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ABSTRACT
Objectives: There is a growing body of literature on
malaria forecasting methods and the objective of our
review is to identify and assess methods, including
predictors, used to forecast malaria.
Design: Scoping review. Two independent reviewers
searched information sources, assessed studies for
inclusion and extracted data from each study.
Information sources: Search strategies were
developed and the following databases were searched:
CAB Abstracts, EMBASE, Global Health, MEDLINE,
ProQuest Dissertations & Theses and Web of Science.
Key journals and websites were also manually
searched.
Eligibility criteria for included studies: We
included studies that forecasted incidence, prevalence
or epidemics of malaria over time. A description of the
forecasting model and an assessment of the forecast
accuracy of the model were requirements for inclusion.
Studies were restricted to human populations and to
autochthonous transmission settings.
Results: We identified 29 different studies that met
our inclusion criteria for this review. The forecasting
approaches included statistical modelling, mathematical
modelling and machine learning methods. Climate-
related predictors were used consistently in forecasting
models, with the most common predictors being
rainfall, relative humidity, temperature and the
normalised difference vegetation index. Model
evaluation was typically based on a reserved portion of
data and accuracy was measured in a variety of ways
including mean-squared error and correlation
coefficients. We could not compare the forecast
accuracy of models from the different studies as the
evaluation measures differed across the studies.
Conclusions: Applying different forecasting methods
to the same data, exploring the predictive ability of
non-environmental variables, including transmission
reducing interventions and using common forecast
accuracy measures will allow malaria researchers to
compare and improve models and methods, which
should improve the quality of malaria forecasting.

INTRODUCTION
In 1911, Christophers1 developed an early-
warning system for malaria epidemics in

Punjab based on rainfall, fever-related deaths
and wheat prices. Since that initial system,
researchers and practitioners have continued
to search for determinants of spatial and
temporal variability of malaria to improve
systems for forecasting disease burden.
Malaria forecasting is now conducted in
many countries and typically uses data on

ARTICLE SUMMARY

Article focus
▪ Accurate predictions of malaria can provide

public health and clinical health services with the
information needed to strategically implement
prevention and control measures.

▪ The diversity in forecasting accuracy measures
and the use of scale-dependent measures limits
the comparability of forecasting results, making
it difficult to identify the optimal predictors and
methods for malaria forecasting.

▪ The objective was to identify and assess
methods, including predictors, used to forecast
malaria.

Key messages
▪ When performing forecasting, it is important to

understand the assumptions of each method as
well as the associated advantages and
disadvantages.

▪ Common accuracy measures are essential as
they will facilitate the comparison of findings
between studies and methods.

▪ Applying different forecasting methods to the
same data and exploring the predictive ability of
non-environmental variables, including transmis-
sion reducing interventions, are necessary next
steps as they will help determine the optimal
approach and predictors for malaria forecasting.

Strengths and limitations of this study
▪ The strength of this review is that it is the first

review to systematically assess malaria forecast-
ing methods and predictors, and the recommen-
dations in the review, if followed, should lead to
improvement in the quality of malaria forecasting.

▪ A limitation of a literature review is that unpub-
lished methods, if any, are omitted from this
review.
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environmental risk factors, such as climatic conditions,
to forecast incidence for a specific geographic area over
a certain period of time.
Malaria can be forecasted using an assortment of

methods and significant malaria predictors have been
identified in a variety of settings. Our objective was to
identify and assess methods, including predictors, used
to forecast malaria. This review is intended to serve as a
resource for malaria researchers and practitioners to
inform future forecasting studies.

METHODS
We included in our scoping review studies that fore-
casted incidence, prevalence or epidemics of malaria
over time. Whereas a systematic review is guided by a
highly focused research question, a scoping review
covers a subject area comprehensively by examining the
extent, range and nature of research activity on a topic.2

