
Hindawi Publishing Corporation
International Journal of Rheumatology
Volume 2011, Article ID 270938, 5 pages
doi:10.1155/2011/270938

Review Article

Vascular Changes in Bleomycin-Induced Scleroderma

Toshiyuki Yamamoto1 and Ichiro Katayama2

1 Department of Dermatology, Fukushima Medical University, Hikarigaoka 1, Fukushima 960-1295, Japan
2 Department of Dermatology, Osaka University, Yamadaoka 2-2, Suita, Osaka 565-0871, Japan

Correspondence should be addressed to Toshiyuki Yamamoto, toyamade@fmu.ac.jp

Received 6 June 2011; Revised 17 August 2011; Accepted 17 August 2011

Academic Editor: Oliver Distler

Copyright © 2011 T. Yamamoto and I. Katayama. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Systemic sclerosis (SSc) is characterized by vascular injury, immunological abnormalities, and fibrosis of the skin as well as various
internal organs. Vascular impairment is the early manifestation and plays a fundamental role in the pathogenesis of SSc. Recent
studies suggest that complex interactions among the endothelial cells, pericytes, smooth muscle cells, and fibroblasts are involved
in the systemic vasculopathy in SSc, and histological feature of proliferation of vascular wall is seen in the lesional scleroderma skin
at the late stage of disease. One of the most representative mouse models for scleroderma is the bleomycin-induced scleroderma;
however, aspects of vascular alteration have not been described in detail so far. A number of studies have shown that bleomycin
stimulates endothelial cells and fibroblasts to induce proinflammatory and fibrogenic cytokines, apoptosis, reactive oxygen species,
and so on. This paper makes a focus on the vascular involvement in the bleomycin-induced murine scleroderma.

1. Introduction

Systemic sclerosis (SSc) is a connective tissue disease which
shows fibrosis of the skin and various internal organs [1].
Although the pathogenesis of SSc has not been fully eluci-
dated yet, it is characterized by vascular injury, immunolog-
ical abnormalities, and excessive accumulation of extracel-
lular matrix (ECM) proteins in the skin and various in-
ternal organs. In particular, systemic vasculopathy plays a
fundamental role in SSc and is associated with various al-
tered vascular dysfunctions in the lung, kidney, heart, and
skin. Clinically, Raynaud’s phenomenon, digital ulcers, and
abnormal nailfold capillaries are seen in association with
peripheral vasculopathy. Raynaud’s phenomenon is caused
by vasospasm, commonly seen in patients prior to the onset
of sclerodactyly. Endothelial cells have been reported to play
an important role in the initial inflammatory as well as sub-
sequent fibrotic process. Histological analysis of the initial
stage of scleroderma reveals perivascular infiltrates of mono-
nuclear cells in the dermis, which is associated with increased
collagen synthesis in the surrounding fibroblasts. T-cell
interaction with vascular endothelial cells may lead to the
subsequent cellular immune reaction, which may induce fur-
ther vascular injury and tissue fibrosis. A number of studies

have demonstrated the crucial role of several fibrogenic cy-
tokines released from immunocytes in initiating the se-
quence of events leading to fibrosis.

Animal models are useful in providing clues for under-
standing various human diseases and for exploring new
treatments. Although animal models which reproduce all the
aspects of SSc are not currently available, bleomycin-induced
scleroderma mouse exhibits definite dermal sclerosis mim-
icking human scleroderma [2]. In this model, features such as
definite dermal sclerosis with dermal thickening, pulmonary
fibrosis, and the presence of autoantibody in the sera are in-
duced; however, vascular alteration in this model has not
been remarked. In this paper, insights into the vascular path-
ogenesis in bleomycin-induced murine model are discussed.

2. Vascular Damages in Human Scleroderma

Vasculopathy in SSc is commonly seen in capillaries and
small blood vessels. Raynaud’s phenomenon is the common
initial sign of SSc in the majority of cases, and digital ulcers,
which are refractory and often impair quality of life of
patients, are vasculopathies in which intima of vessels can
be thickened and the lumen occluded. Vasculopathy in SSc
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involves several types of cells such as endothelial cells,
vascular smooth muscle cells, and pericytes, depending on
different phases. Progressive thickening of blood vessel walls
with proliferation of vascular intima is the typical feature of
SSc [3]. Although the mechanism of intimal proliferation is
uncertain, several factors such as chemical influence, virus,
stress (e.g., oxidative or ischemia-reperfusion), immune-
mediated cytotoxicity, apoptotic process, and antiendothelial
cell antibodies (AECAs) are suggested as possible initial
triggers. An abnormal response of microvascular endothelial
cells to those direct or indirect stimuli may result in vascular
injury. Proliferation of vascular smooth muscle cells and
pericytes are suggested to lead to the vessel-wall thickening
mediated by a Ras-depending manner [4] and occlusive
changes by thickened intima. AECAs are frequently detected
in sera of patients with SSc [5] and can activate endothelial
cells to express cell adhesion molecules which alter leukocyte
attachment and lead to endothelial cell damage and apop-
tosis. Kuwana et al. [6], however, proposed that insufficient
vascular repair machinery due to defective vasculogenesis
contributes to the microvascular abnormality in SSc. Al-
though circulating concentrations of angiogenic factors are
high in SSc, the levels of bone marrow-derived circulating
endothelial precursors (CEP) are low [6], especially at late-
stage disease [7], suggesting a complex dysregulation of vas-
culogenesis in SSc.

