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Abstract

Background: In temperate regions, influenza epidemics occur annually with the highest activity occurring during the winter
months. While seasonal dynamics of the influenza virus, such as time of onset and circulating strains, are well documented
by the Centers for Disease Control and Prevention Influenza Surveillance System, an accurate prediction of timing,
magnitude, and composition of circulating strains of seasonal influenza remains elusive. To facilitate public health
preparedness for seasonal influenza and to obtain better insights into the spatiotemporal behavior of emerging strains, it is
important to develop measurable characteristics of seasonal oscillation and to quantify the relationships between those
parameters on a spatial scale. The objectives of our research were to examine the seasonality of influenza on a national and
state level as well as the relationship between peak timing and intensity of influenza in the United States older adult
population.

Methodology/Principal Findings: A total of 248,889 hospitalization records were extracted from the Centers for Medicare
and Medicaid Services for the influenza seasons 1991–2004. Harmonic regression models were used to quantify the peak
timing and absolute intensity for each of the 48 contiguous states and Washington, DC. We found that individual influenza
seasons showed spatial synchrony with consistent late or early timing occurring across all 48 states during each influenza
season in comparison to the overall average. On a national level, seasons that had an earlier peak also had higher rates of
influenza (rs = 20.5). We demonstrated a spatial trend in peak timing of influenza; western states such as Nevada, Utah, and
California peaked earlier and New England States such as Rhode Island, Maine, and New Hampshire peaked later.

Conclusions/Significance: Our findings suggest that a systematic description of influenza seasonal patterns is a valuable
tool for disease surveillance and can facilitate strategies for prevention of severe disease in the vulnerable, older adult
population.
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Introduction

In a temperate region such as the United States, influenza

epidemics occur every year with the highest activity occurring

during the winter months [1–3]. Regardless of its regularity, an

accurate prediction of timing, magnitude, and composition of

circulating strains of seasonal influenza remains elusive [4].

Influenza viruses can cause disease among any age group,

however, rates of serious illness and death are highest among

older adults (those aged 65 years and older) [5].While influenza-

associated morbidity has declined among most age groups over the

past 3 decades, hospitalizations have increased during the same

time period for the older adult population [6–8]. Although

seasonal dynamics of the influenza virus, such as time of onset and

circulating strains, are well documented by the Centers for Disease

Control and Prevention Influenza Surveillance System [9], there

has been difficulty establishing predictive models for seasonal

influenza in the susceptible older adult population. It is vital to

quantify seasonal pattern of influenza, to determine reliable

estimates for characterization of seasonal influenza, and to

establish the relationships between those parameters for public

health preparedness for influenza epidemics and pandemics

[10–11]. The utilization of large databases of clinical records

provides a unique opportunity to characterize seasonal influenza

on a national scale.

The dynamics of influenza outbreaks can be characterized by

periodicity, severity, and a number of other parameters useful to

describing the onset, duration, and intensity of outbreaks. Peak

timing is one of the essential characteristics of outbreak dynamics

and it reflects the time when an outbreak reaches its maximum

intensity. Although it does not directly indicate the onset of disease

in a population, it reflects the primary characteristic of outbreak

dynamics, and therefore contains important epidemiological

information. Considering the route of human-to-human transmis-

sion of influenza, the change in peak timing in adjacent

geographical areas can manifest in a form of traveling waves, a

special case of spatial disease dynamics. The explicit geographical

transition can be distorted by less-defined structures of mass

migration. Human movement (such as by air travel) and

population size have been shown to impact the timing of influenza
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epidemics across the United States [12–14]. Synchrony is another

phenomenon associated with the peak timing of influenza. Spatial

synchronization dictates that geographical regions which have

similar patterns of annual timing of disease incidence are likely to

show similar patterns in influenza movement across seasons, which

is in part mediated by circulating strains [15–17].

Another characteristic, intensity, or the maximum seasonal

incidence of influenza, is an indicator of disease severity.

Seasonally, influenza varies significantly in its magnitude due to

the strain virulence and host susceptibility. A severity index has

been used to measure excess mortality during epidemic and non-

epidemic influenza season. This severity index utilized cyclical

regression to measure the intensity of baseline influenza. The

researchers examining excess mortality also observed variability in

intensity in relation to changes in circulating strains of influenza

[18], however other factors may also play a role in viral evolution

and influenza intensity [4,19–20].

While each parameter can contribute a significant amount of

information about individual influenza seasons, it is the unique

combination of these parameters that can improve predictability of

seasonal influenza epidemics. Previous research has found that

seasons with high intensity or disease burden are often followed by

seasons with lower intensity [21]. This cyclical pattern has been

shown to be dictated, in part, to the week at which influenza is at

its highest [22]. Such a pattern can be seen in the epidemic 2003/

2004 influenza season where an early start to the influenza season

was associated with above average morbidity and mortality [23].

As influenza follows a specific pattern of seasonal variation,

seasonal oscillations can be measured by a variety of techniques

[24–25], including non-linear time series [26]. Widely accepted,

Serfling regression allows direct estimation of regression param-

eters, that can be further used for seasonal characterization [27].