The studies had to use models that included prior
malaria incidence, prevalence or epidemics as a pre-
dictor. A description of the forecasting model and an
assessment of the forecast accuracy were requirements
for inclusion. Studies were restricted to human popula-
tions and to autochthonous transmission settings. We
excluded studies that provided only spatial predictions,
exploratory analysis (eg, assessing temporal correla-
tions), mortality predictions and/or individual-level
transmission modelling. Commentaries, descriptive
reports or studies that did not include original research
were also excluded. In addition, for studies that were
related (eg, the same setting and the same methods with
different time periods), the study with the most compre-
hensive data was included in the review.
A review protocol was developed and electronic search

strategies were guided by a librarian experienced in system-
atic and scoping reviews. Papers were identified using
medical subject headings and key word combinations and
truncations: (‘forecast*’ or ‘predictive model*’ or ‘predic-
tion model*’ or ‘time serie*’ or ‘time-serie*’; AND
‘malaria*’). The searches were not restricted by year or
language although our searches were restricted by the his-
torical time periods of the databases. The citation searches
began on 18 April 2011 and the final citation search was
conducted on 29 May 2012. We searched the following
databases: CAB Abstracts (1910–2012 Week 20), EMBASE
(1947–2012 28 May), Global Health (1910–April 2012),
MEDLINE (1948−May Week 3 2012), ProQuest
Dissertations & Theses (1861–29 May 2012) and Web of
Science (1899–28 May 2012). We performed manual
searches of the Malaria Journal (2000–29 May 2012) and
the American Journal of Tropical Medicine and Hygiene
(1921–May 2012). Grey literature was also searched using
Google Scholar, based upon the same key words used to
search the databases. In addition, the websites of the
WHO and the US Agency for International Development
were also examined for any relevant literature. To ensure
that all appropriate references were identified, hand

searching of reference lists of all included studies was con-
ducted and any potentially relevant references were incor-
porated into the review process.
The citations were imported into EndNote X5

(Thomas Reuters) for management. Two main reviewers
(KZ and AV) examined all citations in the study selec-
tion process with the exception of articles in Chinese,
which were reviewed by a third reviewer (ZS). The first
stage of review involved each reviewer independently
identifying potentially relevant studies based upon infor-
mation provided in the title and abstract. If it was uncer-
tain whether to include or exclude a study during the
first stage of review, the citation was kept and included
in the full article review.
The second stage of review involved each reviewer

independently identifying potentially relevant studies
based upon full article review; data abstraction occurred
for those articles that met the inclusion criteria. From
each study, we abstracted the following: setting,
outcome, covariates, data source(s), time-frame of
observed data, forecasting and model evaluation meth-
odologies, final models and associated measures of pre-
diction accuracy. Quality of the included studies was not
assessed as the objective was to conduct a scoping review
and not a systematic review. Any discordance among the
reviewers regarding inclusion or exclusion of studies or
with respect to the information abstracted from the
included studies was resolved by consultation with
another author (DB).

RESULTS
Our search identified 613 potentially relevant articles
for the scoping review after duplicate citations were
removed (figure 1). We identified 29 different studies
that met our inclusion criteria for this review; they are
described briefly in table 1. Malaria forecasting has
been conducted in 13 different countries with China as
the most frequent site of malaria forecasting. The size
of the geographic region of study ranged from the
municipal level to larger administrative divisions such
as country and provinces or districts. Almost all of the
studies (97%) used health clinic records of malaria
infections from the general population as their data
source for malaria infections, with one study using
cohort data. Eleven (38%) of the 29 studies used
laboratory confirmation of malaria cases (microscopy
and/or rapid diagnostic tests), seven (24%) used clin-
ical confirmation and two (7%) used a mixture of clin-
ical and microscopic confirmation. Nine studies did
not state whether they used clinical or microscopic con-
firmation of malaria.

Forecasting studies
The forecasting approaches included statistical model-
ling, mathematical modelling and machine-learning
methods (table 2). The statistical methods included gen-
eralised linear models, Auto-Regressive Integrated
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Moving Average (ARIMA) models32 and Holt-Winters
models.33 The mathematical models were based upon
extensions of the Ross-MacDonald susceptible-infected-
recovered (SIR) malaria transmission model.34 Other
authors predicted malaria incidence using neural net-
works, a machine-learning technique.35

Twelve studies (41%) included in the review used gen-
eralised linear models to forecast malaria counts, rates
or proportions through linear, Poisson or logistic regres-
sion. All but one of the regression models included
climate-related covariates such as rainfall, temperature,
vegetation and/or relative humidity.12 Typically, the
weather covariates were lagged, to account for the
delayed effects of weather on malaria infections. Two
studies4 8 explored the effects of including covariates as
higher-order polynomials. Several of the studies used a
generalised linear model approach to time series ana-
lysis by including previous (lagged) malaria incidence as
an autoregressive covariate in the model. Some models
included terms for season or year to account for sea-
sonal and annual variations.
Seven studies (24%) used forecasting approaches

based on ARIMA modelling with some including a sea-
sonal component (SARIMA). While not explicitly stated,
many studies used a transfer function model, also known
as ARIMAX. Typically, these ARIMA-based models incor-
porated various meteorological series as covariates

although one study also included data on the malaria
burden in neighbouring districts.14