Endothelin-1 (ET-1) is a prototypical endothelial cell-
derived product, and endothelial damage leads to increased
production of ET-1. Since ET-1 is a vasoconstrictive agent,
loss of normal vessel compliance and vasorelaxation may
be induced by increased levels of ET-1. In addition, ET-1
promotes fibroblast synthesis of collagen [8]. ET-1 upregu-
lates expression of adhesion molecules, which promote the
homing of pathogenic leukocytes to the skin. Further, ET-
1 can also induce myofibroblast differentiation in fibroblasts
[9]. ET-1 can induce connective tissue growth factor (CTGF),
and may mediate the induction of collagen synthesis by
activation of CTGF [10]. Circulating ET-1 levels have been
observed in patients with diffuse SSc with widespread fibrosis
and those with limited SSc and hypertensive disease [11],
suggesting that soluble ET-1 levels may be a marker of fi-
brosis and vascular damage. Thus, ET is suggested to signifi-
cantly contribute to fibrogenesis, linking between vasculopa-
thy, and fibrosis, and the blockade of ET signaling may lead to
the reduction of fibrosis. In vitro, SSc fibroblasts synthesized
increased amounts of ET-1, and further, bosentan reduced
the contractile ability of the SSc fibroblasts [12]. Therefore,
a blocking ET-1 might be expected as a benefit in reducing
pulmonary fibrosis. Recently, bosentan is demonstrated to
reduce the number of newly formation of digital ulcers
associated with SSc [13]. Additionally, bosentan may reduce
the sclerosis of the skin in a pilot study [14].

Nitric oxide (NO) is a strong vasodilator and inhibits the
biochemical effect of ET-1. However, ET-1 induces inducible
NO synthase (iNOS) expression in endothelial cells [15],
and iNOS expression is detected in the endothelial cells in
the lesional skin of SSc [16]. So far, several reports have
shown impaired NO production in SSc [16, 17], which
may contribute to the vascular pathogenesis of the arteriolar

intimal proliferation in SSc. Thus, an imbalance between vas-
oconstriction and vasodilatation can lead to ischemia-reper-
fusion injury, endothelial damage and subsequent increased
collagen gene expression via hypoxia. Hypoxia induces ECM
proteins in cultured fibroblasts, and vascular endothelial
growth factor (VEGF) overexpression may be caused in re-
sponse to chronic hypoxia condition [18].

Reactive oxygen species (ROS) generated during vari-
ous metabolic and biochemical reactions have multifarious
effects that include oxidative damage to DNA. ROS can cause
several abnormalities such as endothelial cell damage or
enhanced platelet activation, leading to upregulation of the
expression of adhesion molecules or secretion of inflam-
matory or fibrogenic cytokines including platelet-derived
growth factor (PDGF) and transforming growth factor-β
(TGF-β); excessive oxidative stress has been implicated in
the pathogenesis of scleroderma [19]. Indeed, scleroderma
fibroblasts produce ROS constitutively [20]. Other effects
of oxygen radicals include the stimulation of skin fibroblast
proliferation at low concentrations [21] and the production
of increased amounts of collagen [22], suggesting that low
oxygen tension may contribute to the increased fibrogenic
properties of scleroderma fibroblasts. Furthermore, several
of the autoantigens targeted by scleroderma autoantibodies
fragment in the presence of ROS and specific metals such as
iron or copper [23]. The authors suggest that tissue ischemia
generates ROS, which in turn induces the fragmentation of
specific autoantigens. On the other hand, oxidative stress
transiently induces CCL2 mRNA and protein expression in
cultured skin fibroblasts [24], suggesting that ROS may play
a regulatory role in inflammation by modulating monocyte
chemotactic activity.

3. Vascular Changes in
Bleomycin-Induced Scleroderma

Bleomycin has a number of biochemical properties, such as
blocking the cell cycle at G2, cleaving the single-strand and
double-strand DNA, degrading cellular RNAs, production
of free radicals, and induction of apoptosis. Bleomycin ex-
erts various effects on skin-constituted cells such as fibro-
blasts, keratinocytes, and endothelial cells, as well as immun-
ocytes [25]. Bleomycin upregulates gene expression of ECM
proteins as well as fibrogenic cytokines such as TGF-β and
CTGF in cultured human skin fibroblasts [26]. Also, in vitro
studies showed a dose-dependent stimulation of endothelial
cell secretion of collagen synthesis by bleomycin, which was
inhibited by the anti-TGF-β antibody [27].