We have developed a method to study seasonality with formal

structures allowing for comparison of parameters such as peak

timing and absolute intensity seasonally, both spatially and

temporally [28–30]. This method has been applied and validated

across multiple infectious diseases with well defined seasonal

patterns [31]. By using this technique, a comprehensive,

systematic, and detailed examination of the seasonal patterns of

influenza can be made with straightforward interpretations,

providing a valuable tool for biosurveillance [30].

Due to the significance of understanding spatiotemporal trends

of influenza in the United States older adult population, our

objectives were as follows: 1) to examine national trends of

seasonality as well as the relationship between peak timing and

intensity of influenza in the US older adult population, and 2) to

assess seasonal variation across individual influenza seasons on a

state-by-state basis and the relationship between peak timing and

intensity of influenza seasons on the state level. To achieve these

objectives we utilized a comprehensive source of hospitalization

data, covering 98% of the United States older adult population

[32].

Methods

Hospitalizations
Data on hospitalization rates for influenza among older adults

were abstracted from Centers for Medicare and Medicaid

Services (CMS) for the years 1991 through 2004. Of the 136.2

million hospitalization records in CMS, 14.3 million (10.5%)

were identified as hospitalizations for pneumonia and influenza,

International Classification of Diseases, Ninth Revision, Clinical

Modification Codes (ICD-9CM) 480–487. Of these, 248,889

influenza records (1.7% of pneumonia and influenza records)

were analyzed. Variables available in the CMS dataset include

age, gender, state of residence, date of admission, date of

discharge, and up to 10 diagnostic fields. Influenza was defined

using ICD-9CM 487 for any of the 10 diagnosis coding slots.

Using the date of admission, we created a set of time series of

weekly counts of influenza-related hospitalizations for each state

and nationwide. To calculate weekly hospitalization rates, we

obtained US population estimates from the US Census 1990 and

2000 and interpolated population estimates for each week of

analysis. Figure 1 illustrates the weekly counts of hospitalizations

and annual population estimates of the older adult population in

the continental US. Yellow, highlighted bars represent the first

and last 3 months of the time series that were removed for the

purpose of seasonality assessment. Influenza hospitalizations for

each state and each week were divided by the interpolated annual

population counts for the older adult population. Thirteen

influenza seasons based on date of admission, defined as July

1st through June 30th of the subsequent calendar year, were

examined for similarity in seasonal characteristics for each of the

48 contiguous states and Washington, DC (subsequently referred

to as 48 states).

Seasonal Characteristics
The seasonal patterns of influenza-related hospitalization

records were analyzed with a harmonic regression model adapted

for a Poisson-distribution outcome [33]. We expanded the utility

of this model by estimating the essential parameters using the d-

method [30]. Specifically, we estimated peak timing, the week at

which disease incidence was highest, and absolute intensity, the

difference between the maximum seasonal incidence and

minimum seasonal incidence [29]. The relevant curve fitted by

the harmonic regression and the curve’s attributes along with

their interpretations are shown in Figure 2. The notations and

equations for estimation can be found in Table 1. The analysis

was performed for the entire period of study (July 1, 1991

through June 30, 2004) and for each influenza season; as well as

for the entire population in 48 states, and for each state

separately.

To obtain the national estimate of peak timing and absolute

intensity we apply the model to the whole length of the time series

(596 weeks) by fitting a unique curve expressed as:

Y (t)~expfb0zb1 cos(2pvt)zb2 sin(2pvt)zeg ð1Þ

where Y(t) is the weekly rate for the continental US. This model

can be expanded to consider a secular trend; in our case the

secular trend was negligible and the relevant terms were omitted.

Next, we estimated peak timing and absolute intensity for each

of the 13 seasons by utilizing Model 2:

Y (t)i~expfb0izb1i cos(2pvt)zb2i sin(2pvt)zeg ð2Þ

where Y(t)i is weekly the rate for the continental US for i-season

(i = 1–13). Number of weeks may vary in each season (52 or 53).

Finally, for each state and each season, influenza epidemics are

fitted to a unique curve expressed as:

Y (t)i,j~expfb0i,jzb1i,j cos(2pvt)zb2i,j sin(2pvt)zeg ð3Þ

where Y(t)i,j is the hospitalization rate at week t within a particular

influenza season i (i = 1–13) for a state j (j = 1–49). In all three

models, bo represents the intercept of the yearly epidemic curve or

a baseline level; b1 and b2 are the respective coefficients of the

Influenza in US Older Adults
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Figure 1. Weekly counts of influenza hospitalizations and population estimates for US older adults for 13 influenza seasons (1991–
2004).
doi:10.1371/journal.pone.0010187.g001

Figure 2. Hypothetical annual harmonic regression curve and its attributes.
doi:10.1371/journal.pone.0010187.g002
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harmonic; and v = 1/M, where M is the length of one cycle (52.25

weeks) [30]. The estimation of peak week and intensity along with

their standard deviations are shown in Table 1. We also calculated

the 95% confidence intervals (CI) for each of the estimates using a

standard constant from a t-distribution of 1.96.

We utilized Spearman correlations to quantify the degree of

association between peak week and absolute intensity. Using

Model 2, we assessed the relationship between peak week and

absolute intensity for individual seasons and Model 3 allowed us to

assess this association on the state level. We also examined

correlations between state centroids and seasonality characteristics.

