appropriate design matrix. Assuming that g � Nð0;Gs2
gÞ

and ε � Nð0; Is2
εÞ, where G is the genomic relationship matrix. s2

g is the additive genetic vari-

ance, I is the identity matrix and s2
ε is the residual variance.

Reference and validation data

The Herd1 data were divided into reference data and validation data by generation. The refer-

ence population was made up of a total of 1220 individuals comprising of 420 founders and

800 progenies from the first generation. The validation population comprised of 800 individu-

als from the second generation. To avoid inflation of the accuracy of genomic prediction, 1220

individuals from the founders and the first generation of Herd3 were included in a joint refer-

ence population. The accuracy of genomic prediction was estimated as the correlation between

predicted genomic estimated breeding values (GEBV) and the true breeding values of the ani-

mals in the validation set.

The effect of genome-based genetic connectedness on the accuracy of genomic prediction
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Results

Genetic connectedness criteria

Genetic connectedness criteria between Herd1 and Herd3 for varied number of common sires

with heritability of 0.08, 0.28 and 0.63 were presented in Fig 2, Fig 3 and Fig 4, respectively.

Similar results among PEVD, CD and rij were observed.

Firstly, the increasing number of common sires (ranged from 0 to 19) increased the estimates

of CD and rij but decreased PEVD in each heritability level when APED was used, indicating an

increasing level of connectedness across herds. However, owing to the very high existing values

of CD (CD for APED) with almost no change at the heritability of 0.63 (0.709–0.71) among com-

mon sires, hence, any further increase in CD might be difficult. A similar trend was also

observed for GBASE. As the number of common sires increased, the CD and rij increased with a

decrease in PEVD indicating stronger genetic links between herds. Note that GBASE rij criteria

behave erratically with negative values, making them difficult to interpret. Thus GS instead of

GBASE was used in comparison with APED. As shown in Fig 2, Fig 3, Fig 4 and Supporting Infor-

mation (S1 Table), for GS, three criteria occasionally fluctuated with increasing number of com-

mon sires, particularly for lower heritability levels. However, the general trend for the level of

connectedness increased with the increasing number of common sires.

Secondly, as heritability increased, the levels of connectedness all increased regardless of

genetic connectedness criteria, except for rij in APED in which the estimates for different herita-

bility levels appeared similar (ranged from 0.001 to 0.005).

Finally, the estimates of GBASE, G0.5, and GS for different heritability levels were all higher

than that of APED (as seen in S1 Table). As expected, the rij estimates were all 0 in relation to

Fig 2. The estimates of PEVD, CD and rij at heritability = 0.08. Left column: APED. Right column: GBASE. For rij, the

GBASE was replaced by GS.

https://doi.org/10.1371/journal.pone.0201400.g002
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APED when number of common sires equal to 0 regardless of heritability levels. This is because

PEC among completely disconnected datasets all equals to 0.

We also simulated a more realistic scenario that only individuals in earlier generations were

genotyped in the simulated dataset. In this case, the genomic matrices (i.e., GBASE, G0.5, and

GS) were combined with the APED creating H matrices. As shown in Supporting Information

(S3 Table), estimates obtained from H matrix lie somewhere between the estimates observed

when using the APED, GBASE, G0.5, and GS. This is reasonable due to the fact that the H matrix

was constructed based on a combination of APED and the genomic matrices (i.e., GBASE, G0.5,

and GS). Very little differences in the estimates were observed when APED was combined with

GBASE, G0.5 and GS and thus only results for GBASE were shown (S3 Table).

PCA of the simulated populations

For the PCA, the first two principal components did not clearly separated all individuals from

Herd1 and Herd3 into their respective groups when the number of common sires equal to 0

regardless of heritability levels (Fig 5A, Fig 5D and Fig 5G). As the number of common sires

increased, all individuals tend to cluster together as expected, especially for number of com-

mon sires equal to 19 (Fig 5C, Fig 5F and Fig 5I).