Repeated local injections of bleomycin into the back skins
induced dermal sclerosis in mice [28–33]. Histopathological
examination revealed definite dermal sclerosis character-
ized by thickened collagen bundles, and the deposition of
homogenous materials in the thickened dermis with cellular
infiltrates, which mimicked the histologic features of human
scleroderma. Dermal thickness gradually increased, up to
twofold compared with control PBS injections, with the
onset of the sclerosis. Cellular infiltrates were composed of
T-cells, monocytes/macrophages, and mast cells, which are
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Figure 1: (a) Sclerotic skin induced by bleomycin injection. (b) Close-up view of the vascular lesions showing thickened wall. (c) Elastica
van Gieson (EVG) stain showing proliferation of arterial intima. (d) α-SMA stain showing proliferation of vascular smooth muscle cells.
(e)–(g) Vascular features of control mice treated with PBS were shown (e; H-E, f; EVG, g; α-SMA stain).

supposed to play an important role in the induction of
dermal sclerosis. Increased production as well as upregu-
lation of mRNA levels of type I collagen was observed in
the bleomycin-treated skin. In the bleomycin-induced scler-
oderma, α-smooth muscle actin- (α-SMA-) positive myofi-
broblasts were observed in the dermis, and gradually in-
creased in tandem with the induction of dermal sclerosis.
In addition, significant thickness of vascular wall was also
observed in the deep dermis (Figures 1(a) and 1(b)). Elastica
van Gieson stain revealed proliferation of vascular intima
(Figure 1(c)). Further, α-SMA stain suggests proliferation of
vascular smooth muscle cells (Figure 1(d)). Those changes
were distinct from control PBS-treated mice (Figures 1(e)–
1(g)); however, whether the number of capillaries is reduced
or not needs further detail investigation.

Recent studies have shown that apoptosis of endothelial
cells induces resistance to apoptosis in fibroblasts largely
through phosphatidylinositol-3-kinase-dependent mecha-
nisms [33]. Furthermore, fibroblasts exposed to medium
conditioned by apoptotic endothelial cells presented myofi-
broblast changes [34]. By contrast, cultured scleroderma
fibroblasts were resistant to Fas-induced apoptosis [35, 36].
Although the effect of TGF-β on apoptosis differs according
to cell type, stage of maturation, and other factors, TGF-
β1 may play a role in inducing apoptosis-resistant fibroblast
populations in SSc [36]. In scleroderma fibroblasts, Bcl-2
level was significantly higher, whereas the Bax level signif-
icantly decreased [36]. In primary pulmonary endothelial
cells, bleomycin initiates apoptosis via the extrinsic pathway

[37]. Also, involvement of the extrinsic apoptotic process
in the bleomycin-induced scleroderma model has been
investigated. DNA fragmentation revealed laddering of the
bleomycin-treated skin, and increased expression of Fas and
FasL was detected in the lesional skin. mRNA expression
as well as activity of caspase-3 was also enhanced after ble-
omycin treatment. Administration of neutralizing anti-FasL
antibody together with local bleomycin treatment reduced
the development of dermal sclerosis, in association with
the reduction of TUNEL-positive mononuclear cells and
with the blockade of apoptosis. Caspase-3 activity was also
significantly reduced after anti-FasL treatment. Excessive
apoptosis, which cannot be treated by macrophages, may
induce proinflammatory cytokines such as tumor necrosis
factor-α (TNF-α) or interferons (IFNs), and play a triggering
role in the pathogenesis of bleomycin-induced scleroderma.
In the bleomycin model, TUNEL-positivity was prominently
detected on keratinocytes and infiltrating mononuclear cells,
but not endothelial cell and fibroblasts in the sclerotic skin
[38].

Vascular injury causes endothelial cell activation, dys-
function and altered capillary permeability as a primary
event. These are followed by increased expression of adhesion
molecules leading to mononuclear cell infiltrates in the skin.
Cellular adhesion molecules (CAMs) are suspected of being
responsible for the homing of pathologic inflammatory cells
to the skin and are involved between immune cells, fibrob-
lasts, endothelial cells, and ECM in the lesional skin of
scleroderma. In vitro, bleomycin directly induces E-selectin
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expression in endothelial cells through activation and nuclear
translocation of NF-κB/Rel [39]. Also, in vivo studies show
that intradermal injections of bleomycin into the nor-
mal human skin upregulate the expression of intercellular
adhesion molecule-1 (ICAM-1) and E-selectin [40]. Those
molecules play an important role in activation and migra-
tion of lymphocytes across the endothelium and basement
membranes and in adherence to target tissues. The adhesion
step may be important to the development of the initial
pathologic changes of bleomycin-induced scleroderma.

4. Conclusion

In this paper, we have made a focus on vascular features of a
bleomycin-induced murine scleroderma. Better understand-
ings of the pathophysiology of collagen vascular disease in
scleroderma are expected to contribute to the novel therapies
specifically targeting vasculopathy of SSc.
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