To demonstrate a spatial pattern in peak timing we compiled

the results of Model 3 as a set of 13 panels (Figure S1). For each

season depicted in this set, the season is listed in the upper right-

hand corner of each panel. Each panel depicts the 48 states on the

y-axis in ascending order of the average peak week of the 13

influenza seasons, represented by black squares (actual values and

their 95% CIs are provided in Table S1). The range of the average

peak weeks across all states is shown by the highlighted orange

box. Orange circles represent the current season’s peak timing by

state and the previous season’s peak timing is shown by small, blue

circles for better comparison of the differences. When all panels

are shown in the proper sequence, e.g. in a chronological order of

seasons, synchronization of peak timing with respect to the average

can be visualized clearly, some seasons coming earlier and some

later than the average.

Mapping was performed on the state level using ESRI’s

ArcMap GIS software (ESRI, Redlands, WA). The average peak

week values highlighted in the 13 panels were categorized

according to a natural breaks classification scheme with six

classes.

All analysis was conducted in SAS, version 9.1 (SAS Institute)

and figures were created using SPSS version 15.0.

Results

National Level
A 13-year weekly time series of influenza hospitalization rate

per 1 million older adults has regular, well pronounced seasonal

curves with the highest incidence of influenza taking place in the

winter months (Figure 1). Across the 13 seasons, it appears as

though the week of the highest incidence is consistently in late

December to early January. The intensity varied substantially:

from 358 cases in the 2002/2003 season to 7,148 cases in the

1999/2000 season at seasonal peaks. The estimates from Model 1

indicate that the average peak week was the 28.6th week or the

3rd week of January (95% CI: 28.44, 28.76) and that the median

absolute intensity was 48.29 cases per 1 million older adults (95%

CI: 45.77, 50.97).

By superimposing a weekly time series of rates for each of the

13-seasons individually, the variability in annual weekly intensity

and peak timing is evident (Figure 3). The intensities of the 1999/

2000 and 2003/2004 seasons were highest. The differences in

peaks become apparent: peak timing ranges from early December

(week 23) during the 2003/2004 influenza season to mid-February

(week 32) during the 1992/1993 influenza season. The national

estimates of the peak week and intensity for each influenza season

as predicted by Model 2 are shown in Table 2. In the 13 observed

seasons the peak was observed within a 10-week interval: from

week 23.7 in 2003/2004 to week 32.6 in 2001/2002. The

predicted intensity exhibited an almost 20-fold increase from 6.3

cases per 1 million older adults in 2002/2003 to 116.1 cases per 1

million older adults in 2003/2004.

Overall, absolute intensity and peak timing had a strong, inverse

relationship (rs = 20.5, p,0.05); the earlier the peak in an

influenza season the more intensely the season is experienced

(Figure 4).

Table 1. Annual harmonic regression curve and its parameters.

Description Notation Expression/Commentary

Variables of the regression model

Time series of disease rates Y(t) Per 1,000,000

Time t

Length of time series N

Length of one cycle M M = 52.25, for a weekly time series

Outcomes of the regression model

Regression parameters for intercept, sin, and cosin components b0 b1 b2

Phase shift - distance of peak from beginning of series expressed in radians y 2arctan{b1/b2}

Amplitude c (b1
2+b2

2)1/2, if b2.0;

2(b1
2+b2

2)1/2, if b2,0.

Standard deviations for the estimates of regression
parameters b1 and b2, and covariance

sb1

sb2

sb1b2

Curve attributes

Predicted seasonal curve S(t)

Peak Timing (expressed in weeks)
Confidence Interval

P M(12y/p)/2
{(b1sb1)2+(b2sb2)222b1b2sb1b2}/(b1

2+b2
2)2

Absolute Intensity
(Confidence Interval)

I exp{b0+c}2exp{b02c}
exp{(b2sb1)2+(b1sb2)2+2b1b2sb1b2}/(b1

2+b2
2)

Seasonal peak - maximum value Smax exp{ b0+c}

Seasonal nadir - minimum value Smin exp{ b02c}

doi:10.1371/journal.pone.0010187.t001
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Figure 3. Superimposed weekly time series of influenza rate for older adults for 13 influenza seasons (1991–2004).
doi:10.1371/journal.pone.0010187.g003

Table 2. National averages for peak week, absolute intensity, and their 95% confidence intervals for 13 seasons.