Genomic prediction

Accuracy of genomic prediction using Herd1 reference population or joint reference popula-

tions (Herd1 + Herd3) for specified scenarios was presented in Table 2. Compared to genomic

Fig 3. The estimates of PEVD, CD and rij at heritability = 0.28. Left column: APED. Right column: GBASE. For rij, the

GBASE was replaced by GS.

https://doi.org/10.1371/journal.pone.0201400.g003
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prediction using Herd1 reference population alone, the accuracy of genomic prediction using

joint reference population increased by 25% averaged over common sires, heritability levels and

genomic relationship matrices (the detailed results are provided as Supporting Information (S2

Table)). Lower heritability benefited more. Moreover, it is worthy to note that the largest bene-

fits were observed when the number of common sires equal to 0, and the gain of accuracy

becomes smaller as the number of common sires increased. Additionally, the accuracy of geno-

mic prediction using GBASE was consistent with G0.5 and GS in each heritability level regardless

of the scenarios. Furthermore, for APED and GBASE, as the number of common sires increased,

the accuracy of prediction generally decreased with increasing the CD and rij and decreasing

PEVD regardless of heritability levels (Fig 6, the detailed results are provided as Supporting

Information (S2 Table)). The highest accuracy was observed when the number of common sires

equal to 0, as reflected by the lowest CD and rij values and highest PEVD estimates.

In order to gain a better understanding of the possible effects of genomic connectedness on

genomic prediction, the accuracies of the genomic predictions based on APED and H matrix

were investigated as a comparison. Similar to the genomic matrices, APED and H matrix both

gained (increased accuracy of genomic prediction) from using combined reference population

(increased by on average 9% and 14%, respectively), with the largest gain for number of com-

mon sires equal to 0 and the gain of accuracy decreased as the number of common sires

increased. In addition, relationship matrix with marker information (GBASE, G0.5, GS and H

matrix) provided higher accuracies of predictions than APED regardless of heritability levels

and scenarios (i.e., varied number of common sires) (detailed information see S2 Table, S4

Table).

Fig 4. The estimates of PEVD, CD and rij at heritability = 0.63. Left column: APED. Right column: GBASE. For rij, the

GBASE was replaced by GS.

https://doi.org/10.1371/journal.pone.0201400.g004
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Discussion

The EBVs of individuals across management units (i.e., contemporary groups or herds) are

comparable due to the use of BLUP method in genetic evaluation. However, the accuracy of

these comparisons depends on the extent of connectedness among these units. The lack of the

integrity and accuracy of the pedigree in China pig farms may lead to several practical prob-

lems. The use of pedigree-base methods (result unpublished) revealed no genetic links among

pig nucleus farms such as BJLM, AHCF and FQYC in China. But in reality, there are possibili-

ties of genetic connectedness existing among them due to common sire and also, since they all

purchased seedstock from the same company. In such case, advancement of molecular bio-

technology can provide novel insights to ascertain genetic connectedness at the genomic level.

Our results confirmed that genomic relatedness increased the estimates of genetic connected-

ness across herds compared with its counterpart (i.e., pedigree relationship). Moreover, when

reference datasets were combined, the accuracy of genomic predictions, averaged over each

common sire scenarios, heritability levels and genomic relationship matrices, increased by

25% compared to genomic prediction using Herd1 reference alone. The largest benefits were

observed as the number of common sires equal to 0 and the gain of accuracy of genomic pre-

diction was smaller as the number of common sire increased.

The effect of genomic information on genetic connectedness

Pedigree-based genetic connectedness across management units has caused a great concern in

the field of animal breeding. However, connectedness ascertained by genomic information

was still remains poorly understood. The result from our study confirmed that genomic

Fig 5. Principal component analysis plots for the simulated populations. PC1: Principal component 1. PC2:

Principal component 2. Red: Herd1. Blue:Herd3.

https://doi.org/10.1371/journal.pone.0201400.g005
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Table 2. Accuracies of (G)EBV in the validation population when using the Herd1 or the joint reference population.