Four studies (14%) from China used the Grey method
for malaria forecasting, none of which incorporated pre-
dictors other than malaria incidence.26–28 31 There were
two studies (7%) that used mathematical models.21 22

Gaudart et al21 included a vector component in a SIR-type
model and used data from a cohort of children, remote
sensing data, literature and expert opinions of entomolo-
gists and parasitologists. The study by Laneri et al22 used a
vector-susceptible-exposed-infected-recovered-susceptible
(VSEIRS) model although they incorporated two different
pathways from recovery to susceptibility that were based
upon different timescales (seasonal and interannual),
mimicking different transmission intensities. They found
that rainfall had a significant effect on the interannual
variability of epidemic malaria and including rainfall as a
predictor improved forecast accuracy. The parameters in
their models were based on literature as well as laboratory
findings.
We identified three studies (10%) that used neural net-

works in their analyses, and each study used different
input data and a unique network structure.23–25 Two of
the studies used weather variables to predict malaria inci-
dence.24 25 Gao et al24 also included evaporation and sun-
shine hours to predict malaria incidence; two variables
that were not included in any other study.

Figure 1 Flow of literature searches and screening process.
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As shown in table 3, climate-related predictors were
used consistently in forecasting models, with the most
common predictors being rainfall, relative humidity,
temperature and normalised difference vegetation
index. One study accounted for the effect of malaria

incidence in neighbouring districts, but it was not a sig-
nificant predictor and was excluded from the final
model.14 The mathematical models included non-time
varying parameters such as the reporting fraction of
cases (proportion of malaria cases in a population that

Table 1 Characteristics of malaria forecasting studies included in review (n=29)

Authors

(reference)

Population and

setting Model specifics

Malaria

outcome

Number of data

points used for

training/testing Evaluation measure

Regression forecasting studies

Adimi et al3 Community health

post data from

2004 to 2007 for

23 provinces in

Afghanistan;

clinical

confirmation

23 linear

regressions (1 for

each province);

included

autoregressive,

seasonal and trend

parameters

Monthly cases 31/6 (varied

between provinces

but last 6 months

used only for

testing)

Root mean squared

error and absolute

difference

Chatterjee

and Sarkar4
Municipal data for

2002–2005 for

Chennai (city),

India; microscopic

confirmation

Logistic regression;

polynominal and

autoregressive

parameters

Monthly slide

positivity rate

36/1 95% CI (for predicted

value and compared to

observed)

Gomez-Elipe

et al5
Health service

data from 1997 to

2003 for Karuzi

Province, Burundi;

clinical

confirmation

Linear regression;

adjusted for

population, lagged

weather covariates,

autoregressive and

seasonal

parameters

Monthly

incidence

60/24; 1 month

ahead forecasts

95% CI, correlation, p

value trend line of

difference (between

predicted and

observed)

Haghdoost

et al6
District health

centre data from

1994 to 2001 for

Kahnooj District,

Iran; microscopic

confirmation

Separate Poisson

regressions for

Plasmodium vivax

and Plasmodium

falciparum;

population offset,

lagged weather

covariates,

seasonality and

trend parameters

10-day cases 213/73 Average percent error

Rahman

et al7
Hospital data from

1992 to 2001 for

all divisions of

Bangladesh;

clinical

confirmation

Four linear

regressions (1 for

each administrative

division and one for

all of Bangladesh);

environmental

covariate for weeks

of highest

correlation

Yearly cases 10, 1 year was

removed from

series at a time

Root mean squared

error and relative bias

(observed-predicted)

Roy et al8 Municipal data for

Chennai (city)

(2002–2004) and

Mangalore (city)

(2003–2007),

India; microscopic

confirmation

Two linear

regressions (one for

each city); adjusted

for population,

lagged weather

covariates,

autoregressive term,

interaction terms,

polynomial terms

Monthly SPR

(Chennai),

monthly cases

(Mangalore)

28/8 (Chennai),

48/12

(Mangalore);

1 month ahead

95% CI

Continued
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Table 1 Continued

Authors

(reference)