MODEL 2 MODEL 3 CIRCULATING STRAINS (WHO)

Season Year
Peak Week
(CI)

Intensity
(CI)

Peak Week
(CI) Intensity (CI) rs H3N2 Strain H1N1 Strain B Strain

1 1991–1992 25.76
(25.30, 26.23)

42.51
(32.38, 55.81)

26.38
(25.96, 26.81)

59.47
(45.58, 73.36)

20.46 Beijing/353/89 Singapore/6/86 Panama/45/90

2 1992–1993 33.24
(32.45, 34.05

20.30
(16.03, 25.70)

33.46
(32.93, 34.00)

30.04
(23.03, 37.05)

0.08 Beijing/353/89 Singapore/6/86 Panama/45/90

3 1993–1994 27.05
(26.66, 27.45)

51.97
(38.23, 70.65)

27.31
(26.93, 27.69)

75.15
(56.79, 93.51)

20.36 Beijing/32/92 Singapore/6/86 Panama/45/90

4 1994–1995 32.50
(31.48, 33.53)

13.70
(10.76, 17.45)

31.99
(31.13, 32.84)

18.04
(14.12, 21.97)

0.36 Shangdong/9/93 Singapore/6/86 Panama/45/90

5 1995–1996 28.16
(27.22, 29.10)

15.57
(12.26, 19.77)

28.25
(27.64, 28.85)

23.20
(17.00, 29.41)

20.37 Johannesburg/
33/94

Singapore/6/86 Beijing/184/93

6 1996–1997 25.75
(25.16, 26.33)

31.12
(24.34, 39.78)

25.68
(25.25, 26.11)

44.25
(35.57, 52.93)

0.09 Wuhan/359/95 Singapore/6/86 Beijing/184/93

7 1997–1998 29.03
(28.62, 29.45)

50.61
(38.20, 67.06)

29.02
(28.64, 29.41)

91.62
(60.38, 122.85)

0.41 Wuhan/359/95 Bayern/7/95 Beijing/184/93

8 1998–1999 32.51
(32.08, 32.94)

48.35
(37.03, 63.14)

32.16
(31.82, 32.50)

78.27
(57.21, 99.33)

0.61 Sydney/5/97 Beijing/262/95 Beijing/184/93

9 1999–2000 26.16
(25.90, 26.42)

97.56
(69.33, 137.29)

26.19
(25.91, 26.47)

158.00
(112.07, 203.94)

20.29 Sydney/5/97 Beijing/262/95 Beijing/184/93

10 2000–2001 29.02
(27.65, 30.39)

8.96
(6.95, 11.54)

29.23
(28.69, 29.78)

12.80
(9.76, 15.83)

0.23 Moscow/10/99 New Caldonia
20/99

Beijing/184/93

11 2001–2002 32.63
(32.05, 33.22)

29.47
(22.54, 38.54)

32.31
(31.87, 32.75)

49.23
(31.86, 66.61)

0.44 Moscow/10/99 New Caldonia
20/99

Sichuan/379/99

12 2002–2003 30.70
(28.88, 32.53)

6.31
(4.92, 8.08)

30.37
(29.13, 31.60)

10.67
(7.10, 14.25)

0.12 Moscow/10/99 New Caldonia
20/99

Sichuan/379/99

13 2003–2004 23.74
(23.51, 23.98)

116.13
(83.46, 161.60)

23.58
(23.23, 23.93)

157.74
(129.29, 186.19)

20.23 Moscow/10/99 New Caldonia
20/99

Hong Kong/330/
2001

doi:10.1371/journal.pone.0010187.t002
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State Level
We estimated seasonality characteristics at the state levels using

Model 3 (see supplemental material, Table S1). The average peak

timing and intensity was estimated on a national scale by

averaging the regional estimates and are shown in Table 2.

Figure 5 shows the map of the average peak timing for all 13

seasons by state. Nevada, Utah, and California were the first states

in terms of peak timing to experience influenza (peak weeks 26.7,

27.0, and 27.3, respectively) while, on average, Rhode Island, New

Hampshire, and Maine were the last (peak weeks 29.9, 30.0, and

30.4, respectively). A west to east movement in peak week was

dominant when examining the correlation between latitude and

peak week (rs = 0.71, p,0.01).

A dynamic movie (not included) shows the 13 seasons

individually to examine synchrony with the average peak of

disease. Screen shots of 3 seasons from the movie are shown in

Figure 6, Panels A–C. The range of the average peak week shows

that within a typical influenza season, all states will exhibit a peak

within 4 weeks. Looking at synchronization with the average peak

week, during the 1991/1992, 1993/1994, 1996/1997, 1999/2000,

and 2003/2004 seasons, the majority of states have a peak week

lower than the average peak week across all seasons while the

1992/1993, 1994/1995, 1998/1999, 2001/2002, and 2002/2003

seasons are higher than the average. The 1995/1996, 1997/1998,

and 2000/2001 seasons have peak weeks which fall in line with the

overall average.

The estimates for intensity are highly correlated (rs = 0.97) but

differ substantially indicating the regional variation in hospitaliza-

tion rates (Table 2, Model 3). Model 3 intensity estimates were

32%–81% higher than the estimates for Model 2. Akin to the

average of seasonal peak timing, we also examined state by state

variability in the relationship between peak timing and absolute

intensity. Figure 7 depicts the relationship between peak week and

absolute intensity for Nevada and California (Panels A and B), the

two states with the lowest absolute intensity across the 13 influenza

seasons; Indiana and Illinois (Panels C and D), two states with

moderate absolute intensity; and North and South Dakota (Panels

E and F), the two states with the highest absolute intensity. In

California, a highly inverse relationship exists between the two

seasonal characteristics which is not seen in a state such as Nevada

(refer to Table S1 correlations).