No. of common sires1 Heritability Relationship2 matrix Accuracy of prediction5

Herd1 reference3 Joint reference4 Increase

0

0.08

GBASE 0.03 0.47 0.44

G0.5 0.03 0.47 0.44

GS 0.03 0.47 0.44

APED 0 0.17 0.17

0.28

GBASE 0.20 0.64 0.44

G0.5 0.20 0.64 0.44

GS 0.20 0.64 0.44

APED 0 0.26 0.26

0.63

GBASE 0.55 0.73 0.18

G0.5 0.55 0.73 0.18

GS 0.55 0.72 0.17

APED 0.31 0.36 0.05

1

0.08

GBASE 0.03 0.34 0.31

G0.5 0.03 0.35 0.32

GS 0.03 0.33 0.30

APED 0 0.10 0.10

0.28

GBASE 0.20 0.55 0.35

G0.5 0.20 0.56 0.36

GS 0.20 0.55 0.35

APED 0 0.24 0.24

0.63

GBASE 0.55 0.69 0.14

G0.5 0.55 0.70 0.15

GS 0.55 0.69 0.14

APED 0.31 0.36 0.05

19

0.08

GBASE 0.03 0.28 0.25

G0.5 0.03 0.29 0.26

GS 0.03 0.28 0.25

APED 0 0.04 0.04

0.28

GBASE 0.20 0.54 0.34

G0.5 0.20 0.54 0.35

GS 0.20 0.53 0.33

APED 0 0.18 0.18

0.63

GBASE 0.55 0.71 0.16

G0.5 0.55 0.71 0.16

(Continued)
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information enhance the estimates of genetic connectedness across the herds using PEVD, CD

and r criteria regardless of heritability levels, and this is consistent with previous study of Yu

et al. [8]. In 2017, Yu et al. proved that genomic relatedness strengthened genetic connected-

ness among management units by using the same genetic connectedness criteria. Given these

data, the reason for the improved genetic connectedness might be due to the genomic related-

ness captured Mendelian sampling which does not exist in pedigree relationship[29].

Genetic connectedness criteria

In order to provide a better understanding of the measurements of genetic connectedness,

three known criteria (i.e., PEVD, CD and r) were used in this study. Overall, genetic

Table 2. (Continued)

No. of common sires1 Heritability Relationship2 matrix Accuracy of prediction5

Herd1 reference3 Joint reference4 Increase

GS 0.55 0.70 0.15

APED 0.31 0.36 0.05

1Common sires = 0 (completely disconnected scenario between Herd1 and Herd3); common sires = 1 (connected scenario); common sires = 19 (strongly connected

scenario). Increasing common sires increased the level of connectedness between herds.
2APED = the usual numerator relationship matrix; GBASE = standard genomic relationship matrix; G0.5 = genomic relationship matrix assuming 0.5 minor allele

frequency; GS = a scaled genomic relationship matrix.
3Herd1 reference: reference population only consisting of individuals from Herd1.
4Joint reference: reference population consisting of individuals from both Herd1 and Herd3.
5Standard errors for accuracy of prediction ranging from approximately 0.023 to 0.121

https://doi.org/10.1371/journal.pone.0201400.t002

Fig 6. The relationship between genetic connectedness criteria and accuracy of prediction. For rij, the GBASE was

replaced by GS and the estimates of APED did not clearly distinguish the rij values at different heritability levels due to

relatively small values (ranged from 0 to 0.005).

https://doi.org/10.1371/journal.pone.0201400.g006
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connectedness calculated by PEVD and r criteria increased as the growth of common sires

increases, which was in accordance with previous study[8]. However, the continued growth in

CD relative to the increasing number of common sires differed from those reported by Yu et al

[8]. Laloë D noted that CD is dependent on PEV and genetic variability[30]. The possible rea-

son for the differences observed in the former and latter results might be due to the genetic

variability in two generations simulated in the latter study which remained constant through-

out the period of the study. In this case, a decrease in PEV corresponds to an increase in CD,

which was confirmed in the present study. On the contrary, we speculated that the genetic var-

iability tend to change because relatively intensive selection might have occurred in the previ-

ous studies.

In addition to PEVD, CD, and r, Mathur et al[31] proposed a connectedness statistics (the

connectedness rating (CR) ranged from 0 to 1) to measure connectedness as the correlation

between the estimates of the herd effects. We recalculate CR using three relationship matrices

defined above, the CR statistics behave erratically in all scenarios (e.g., covariance of herd

effects appeared negative values, leading negative values of CR) (result unpublished), making

them difficult to interpret. The reason could be the negative values exist in the G matrix. How

to apply this method in calculating genomic connectedness needs to be investigated in the

future.

Genomic prediction

The construction of a large reference population for genomic prediction is difficult for numer-

ically small breeds and traits that are difficult to measure. Particularly in China, the reference

population size for pigs is normally smaller than other livestock species and this strongly inhib-

its the enhancement of genomic prediction accuracy for pigs. So far, the most straightforward

method to increase the reliability is to combine reference data from different populations of

the same breeds or different breeds, or by using robust methods (e.g., single step method).

