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This study applied cognitive diagnostic models to assess students’ learning 

progressions in energy. A Q-matrix (i.e., an item attribute alignment table) 

was proposed based on existing literature about learning progressions 

of energy in the physical science domain and the Trends in International 

Mathematics and Science Study (TIMSS) assessment framework. The 

Q-matrix was validated by expert review and real data analysis. Then, 

the deterministic inputs, noisy ‘and’ gate (DINA) model with hierarchical 

relations was applied to data from three jurisdictions that had stable, 

defined science curricula (i.e., Australia, Hong Kong, and Ontario). The 

results suggested that the hypothesized learning progression was 

consistent with the observed progression in understanding the energy 

concept. We also found similarities in students’ attribute mastery across 

the three jurisdictions. In addition, we examined the instructional sensitivity 

of the selected item. We  discuss several curriculum-related issues and 

student misconceptions that may affect students’ learning progressions 

and mastery patterns in different regions of the world.
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Introduction

Students’ domain-specific concept knowledge has received substantial attention from 
researchers in science education (Liu and McKeough, 2005). Previous research shows that 
many students have not mastered an understanding of energy as envisioned in policy 
documents (Neumann et al., 2013). However, understanding energy is important, since 
energy concepts are scientifically and academically related to many social, environmental, 
and technological applications (Chen et al., 2014). Although there are extensive studies 
probing students’ understanding of energy (e.g., Liu and McKeough, 2005; Lee and Liu, 
2010; Duit, 2014; Lacy et al., 2014), most studies use interviews (e.g., Jin and Wei, 2014; 
Lacy et al., 2014) and Rasch’s (1966) item response model (Liu and McKeough, 2005; 
Neumann et al., 2013). Rasch’s (1966) item response model applies a restrictive model 
assuming all items are equally discriminating indicators of students’ energy understanding. 
However, item discrimination often varies in practice. More importantly, the single score 
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attained from any unidimensional item response model which 
includes Rasch model cannot provide evidence of students’ 
specific strengths or weaknesses, which are needed to identify 
effective classroom instructional practices. The interview studies 
are limited by the small sample sizes of participants, which affects 
their generalizability.

Students’ incorrect responses during problem-solving can 
be  caused by weaknesses in multiple, distinct underlying skill 
attributes (e.g., Brown and VanLehn, 1980; Tatsuoka, 1983). 
Cognitive diagnostic models (CDMs) can uncover students’ 
mastery of multiple fine-grained skill attributes or problem-
solving processes. CDMs are special cases of latent class models 
that characterize the relationship of observable data to a set of 
categorical latent ability attributes (typically dichotomous; 
Templin and Henson, 2006). CDMs can diagnose students’ 
performance on a set of multiple discrete skills and provide 
formative diagnostic information to inform instruction and 
learning based on students’ mastery or non-mastery of these fine-
grained skills (Leighton and Gierl, 2007). Attributes and Q-matrix 
are two important terms in CDMs. Conceptually, the term 
attributes refer to “skills, dispositions, or any other constructs that 
are related to behavioral procedures or cognitive processes that a 
learner must engage in to solve an assessment item” (Carragher 
et  al., 2019). Psychometrically, attributes refer to unobserved 
(latent) variables in a statistical model, which are measured by 
assessment items and encoded in a Q-matrix (Carragher et al., 
2019), where Q-matrixis the loading matrix or pattern matrix that 
shows the relation of items and latent variables (Rupp et al., 2010). 
Based on students’ performance in the test, CDMs can measure 
students’ mastery patterns of the attributes needed in the test and 
thus provide diagnostic information to teachers. The empirical 
research findings showed promise that teachers and students can 
use feedback from these models to decide next steps in learning 
in different learning domains, such as reading (e.g., Kim, 2015), 
listening (e.g., Min and He, 2022), writing (e.g., Xie, 2017), and 
mathematics (e.g., Wu, 2019). Tang and Zhan (2021) also showed 
that CDM promotes students’ learning. However, CDMs have not 
been applied to the energy domain to characterize or support 
students’ learning. CDMs can help to diagnose students’ mastery 
of specific energy concepts, which could be  useful to validate 
learning progressions (an ordered description of students’ 
understanding of a particular concept) that have been proposed 
in the literature since the aggregated mastery probabilities for each 
attribute in the CDMs are informative for the learning 
progressions (Briggs and Alonzo, 2012).

The aim of the study is to use CDM to analyze specific 
knowledge structures and processing skills involved in learning 
energy to provide information about students’ cognitive strengths 
and weaknesses. The specific aims are (a) to measure systematic 
patterns of students’ knowledge mastery and misunderstandings 
of energy and (b) to gain a better understanding of students’ 
learning progressions through energy concepts. The study will use 
CDMs to identify students’ knowledge mastery and 
misunderstanding patterns through the hypothesized learning 

progression. