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Neuron loss occurring in neurodegenerative diseases represents just the final step in a
series of events involving several cell types, other than neurons, that actively contribute to
the overall pathogenic mechanisms by establishing harmful non-cell autonomous effects [1].
Astrocytic and microglial cell activation, oligodendrogliopathy, blood–brain barrier perme-
abilization, peripheral blood cell infiltration, muscle and adipose tissue alterations often
occur before detectable neuron loss and overt symptoms, suggesting their early implication
in circumstances that could be considered causal to the disease.

Consequently, it is of extreme importance to understand if and how the intervention on
non-neuronal targets could halt pathological features, representing a potential mainstream
or complementary therapy to contrast such complex pathologies.

In this Special Issue of Cells, entitled “The Contribution of Non-Neuronal Cells in Neu-
rodegeneration: From Molecular Pathogenesis to Therapeutic Challenges”, 13 original and
review articles were published. Here, we will present a summary of the most relevant topics
and results arising from this Special Issue, which certainly will increase our knowledge
of the role of non-neuronal cells in neurodegeneration, both at the cellular and molecular
levels, and will help defining potential therapeutic targets to fight neurological diseases.

The published papers discuss the contribution of astrocytes, microglia, oligodendro-
cytes and muscle cells in the pathogenesis of neurodegenerative diseases such as amy-
otrophic lateral sclerosis (ALS), multiple sclerosis (MS), Alzheimer’s disease (AD) and
Huntington’s disease (HD).

In the last few years, our knowledge of the importance of glial cells for maintaining
central nervous system homeostasis in health conditions has increased exponentially, along
with our awareness of their fundamental and multifaceted role in pathological conditions.
Among glial cells, astrocytes emerged as promising therapeutic targets in various neu-
rodegenerative disorders. Valori et al. [2], discussed how the increased comprehension
of the extraordinary properties of astrocytes offers unprecedented therapeutic opportu-
nities to modulate the activities of distinct astrocyte subpopulations during diseases, to
achieve control over neurodegeneration. The review also explores the potential beneficial
effect of astrocyte replacement and the challenges and recent advancements in developing
astrocyte-specific delivery systems. The study of astrocytes in the context of a specific neu-
rodegenerative disease, AD, is presented by Premam and colleagues [3]. In their paper, the
authors discussed how the advent of multi-omic approaches enabled a rapid progress in the
characterization of distinct pathological astrocyte states in specific stages of AD, unveiling
the opportunity to exploit novel biomarkers and targets for therapeutic intervention.

Aside from astrocytes, microglia cells also participate in the homeostatic modulation of
the central nervous system and neuronal function, for instance by regulating the elimination
(or “pruning”) of weaker synapses in both physiologic and pathologic processes. Geloso
and D’Ambrosi discussed the evidence of microglial-dependent synapse elimination in
primitive grey matter damage as an emerging and important contributor to MS patients’
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long-term disability, associated with early and progressive cognitive decline [4]. Ulland and
colleagues instead proposed that microglial activation, via an inflammasome-dependent
mechanism, links AD pathology to sleep breathing disorder (SBD), possibly leading to the
reciprocal and synergistic exacerbation of both diseases [5]. The role of microglia was also
examined by Fernandes et al., who in their research article, analyzed the temporal profile
of inflammatory mediators and microglia deactivation/activation in the brain cortex and
hippocampus of a mouse model of AD, highlighting divergent microglia phenotypes and a
loss of homeostatic properties that precede AD onset [6]. These data provide the possibility
of therapeutic intervention that may restore the imbalance of microglia activation, prevent-
ing the progression of the disease. A further proof of the interplay between inflammation
and neurodegeneration was demonstrated by Paldino et al., in a model of HD [7]. The
authors, in their research article, showed that the administration of Olaparib, an inhibitor
of PARP, increased survival, ameliorated neurological deficits, and improved clinical out-
comes in neurobehavioral tests, mainly by modulating the inflammasome activation in
microglia cells.

In ALS, the neuroinflammatory processes mediated by activated astrocytes and mi-
croglia play a relevant role but the link between the dysregulation of RNA metabolism,
a central event in the degeneration of motor neurons, and neuroinflammation is poorly
defined. To this end, Rossi and Cozzolino discussed the available evidence, showing
that RNA-binding proteins (RBPs) and associated RNA processing are affected in ALS
astrocytes and microglia, and the possible mechanisms involved in these events [8]. In the
context of aberrant pathological mechanisms sustained by glial cells, the deregulation of
mRNA transport and of localized translation, a crucial mechanism that regulates proper
protein homeostasis in subcellular compartments, which were extensively studied in neu-
rons, is now emerging. In this regard, Blanco-Urrejola et al. thoroughly discussed the
possibility that the local translation in glia could contribute to neuronal dysfunction in
many neurological and neurodegenerative diseases [9].

Regarding other important players in the neurodegenerative pathogenesis, i.e., oligo-
dendrocytes, Raffaele et al., focused their review on the role of dysfunctional oligodendro-
cytes in ALS pathogenesis, examining the possible mechanisms involved, ranging from cell
degeneration to defective oligodendrocyte precursor cells maturation, and impairment in
the energy supply to motor neurons [10]. On this basis, the authors discuss new therapeutic
perspectives for ALS treatment based on novel drugs able to target neuroinflammation,
which are capable of implementing the remyelinating potential of oligodendrocytes as
well as enhancing their energy metabolism. Crabe et al. point to the degeneration of
interneurons, in addition to astrocytes and oligodendrocytes, as a key event in disrupting
the functional environment of motor neurons, thus sustaining the idea that targeting this
pathogenic cellular network represents a novel strategic field of therapeutic investigation
in ALS [11].

Finally, Scaricamazza et al. reviewed the most recent clinical and preclinical studies
in ALS, focusing on another tissue, whose function in the pathogenesis of ALS is still
a matter of debate, i.e., the skeletal muscle, considered as the main determinant of the
whole-body energy expenditure [12]. The authors underline that, since the functions of
muscles and motor neurons are tightly intertwined, the therapeutic interventions that
improve skeletal muscle metabolism ultimately may protect motor neurons. A central role
of the muscle as a possible therapeutic target in ALS, was also proposed in the research
article by Ceccanti et al. [13]. The authors indeed demonstrate that higher levels of serum
creatinine and myoglobin, two muscular metabolic and oxygen reservoirs, respectively, are
linked to a slow progression of ALS, and thus can represent a useful tool to predict and
monitor disease progression.

Lastly, D’Ambrosi et al., provided a comprehensive review of the role of S100A4, a
calcium-binding protein exerting a broad range of functions, focusing on the pathophysiol-
ogy of the nervous system [14]. They described that, by affecting the functions of astrocytes,
microglia, infiltrating cells and neurons, S100A4 regulates inflammation and immune reac-
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tions and modulates neuronal plasticity and survival, thus representing a target of potential
interest for clinical applications.

In summary, this Special Issue presents 13 articles that help us to improve our knowl-
edge of the role of non-neuronal, cell-related mechanisms in the onset and progression of
neurodegeneration, and provide further support to the concept that targeting these cells
represents a possible therapeutic strategy to counteract neurological conditions.
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