In this study, Herd1 and Herd3 were both from the same historical population. In such

cases, they were analogous to simulate two subpopulations (e.g., two lines in pig industry)

from the whole population. Thus, we tended to combine reference data from the same popula-

tions (e.g., the same breed). By combining reference data, the accuracy of genomic prediction

increased by 25% compared to genomic prediction using Herd1 reference data alone (S2

Table). This accuracy was determined by estimating the average of each common sire scenar-

ios, such as average of different heritability levels and three genomic relationship matrices. The

increase in accuracy of genomic prediction in our study was in accordance with earlier reports,

for instance, Yorkshire populations in China[32], Holstein Friesian in North American[33,

34], in EuroGenomics [35] and in China Holstein Friesian population[36].

The accuracy of predictions based on APED matrix were lower than that of relationship

matrices with marker information (i.e., GBASE, G0.5, GS and H matrix), which was in agree-

ment with previous studies [37]. Moreover, the prediction accuracy of H matrix was generally

lower than that of genomic matrices (i.e., GBASE, G0.5, and GS) across all scenarios and herita-

bility levels, this is largely due to the fact that only a subset of individuals (N = 1600) were

assumed to be genotyped, whereas, all individuals (N = 4040) from three generations assumed

to be genotyped were used to estimate GEBV based on three genomic matrices. Based on the

results of accuracy of H matrix, it has become increasingly apparent that single step method

[23, 24] performed better than traditional BLUP method on APED even when the genotyped

sample size was relatively small. This is especially important in the current China pig popula-

tions, where genomic selection is still in an early stage with limited genotyped individuals. Sev-

eral earlier studies have shown that the improved genomic prediction due to combined
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reference population is mainly about the increased relatedness between the reference and vali-

dation populations [35]. Interestingly, as shown in S2 Table, combining two completely dis-

connected herds (i.e., number of common sires = 0) achieved the highest accuracy. The

reasons may be attributed to the relationship between individuals from Herd1 and Herd3

which exist through genomic information if traced back far enough[38], this was confirmed by

PCA plots where individuals from Herd1 and Herd3 were not clearly separated by the first two

principal components when the number of common sires equal to 0 (Fig 5A, Fig 5D and Fig

5G) Therefore, the simulated data in our study is more similar to the scenario in two separate

lines in one farm rather than two different herds. We found that increasing number of com-

mon sires decreased the gain of accuracies for joint reference population. It is speculated that

the reason is largely due to the increasing genetic links in relation to number of common sires

within reference population. Previous simulation study[39] showed that average reliabilities

increased when average relationship within the reference population decreased. Moreover,

Herd1 and Herd3 both from the same historical population (Ne = 200) and Ne is expected to

remain constant due to their limited selection (generation = 2). In such cases, increased genetic

connectedness within population may give less reliable prediction ability.

An extreme case of strong connectedness scenario was simulated to investigate its effect on

the accuracy of genomic prediction. In this case, as the number of common sires across herds

equal to 19 (the founder sires = 20), the individuals in generation 1 of Herd1 and Herd3 were

all nearly half-sibs. Additionally, a value of 0.790 inferred from APED and 0.800 estimated by

GBASE both by using CD (in the range of 0 to 1) at heritability of 0.68 confirmed the strong

genetic links across herds. It is pleasing to infer that, the accuracies for this extreme case in

relation to strong genetic connectedness within reference data were still higher than that of

using Herd1 reference data only. Consequently, the results indicated that the benefits of using

the combined reference data may to some extent decrease by increasing the level of genetic

connectedness within reference data. However, this is may not counteract the overall benefits

of combining datasets.

Future direction

In this study, we focused on two simulated subpopulations (e.g., two lines in pig industry) with

limited generations from the same historical population. Future research should include multi-

ple populations, such as different selection lines or breeds. In addition, we have investigated

the relationship between genetic connectedness criteria (i.e., PEVD, CD and r) and accuracy of

prediction. However, the optimum statistical method (i.e., PEVD, CD and r) to measure

genetic connectedness and enhance the predictive ability still remained poorly understood.

Also, the level of genetic connectedness should be brought to a minimum level to ensure accu-

rately across-herd genomic evaluation. Finally, the true genetic connectedness between popu-

lations is still unclear, which may preclude us from identifying which connectedness is the

best.

Conclusions

This study confirmed that genomic relatedness could improve the estimates of genetic con-

nectedness across herds compared with the use of pedigree relationships. We contend that our

work contributes to better understand genetic connectedness that may have a positive impact

on the genomic evaluation of pig in China. Moreover, the results demonstrated the importance

of the size of reference populations for genomic prediction. However, care should be taken in

the design of the reference population as combined closed related populations may give less

reliable result of accuracy.
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