Discussion

We examined the national trend of influenza seasonality and the

relationship between peak timing and intensity of influenza in the

US older adult population and demonstrated a clear pattern in the

appearance of seasonal peaks. The range of the average peak week

shows that within a typical influenza season, the continental states

exhibit a peak within 4 weeks with a general west to eastward

spread; Nevada, Utah, and California were the first states in terms

of peak timing to experience influenza while, on average, Rhode

Island, New Hampshire, and Maine were the last. The early

influenza seasons are typically more pronounced. These findings

have a strong, practical application and are well supported by

published research.

Previous research conducted to examine spatial trends of

influenza demonstrated a similar spatial pattern. A study

conducted by Grais, et al investigating the role of air travel in

the forecasting of influenza showed similar movement patterns;

researchers found a general west to east movement of influenza

through the United States with some variability between influenza

seasons. Focusing on the large air traffic hubs; Detroit, Los

Angeles, Miami, New York City, and Philadelphia; it was

demonstrated that influenza peaked first in Los Angeles in early

December and ended in New York City in late February [12].

This similarity deserves special attention. In contrast to the study

conducted by Grais, et al. focusing on only highly populated,

urban areas, we have utilized medical records with 98% coverage

for all hospitalizations in older adults residing in the continental

United States. Over two-thirds of the US elderly live in rural areas,

Figure 4. Peak week and absolute intensity for 13 influenza seasons (1991–2004).
doi:10.1371/journal.pone.0010187.g004

Influenza in US Older Adults

PLoS ONE | www.plosone.org 6 April 2010 | Volume 5 | Issue 4 | e10187



which have been shown to have disproportionately high influenza

hospitalizations [34]. Therefore, it is likely that a west to east

movement in influenza is a more general phenomenon than

previously thought and is dictated not only by major traffic

pathways but by local contact networks as well.

We found that individual influenza seasons show synchrony

with consistent late or early timing occurring across all 48 states

during each influenza season in comparison to the average across

the 13 influenza seasons. In a study by Brownstein et al. measuring

the rate of inter-regional spread and timing of influenza in the

United States for nine influenza seasons, researchers found that

influenza took 2 weeks to peak over all United States regions.

Using nine broad United States Census Bureau defined regions,

the researchers observed similarities between the spread of

influenza between seasons; specifically, geographical patterns were

synchronized within individual seasons, similar to findings

presented in this report. Variation was witnessed only in the week

at which influenza peaked between each season. However, the

authors commented that limited data available for subgroup

analysis, such as by age group or on a regional level, may be

Figure 5. Average peak timing for 13 seasons by state derived from Model 1.
doi:10.1371/journal.pone.0010187.g005

Figure 6. Peak week of 48 states across 13-seasons. Panel A: 1991/1992, Panel B: 1992/1993, Panel C: 1993/1994.
doi:10.1371/journal.pone.0010187.g006

Influenza in US Older Adults
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Figure 7. Peak week and absolute intensity for 6 selected states across 13 influenza seasons.
doi:10.1371/journal.pone.0010187.g007

Influenza in US Older Adults
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overlooking detailed patterns in the spread and timing of influenza

[13], which our study accomplished through analysis of older

adults on the state level. It is important to distinguish the range of

seasonal peaks observed from year to year from regional peaks for

a given influenza season. Our study showed that in 13 observed

seasons there was a 10 week interval in which an overall peak can

be observed, however for a given season, on average, all states

experienced a peak with 4 weeks.

In the present study, we aimed to examine the relationship

between peak timing and intensity of influenza seasons in order to

establish a base for predicting influenza. We found that across all

13 influenza seasons, peak timing and absolute intensity were

significantly, inversely related; earlier seasons are more likely to

have more cases of influenza on both the regional and national

levels. While the inverse correlation is primarily driven by the

1999–2000 and 2003–2004 influenza seasons, it is through these

outlying seasons that important public health implications can be

made. For example, the 2003–2004 influenza season experienced

higher than usual intensity due to a vaccine mismatch. The higher

than average severity in 1999 has been hypothesized to be linked

to the particularly severe 1997–1998 influenza seasons in the swine

population [35]. Analyzing pneumonia and influenza deaths from

1972–1997, Viboud et al. examined the synchrony and timing of

influenza epidemics in the United States as well as in France and

Australia. The authors found a high level of synchrony in the peak

timing and amplitude of influenza in the United States and France

where earlier influenza seasons showed higher mortality rates from

pneumonia and influenza both within and between France and the

United States [22]. These observations held true for their

assessment of synchrony on a state level [15]. Our findings show

that peak timing and absolute intensity exhibited such relationship

not only for mortality but for morbidity as well. This is important

for influenza-related hospitalizations that typically occur due to

complications, so virological causes of lower-respiratory tract

infections in older adults are rarely investigated in detail and are

sensitive to the decision to test for diagnosis by the clinician [36].

From the point of view of prevention, our findings demonstrate the

value of two complimentary parameters that can be adapted for

influenza surveillance: the timing of influenza and absolute

intensity to serve as a proxy for the time period we can expect

the highest incidence of disease and the severity of infection.