Population and

setting Model specifics

Malaria

outcome

Number of data

points used for

training/testing Evaluation measure

Teklehaimanot

et al9
Health facility data

from 1990 to 2000

for all districts in

Ethiopia;

microscopic

confirmation

10 Poisson

regressions (one for

each district);

lagged weather

covariates,

autoregressive term,

time trend and

indicator covariates

for week of the year

Weekly cases 572 (varied

between districts,

training and

testing); 52 weeks

(year) were

removed from

series at a time;

1–4 week ahead

forecasts

Compared performance

of alerts from predicted

versus observed cases

(using potentially

prevented cases)

Xiao et al10 Medical and health

unit data from

1995 to 2007 for

Hainan Province,

China; microscopic

confirmation

Poisson regression;

lagged weather

covariates,

autoregressive term

Monthly

incidence

144/12 T-test (predictive value

significantly different

than actual)

Yacob and

Swaroop11
Medical data from

1944 to 1996 for

all health districts

in Punjab; clinical

confirmation

19 linear

regressions (1 for

each district);

include coefficients

of correlation

between rainfall and

epidemic figures

from 1914 to 1943

Seasonal

epidemic

figure*

Coefficient of

correlation (between

actual and predicted

epidemic figure)

Yan et al12 Municipal data

from 1951 to 2001

for Chongquin

(city), China

Linear regression;

logarithm curve

Yearly cases 50/1 Visual inspection of

predicted within range

of actual values

ARIMA forecasting studies

Abeku et al13 Health clinics data

from 1986 to 1999

for 20 areas in

Ethiopia; mixture

of microscopic and

clinical confirmed

20 models (1 for

each area)

compared

approaches: Overall

average, seasonal

average, seasonal

adjustment, ARIMA

Monthly cases 168/12 (varied

between areas but

last 12 months

only used for

testing); 1–

12 month ahead

forecasts

Average forecast error

Briët et al14 Health facility data

from 1972 to 2005

for all districts in

Sri Lanka;

microscopic

confirmation

25 models (1 for

each district)

compared

approaches:

Holt-Winters,

ARIMA (seasonality

assessed with fixed

effects or

harmonics) and

SARIMA; lagged

weather covariates

Monthly cases

of malaria slide

positives

180/204 (varied

between districts

but approximately

50% of series

reserved for

testing); 1–

4 month ahead

forecasts

Mean absolute relative

error

Liu et al15 Data from 2004 to

2010 for China

SARIMA Monthly

incidence

72/12 Visual (plot of predicted

vs observed)

Wangdi

et al16
Health centre data

from 1994 to 2008

for seven districts

in Bhutan;

microscopic and

antigen

confirmation

Seven models (one

for each district):

SARIMA and

ARIMAX; lagged

weather covariates

Monthly cases 144/24 Mean average percent

error

Continued
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Table 1 Continued

Authors

(reference)

Population and

setting Model specifics

Malaria

outcome

Number of data

points used for

training/testing Evaluation measure

Wen et al17 Data from 1991 to

2002 for Wanning

County, China

SARIMA Monthly

incidence

252/12 95% CI

Zhang et al18 CDC data from

1959 to 1979 for

Jinan (city) China;

clinical

confirmation

SARIMA; lagged

weather covariates

Monthly cases 84/120 (removed

1967 and 1968

from series)

Visual (plot of predicted

vs observed)

Zhou et al19 Data from 1996 to

2007 for Huaiyuan

County, China;

microscopic and

clinical

confirmation

SARIMA Monthly

incidence

108/12 Average error

Zhu et al20 Data from 1998 to

2007 for Huaiyuan

and Tongbai

counties, China

SARIMA Monthly

incidence rates

84/24; 1–12 month

ahead forecasts

95% CI and error

Mathematical forecasting studies

Gaudart

et al21
Data from cohort

of children from

1996 to 2000 in

Bancoumana

(municipality), Mali

from 1996 to 2006;

microscopic

confirmation

VSEIRS model Monthly

incidence rate

60 (training and

testing); 15 day,

1 month, 2 month,

seasonal forecasts

Mean absolute

percentage error and

root mean squared

error

Laneri et al22 Health centre data

(passive and

active surveillance)

for Kutch (1987–

2007) and Balmer

(1985–2005)

Districts, India;

microscopic

confirmation

2 models (one for

each district);

compared two types

of VSEIRS model to

linear and negative

binominal

regressions

Monthly

incidence for

parameter

estimation;

seasonal totals

(Sept−Dec) for
epidemic

forecasting

240 (training and

testing); 1 to

4 months ahead

forecasts

Weighted mean square

error and prediction

likelihood

Neural network forecast studies

Cunha

et al23
Ministry of Health

data from 2003 to

2009 for Cornwall

(City), Brazil;

microscopic

confirmation

Compared neural

network to linear

regression

Monthly cases 72/12; 3, 6 and

12 months

forecasts

Absolute error and

mean square error

Gao et al24 Data from 1994 to

1999 for Honghe

State, China

Neural network Monthly

incidence

48/12 Percent error

Kiang et al25 Hospital and clinic

data from 1994 to

2001 for 19

provinces,

Thailand;

microscopic

confirmation

19 neural networks

(1 for each

province); various

architectures used

(varied by province)

Monthly

incidence

84/12 Root mean square error

Other forecasting methods

Fang et al26 Data from 1956 to

1988 for Xuzhou

(City), China

Grey and Grey

Verhulst models

(1,1)

Yearly

incidence

30/2 Percent error

Continued
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is reported to public health), average life expectancy
and several vector characteristics, which are listed in
table 4.

Evaluation methods
Authors used different approaches to evaluate the accur-
acy of forecasting models. A typical approach was to
segment the data into a model building or training
portion with the other portion (the ‘holdout’ sample)
used for model validation or assessing forecast accuracy.
The cross-validation approach used by Rahman et al 7

and Teklehaimanot et al 9 excluded 1 year of data at a
time, the model was fit to the remaining data, forecast
errors (prediction residuals) were computed using data
from the missing year and then this process was
repeated for subsequent years. The accuracy of the pre-
dictions was then estimated from the prediction resi-
duals. Some of the studies used all the available data to
fit a model and did not reserve data for assessing fore-
cast accuracy.21 22

Studies compared the forecasts to observed values
using various measures: mean-squared error, mean rela-
tive error, mean percentage error, correlation coeffi-
cients, paired t tests (between predicted and observed
values), 95% CI (of predicted values and determined if
observed values fell within the interval) and visualisa-
tions (eg graphical representations of observed and pre-
dicted values).

Comparison of forecasting methods
We could not compare the forecast accuracy of models
from different studies due to the lack of common mea-
sures and the lack of scale-independent measures.
However, we briefly discuss the findings from studies
that compared different methods within a single study.
Abeku et al13 found that their ARIMA models provided

the least accurate forecasts when compared with variations
of seasonal averages, and the most accurate forecasts were

Table 2 Summary of malaria forecasting methods (n=29)

Forecasting method Number of studies (reference)

GLM 123–12 22 23

ARIMA 713, 14 15–20

Grey methods 426–28 31

Smoothing methods* 313 14 30

Neural networks 323, 24, 25

Mathematical models 221 22

Visual 129

References in bold indicate multiple comparisons. ARIMA,
auto-regressive integrated moving average; GLM, generalised
linear model.
*Includes Holt - (Holt-Winters) Winters, seasonal average,
seasonally adjusted average and simple average.

Table 1 Continued

Authors

(reference)

Population and

setting Model specifics

Malaria

outcome

Number of data

points used for

training/testing Evaluation measure

Gao et al27 Data from 1998 to

2005 for Longgang

District, China

Grey model (1,1) Yearly

incidence

6/1 Error and percent error

Guo et al28 Data from 1988 to

2010 China

Grey model (1,1) Yearly

incidence

21/2 Visual (plot of predicted

vs observed)

Gill29 Medical data from

1925 to 1926 for

health districts in

Punjab; clinical

confirmation

29 forecasts

consisting of visual

inspection of

rainfall, spleen rates

and epidemic

potential†

Seasonal

epidemic (yes/

no)

Qualitative comparison

of prediction (presence

of epidemic) to

epidemic figure

Medina

et al30
Community health

centre data from

1996 to 2004 (14

centres) for Niono

District, Mali;

clinical

confirmation

Multiplicative

Holt-Winters model,

age-specific rates

(three age groups);

compared to

seasonal

adjustment method

Monthly malaria

consultation

rates

36/72; 2 and

3-month ahead

forecasts; one

step ahead

forecasts

Mean absolute

percentage error and

95% CI

Xu and Jin31 Data from 2000 to

2005 for Jiangsu

Province, China

Grey model Yearly cases 4/1 Visual (plot of predicted

vs observed number of

cases)

*Seasonal epidemic figure is the ratio of October incidence to mean spring incidence.
†Epidemic potential is the coefficient of variability of fevers during the month of October for the periods of 1868–1921.
ARIMA, auto-regressive integrated moving average; ARIMAX, auto-regressive integrated moving average with exogenous input; SARIMA,
seasonal auto-regressive integrated moving average; SPR, slide positivity rate; VSEIRS,
vector-susceptible-exposed-infected-recovered-susceptible model.
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produced by the seasonal average that incorporated devia-
tions from the last three observations (SA3). In contrast,
Briet et al14 found that the most accurate model varied by
district and forecasting horizon, but the SARIMA
approach tended to provide the most accurate forecasts,
followed by an ARIMA model with seasonality modelled
using a sine term, then Holt-Winters, with the SA3 provid-
ing the least accurate forecasts. They also considered inde-
pendent time series, such as rainfall and malaria cases in
neighbouring districts, in the models. Medina et al30 deter-
mined that their Holt-Winters method provided more
accurate forecasts and the accuracy did not deteriorate as
rapidly as with the SA3 method. Cunha et al23 found that
their neural network provided more accurate predictions
across all three forecast horizons (3, 6 and 12 months)
when compared with a logistic regression model.

DISCUSSION
Malaria forecasting can be an invaluable tool for malaria
control and elimination efforts. A public health

practitioner developed a simple forecasting method,
which led to the first early-warning system of malaria.1

Forecasting methods for malaria have advanced since
that early work, but the utility of more sophisticated
models for clinical and public health decision making is
not always evident. The accuracy of forecasts is a critical
factor in determining the practical value of a forecasting
system. The variability in methods is the strength of
malaria forecasting, as it allows for tailored approaches
to specific settings and contexts. There should also be
continued effort to develop new methods although
common forecasting accuracy measures are essential as
they will help determine the optimal approach with
existing and future methods.
When performing forecasting, it is important to

understand the assumptions of forecast models and to
understand the advantages and disadvantages of each.
Forecast accuracy should always be measured on
reserved data and common forecasting measures should
be used to facilitate comparison between studies. One
should explore non-climate predictors, including trans-
mission reducing interventions, as well as different fore-
casting approaches based upon the same data.

Differences between forecasting methods
The regression approach to time series prediction
attempts to model the serial autocorrelation in the data

Table 3 Time varying predictors considered in malaria

forecasting models

Predictor

Number of studies

(reference)

Rainfall

Total rainfall 113–6 9 10 14 16 18 22 25

Average rainfall 28 24

Rainy day index* 114

Number of rainy days/month 124

Humidity

Average relative humidity 76 8 10 16 18 24 25

Minimum humidity 14

Maximum humidity 14

Temperature

Maximum air temperature 84–6 9 10 16 18 24

Minimum air temperature 74 5 9 10 16 18 24

Average air temperature 48 10 24 25

Average LST 23 25

Temperature condition index 17

Vegetation

Average NDVI 23 5

Maximum NDVI 221 25

Vegetation condition index 17

Other environmental

predictors

Average air pressure 218 24

Average air evaporation 124

Sunshine hours 124

Other

Malaria in neighbouring

districts

114

Population 14

*Rainy day index: the number of days per month when rainfall was
larger than zero divided by the number of days that a reading for
rainfall was available.
LST, land surface temperature; NDVI, normalised difference
vegetation index.

Table 4 Parameters included in the mathematical

forecasting models

Predictor References

Vector

Mean developmental delay 22

Number of bites per night 21

Probability of a susceptible becoming

infected after one single bite from a

contagious human

21

Mortality per day 21

Density 21

Length of gonotrophic cycle 21

Time lag of NDVI influence 21

Lowest NDVI value to influence behaviour

Humans

Probability of a susceptible human

becoming infected after one single infected

bite

21

Probability of becoming susceptible after

being resistant

21, 22

Probability of acquiring contagiousness 21, 22

Probability of losing contagiousness 21, 22

Average human life expectancy 22

Infectivity of quiescent cases relative to

full-blown infections

22

Other

Reporting fraction* 22

*Reporting fraction is the fraction of malaria cases in the
population that are reported to public health.
NDVI, normalised difference vegetation index.
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through the inclusion of autoregressive terms and/or
sine and cosine functions for seasonality. Generalised
linear regression models are used commonly and their
main advantages are their flexibility and the intuitive
nature of this approach for many people relative to
ARIMA models. For example, the temporal dynamics
observed in time series plots can be feasibly managed in
generalised linear models by including several cyclic
factors, interaction terms and numerous predictors.36