In the present study, we estimated peak timing using the d-method

[30–31] applied to parameters of harmonic regression models, also

known as Serfling regression of counts [7]. Serfling-type periodic

regression models have been widely used to establish the (unobserved)

seasonal baseline of influenza [6–7,22,33]. Estimation of seasonal

Table 3. WHO versus CDC circulating influenza strains (H3N2, H1N1, and B) for 13 seasons.

Season H3N2 Strain (WHO) H3N2 Strain (CDC)** H1N1 Strain (WHO) H1N1 Strain (CDC) B Strain (WHO) B Strain (CDC)

1991–1992 Beijing/353/89* Beijing/353/89* Singapore/6/86 Taiwan/01/86 Panama/45/90* Panama/45/90*

1992–1993 Beijing/353/89 Beijing/32/92
Shangdong/9/93

Singapore/6/86 Taiwan/01/86
Texas/36/91

Panama/45/90* Panama/45/90*

1993–1994 Beijing/32/92* Beijing/32/92* Singapore/6/86 Taiwan/01/86
Texas/36/91

Panama/45/90* Panama/45/90*

1994–1995 Shangdong/9/93* Shangdong/9/93*
Johannesburg/33/94

Singapore/6/86 Taiwan/01/86 (50%)
Texas/36/91 (50%)

Panama/45/90* Panama/45/90*
Beijing/184/93
Harbin/7/94
Shanghai/04/94

1995–1996 Johannesburg/33/94* Johannesburg/33/94*
Wuhan/359/95

Singapore/6/86 Taiwan/01/86 (50%)
Texas/36/91 (50%)

Beijing/184/93* Beijing/184/93*
Harbin/7/94

1996–1997 Wuhan/359/95* Wuhan/359/95*
Nanchang/933/95

Singapore/6/86 Bayern/7/95 Beijing/184/93* Beijing/184/93*
Harbin/7/94

1997–1998 Wuhan/359/95* Wuhan/359/95* (19%)
Sydney/5/97 (81%)

Bayern/7/95* Bayern/7/95* (43%)
Johannesburg/82/96
(43%)
Beijing/262/95 (14%)

Beijing/184/93* Beijing/184/93*
Harbin/7/94

1998–1999 Sydney/5/97* Sydney/5/97* (90%) Beijing/262/95* Beijing/262/95*
Bayern/7/95

Beijing/184/93* Beijing/184/93* (100%)

1999–2000 Sydney/5/97* Sydney/5/97* (94%) Beijing/262/95* Beijing/262/95* (1%)
New Caladonia/20/99
(67%)
Bayern/7/95 (32%)

Beijing/184/93* Beijing/184/93* (100%)

2000–2001 Moscow/10/99 Panama/2007/99 New Caladonia/20/99* New Caladonia/20/99* Beijing/184/93 Hong Kong/330/2001

2001–2002 Moscow/10/99 Panama/2007/99 (100%) New Caladonia/20/99* New Caladonia/20/99*
(100%)

Sichuan/379/99 Yamagata/16/88 (23%)
-Similar to Sichuan
Victoria/2/87 (77%)

2002–2003 Moscow/10/99 Panama/2007/99 (93%) New Caladonia/20/99* New Caladonia/20/99*
(100%)

Sichuan/379/99 Hong Kong/330/2001
(99%)
Yamagata/16/88 (1%)
-Similar to Sichuan

2003–2004 Moscow/10/99 Panama/2007/99 (11%)
Fujian/411/2002 (89%)

New Caladonia/20/99* New Caladonia/20/99*
(100%)

Hong Kong/330/
2001

Yamagata/16/88 (93%)
Victoria/2/87 (7%)
-Similar to Hong Kong

*Matching WHO and CDC strains for each of the corresponding seasons and influenza strains.
**Percentages (in parentheses) represent the specimens tested positive for each of the circulating strains.
doi:10.1371/journal.pone.0010187.t003
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baseline is a challenging statistical problem because the observations

comprising baseline versus epidemic activity are not identifiable. The

estimates of weekly incidence from these models can be potentially

biased if the influence of epidemics is not taken into account. The

estimates of peak timing presented in this study most likely reflect the

most dominant peak in a mixture of peaks that occurred in a given

location during an influenza season. Due to the robustness of the

hospitalization data utilized for our analysis, it is highly unlikely that

the estimates of the peak week will be driven by only a few

observations. Unless there is a substantial deviation from the sharp

spikes observed seasonally, which were not witnessed as seen in

Figure 1, the d-method provides stabile estimates of variation in the

characteristics of a seasonal pattern. Our intent was to estimate the

point in time when an outcome of interest, e.g. hospitalization rate,

reaches its maximum intensity without separating specific outbreaks

from an unobservable baseline. The alternative approach might be to

record the peak week as the modal observation of the seasonal time

series, however, data-driven, non-parametric ranking is associated

with a number of serious flaws. With data on well-documented

outcomes, e.g. strain-specific, laboratory-confirmed counts, the

proposed approach would allow to estimate peak time directly from

the fitted curve and to systematically and comprehensively compare

multiple outbreaks with a high degree of precision. Furthermore,

further analysis using the proposed fit to a short time series that

includes a single season or a number of seasons, e.g. with similar

circulation strains or vaccination coverage, will facilitate a focused

comparison of seasonal dynamics.

Incomplete testing for influenza in hospitalization records and

the lack of control for circulating influenza strains in our models

limit our inference to causal pathogenicity, although we have

made an attempt to consider the role of strain in Figure S1.

Previous research has shown an association between circulating

H3N2 and B strains in the second season of their circulation and

changes in intensity and peak timing of disease [15–17]. One of

the difficulties of incorporating this information into the models

was the inaccuracy of circulating influenza strain reporting on a

regional level. Circulating strain can be closely approximated by

the active strains used for vaccination as recommended by the

World Health Organization (WHO). However, reports by the

Centers for Disease Control and Prevention (CDC) on circulating

strains based on confirmatory testing do not always match the

circulating strains reported by WHO. We made an attempt to

describe these discrepancies (see Table 3). For example, during the

epidemic 1999–2000 influenza season, the H1N1 component of

the vaccine contained Beijing/262/95. However, only 1% of the

H1N1 strains tested nationally matched the Beijing strain. Sixty-

seven percent of the strains tested matched New Caladonia/20/99

[37]. Furthermore, during the 2001–2002 season, neither the

H3N2 nor the B strains in the vaccine matched the predominant

circulating strains reported by the CDC. Reports on circulating

strains issued by the CDC rarely report geographic variability

which is likely a contributor to the variability seen both on a

seasonal and state-by-state level in the current analysis [38].

Yearly parameters captured by the proposed approach allow for

analysis of complex, non-linear trends over a long time frame,

examination of characteristics of individual seasons, and assess-

ment of inter-season heterogeneity and intra-season correlations.

Using complex modeling techniques, researchers can determine

vaccination practices for vulnerable populations and state level

clinical interventions can be enhanced by forecasting the expected

intensity of disease and the timing of the disease’s peak in specific

subpopulations and geographical locations. Understanding the

geographical patterns of influenza spread and utilizing multiple

parameters for predictive modeling are essential for guiding

prevention efforts.

Supporting Information

Figure S1 Compiled the results of Model 3 as a set of 13 panels.

Each panel depicts the 48 states in ascending order of the average

peak week of the 13 influenza seasons.

Found at: doi:10.1371/journal.pone.0010187.s001 (1.37 MB

DOC)

Table S1 Seasonality characteristics at the state level using

Model 3.

Found at: doi:10.1371/journal.pone.0010187.s002 (0.29 MB

DOC)

Acknowledgments

We would like to thank the Centers for Medicare and Medicaid Services

for providing us with the hospitalization data and our funding source, the

National Institute of Allergy and Infectious Diseases (N01 AI-50032:

HHSN266200500032). Many thanks to the reviewers for their thoughtful

suggestions and comments. We would also like to thank InForMID

research staff members for their assistance with manuscript preparation

and editing.

Author Contributions

Conceived and designed the experiments: JBW. Performed the experi-

ments: JBW. Analyzed the data: JBW. Contributed reagents/materials/

analysis tools: JBW ENN. Wrote the paper: JBW ENN.

References

1. Lipsitch M, Viboud C (2009) Influenza seasonality: Lifting the fog. PNAS

106(10): 3645–3646.

2. Cox NJ, Subbarao K (2000) Global epidemiology of influenza: Past and present.

Annu Rev Med 51: 407–421.

3. Fishman DN (2007) Seasonality of infectious diseases. Annu Rev Public Health

28: 127–143.

4. Lofgren E, Fefferman NH, Naumov YN, Gorski J, Naumova EN (2007)

Influenza seasonality: Underlying causes and modeling theory. J Virol 81(11):

5429–5436.

5. Fiore AE, Shay DK, Haber P, Iskander JK, Uyeki TM, et al. (2007) Prevention

and control of influenza: Recommendations of the Advisory Committee on

Immunization Practices (ACIP), 2007. MMWR 56(RR06): 1–54.

6. Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB, et al. (2004)

Influenza-associated hospitalizations in the United States. JAMA 292(11):

1333–1340.

7. Thompson WW, Shay DK, Weintraub E, Brammer L, Cox NJ, et al. (2003)

Mortality associated with influenza and respiratory syncytial virus in the United

States. JAMA 289(2): 179–186.

8. Simonsen L, Fukuda K, Schonberger LB, Cox NJ (2000) The impact of

influenza epidemics on hospitalizations. J Infect Dis 81: 831–837.

9. Centers for Disease Control and Prevention (2003) Update: Influenza activity-

United States- 2003/2004 season. MMWR 52(49): 1197–1202.

10. Simonsen L, Clarke MJ, Stroup DF, Williamson GD, Arden NH, et al. (1997) A

method for timely assessment of influenza-associated mortality in the United

States. Epidemiology 8(4): 390–395.

11. Smith DJ (2006) Predictability and preparedness in influenza control. Science

312: 392–394.

12. Grais RF, Ellis JH (2004) Modeling the spread of annual influenza epidemics in

the U.S.: The potential role of air travel. Health Care Manag Sci 7: 127–

134.

13. Brownstein JS, Wolfe CJ, Mandl KD (2006) Empirical evidence for the effect of

airline travel on inter-regional influenza spread in the United States. PLoS Med

3: 1826–1835.