The main disadvantages are that generalised linear
models do not naturally account for correlation in the
errors37 and the models may need to be complex to
capture all the dynamics of the relationship within a
series and between two or more series.38 Failure to
accurately model serial autocorrelation may bias the esti-
mation of the effect of predictors as well as underesti-
mate the standard errors. Crucially, regression model
residuals must be examined for autocorrelation and it
was not always evident that this occurred in the studies
we identified using this method. In addition, it was not
apparent if any remedial measures were used to account
for the effect of autocorrelation on estimates of vari-
ance, for example, re-estimating standard errors using
heteroskedasticity and autocorrelation consistent (HAC)
estimators.39

ARIMA models are designed to account for serial
autocorrelation in time series; current values of a series
can be explained as a function of past values and past
shocks.38 With ARIMA models, once the series have
been detrended through differencing, any remaining
seasonality can be modelled as part of additional autore-
gressive or moving average parameters of a SARIMA
model. A rule of thumb is that 50 observations are a
minimal requirement for ARIMA models,37 whereas
SARIMA models require longer time series. The transfer
function model, ARIMAX, extends ARIMA by also
including as predictors current and/or past values of an
independent variable. An advantage of ARIMA models
versus GLMs is that ARIMA models naturally represent
features of temporal patterns, such as seasonality and
autocorrelation. As with generalised linear regression
models, the residuals of ARIMA models need to be
examined for residual correlation. Also, when incorpor-
ating an input series into the model, prewhitening
should occur prior to the cross-correlation assessment
for the transfer function models. Prewhitening is when
the residuals from an ARIMA model for the input series
are reduced to ‘white noise’ and the same ARIMA
model is applied to the output series.37 The authors did
not always report that they prewhitened the series prior
to assessing cross-correlations. The relationship between
the two resulting residual series is then estimated by the
cross-correlation function. Without prewhitening, the
estimated cross-correlation function may be distorted
and misleading.
Four studies from China used the Grey method for

malaria forecasting.26–28 31 This forecasting method is
essentially a curve-fitting technique based on a

smoothed version of the observed data.40 41 The Grey
model appears most useful in predicting malaria when
using a very short time series and when there is a strong
linear trend in the data. This is due to the nature of the
GM(1,1) model which will always generate either expo-
nentially increasing or decreasing series.42 Its value in
malaria prediction beyond that of the simpler statistical
modelling approaches is yet to be determined.
The approach to prediction differs between mathem-

atical models and other approaches such as generalised
linear models, ARIMA and Grey models. The
Ross-Macdonald mathematical model divides the popu-
lation under study into different compartments such as
SIR, and uses differential equations to model the transi-
tion over time of individuals from one group to
another. By using differential equations, these models
can represent explicitly the dynamics of malaria infec-
tion, mosquito populations and human susceptibility.
The disadvantages of mathematical models include the
difficulty in finding appropriate, setting-specific data for
the parameters. Also, the computational complexity of
these models increases with the number of parameters,
resulting in the omission of relevant features of malaria
dynamics for the model to be manageable.43

A neural network is a machine-learning method that
connects a set of inputs (eg, weather covariates) to
outputs (eg, malaria counts).44 The connection
between inputs and outputs are made via ‘neurons’ and
the number of links and corresponding weights are
chosen to give the best possible fit to the training data.
Neural networks have been proven to be useful in their
capacity to handle non-linear relationships as well as a
large number of parameters, and also their ability to
detect all possible interactions between predictor vari-
ables.45 Mathematical models and neural networks are
able to capture thresholds or limits on malaria transmis-
sion, which cannot be readily captured by statistical
approaches. For example, in generalised linear models,
a small decrease in the temperature leads to a small
decrease in malaria incidence. Neural networks and
mathematical models can express explicitly that there
will be no malaria transmission below a certain tempera-
ture. The disadvantages of neural networks include dif-
ficulties in determining how the network is making its
decision and its greater computational burden,46 both
of which depend upon the number of input parameters
included in the model. In addition, neural networks
have a greater susceptibility to overfitting45 and several
thousand observations are typically required to fit a
neural network with confidence.46 Malaria time series
are unlikely to contain several thousands of observa-
tions, perhaps unless the observations are aggregated
over time (eg, monthly) and location (eg, national
level).
Researchers have examined many forecasting

methods, but published articles tend to describe the
application of a single method to a unique dataset.
Direct comparison of methods would be easier if
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multiple malaria forecasting methods were applied to
the same data. This approach would allow the identifica-
tion of methods that provide the most accurate short-
term, intermediate-term and long-term forecasts, for a
given setting and a set of predictors. It would also allow
the exploration of gains in forecast accuracy by using a
weighted combination of forecasts from several models
and/or methods.47