14. Bonabeau E, Toubiana L, Flahault A (1998) The geographical spread of

influenza. Proc R Soc Lond 265: 2421–2425.

15. Viboud C, Bjornstad ON, Smith DL, Simonsen L, Miller MA, et al. (2006)

Synchrony, waves, and spatial hierarchies in the spread of influenza. Science

312: 447–451.

16. Riley S (2007) Large-scale spatial-transmission models of infectious disease.

Science 316: 1298–1301.

Influenza in US Older Adults

PLoS ONE | www.plosone.org 10 April 2010 | Volume 5 | Issue 4 | e10187



17. Greene SK, Ionides EL, Wilson ML (2006) Patterns of influenza-associated

mortality among US elderly by geographic region and virus-subtype, 1968–
1998. Am J Epidemiol 163: 316–326.

18. Simonsen L, Clark MJ, Williamson GD, Stroup DF, Arden NH, et al. (1997)

The impact of influenza epidemics on mortality: Introducing a severity index.
Am J Public Health 87(12): 1944–1950.

19. Reichert TA, Simonsen L, Sharma A, Pardo SA, Fedson DS, et al. (2004)
Influenza and winter increase in mortality in the United States, 1959–1999.

Am J Epidemiol 160: 492–502.

20. Boni MF, Gog JR, Andreasen V, Feldman MW (2006) Epidemic dynamics and
antigenic evolution in a single season of influenza A. Proc R Society B 273:

1307–1316.
21. Stone L, Olinky R, Huppert A (2007) Seasonal dynamics of recurrent epidemics.

Nature 446: 533–536.
22. Viboud C, Boelle PY, Pakdaman K, Carrat F, Valleron AJ, et al. (2004)

Influenza epidemics in the United States, France, and Australia, 1972–1997.

Emerg Infect Dis 10(1): 32–39.
23. Bhat N, Wright JG, Broder KR, Murray EL, Greenberg ME, et al. (2005)

Influenza-associated deaths among children in the United States, 2003–2004.
N Engl J Med 353: 2559–2567.

24. Toubiana L, Flahault A (1998) A space-time criterion for early detection of

epidemics of influenza-like-illness. Eur J Epidemiol 14(5): 465–470.
25. Upshur RE, Knight K, Goel V (1999) Time-series analysis of the relation

between influenza virus and hospital admissions of the elderly in Ontario,
Canada, for pneumonia, chronic lung disease, and congestive heart failure.

Am J Epidemiol 149(1): 85–92.
26. Nuño M, Pagano M (2007) A model characterizing annual flu cases. Lect Notes

Comput Sci 4506: 37–46.

27. Serfling RE (1963) Methods for current statistical analysis of excess pneumonia-
influenza deaths. Public Health Rep 78: 494–506.

28. Naumova EN, MacNeill IB (2005) Signature-forecasting and early outbreak
detection. Environmetrics 16: 749–766.

29. Lofgren E, Fefferman NH, Doshi M, Naumova EN (2007) Assessing seasonal

variation in multisource surveillance data: Annual harmonic regression. Lect

Notes Comput Sci 4506: 114–123.

30. Naumova EN, MacNeill IB (2006) Seasonality assessment for biosurveillance

systems. In: Balakrishnan N, ed. Advances in statistical methods for the health

sciences: Applications to cancer and AIDS studies, genome sequence analysis,

and survival analysis. Boston: Birkhauser. pp 437–450.

31. Naumova EN, Jagai JS, Matyas B, DeMaria A, MacNeill IB, et al. (2007)

Seasonality in six enterically transmitted diseases. Epidemiol Infect 135:

281–292.

32. Naumova EN, Castronovo D, Cohen SA, Kosheleva A, Naumov YN, et al. The

spatiotemporal dynamics of influenza hospitalizations in the United States

elderly. In preparation.

33. Thompson WW, Comanor L, Shay DK (2006) Epidemiology of seasonal

influenza: Use of surveillance data and statistical models to estimate the burden

of disease. J Infec Dis 194: 582–591.

34. Naumova EN, Parisi SM, Castronovo D, Pandita M, Wenger JB, et al. (2009)

Pneumonia and influenza hospitalizations in elderly with dementia. J Am

Geriatr Soc, In press.

35. Webby RJ, Swenson SL, Krauss SL, Gerrish PJ, Goyal SM, Webster RG (2000)

Evolution of swine H3N2 influenza viruses in the United States. J Virol 74:

8243–8251.

36. Proff R, Gersham K, Lezotte D, Nyquist A (2009) Case-based surveillance of

influenza hospitalizations during 2004–2008, Colorado, USA. Emerg Infect Dis

15(6): 892–898.

37. Centers for Disease Control and Prevention (2000) Influenza activity- United

States and worldwide, 1999–2000 season, and composition of the 2000–01

influenza vaccine. MMWR 49(17): 375–381.

38. Centers for Disease Control and Prevention (2002) Update: Influenza activity-

United States 2001–02 season. MMWR 51(48): 1095–1096.

Influenza in US Older Adults

PLoS ONE | www.plosone.org 11 April 2010 | Volume 5 | Issue 4 | e10187