Malaria predictors
It has been suggested that climate and meteorological
predictors have greater predictive power when model-
ling malaria incidence in areas with unstable transmis-
sion compared to areas with stable endemicity.48 It is
interesting to note that nearly all of the models focused
narrowly on a small number of environmental predictors
despite the importance of other predictors of malaria
incidence, such as land use, bednets, indoor residual
spraying and antimalarial resistance. Forecast accuracy
may be weakened if transmission-reducing interventions
are not considered in the models.

Forecast evaluation
Model selection based upon model-fitting criteria, such as
Akaike’s information criterion, Bayesian information criter-
ion or the coefficient of determination, are standard mea-
sures considered when choosing a regression model. Using
such measures to guide forecast model selection may result
in selecting models with a greater number of parameters
and ‘over-fitting’, which tends to result in inaccurate fore-
casts.49 For the purposes of forecasting, visualisations of
forecasts compared to observations and forecast accuracy
measures, such as the mean absolute forecast error,
provide more direct and intuitive model selection criteria.
When choosing how much of the series to reserve for

testing the model, it is recommended to reserve at least
as much as the maximum forecast horizon.50

Cross-validation is a more efficient use of data than parti-
tioning a data set into train and test segment, although
it is more computational intensive. It is recommended
in cross-validation that only prior observations be used
for testing a future value.50

Various direct measures were used to estimate forecast-
ing error. Absolute measures, such as the mean absolute
error (MAE), are relevant for measuring accuracy within
a particular series but not across series because the mag-
nitude of the MAE depends on the scale of the data.51

percent errors, such as mean absolute percent error
(MAPE), are scale-independent but are not recom-
mended when the data involve 0 counts as MAPE
cannot be calculated with 0 values. Also, the MAPE
places a heavier penalty on forecasts that exceed the
observed compared to those that are less than the
observed.52 In economics, a measure called mean abso-
lute scaled error (MASE) has been recommended as an
accuracy measure for forecasting.51 We recommend
incorporating MASE into malaria forecast evaluation as
this evaluation measure will facilitate comparison

between studies. We also recommend reporting MAE as
it allows an intuitive interpretation of the errors. In add-
ition, MAPE should be reported and a constant such as
1 could replace the 0 values in the series, allowing the
calculation of MAPE. An advantage of MAPE as that it
considers scale variance. For example, if we observed 70
counts of malaria but predicted 60, MAPE would be
14.3, MAE 10 and MASE 0.7. If we observed 15 counts
of malaria but predicted 5, MAPE would be 66.7, MAE
10 and MASE 0.7. MAPE and MASE could be used to
compare findings across series and studies, and also
compared to one another to understand if and how they
differ in their ranking of forecast accuracy. The MAE,
MAPE and MASE should be provided as site-specific
measures for each forecasting horizon, as summary mea-
sures for each site, and finally as summary measures for
each forecasting horizon across all sites (within a study).

CONCLUSION
Accurate disease predictions and early-warning signals of
increased disease burden can provide public health and
clinical health services with the information needed to
strategically implement prevention and control mea-
sures. Potential barriers to their usefulness in public
health settings include the spatial and temporal reso-
lution of models and accuracy of prediction. Models that
produce coarse forecasts may not provide the precision
necessary to guide targeted intervention efforts.
Additionally, technical skill and lack of readily available
data may reduce the feasibility of model utility in prac-
tise, which should be considered in developing malaria
forecasting models if the intent is to use these models in
clinical or public health settings. Applying different fore-
casting methods to the same data, exploring the predict-
ive ability of non-environmental variables, including
transmission-reducing interventions, and using common
forecast accuracy measures will allow malaria researchers
to compare and improve models and methods, and lead
to the improvement in the quality of malaria forecasting.
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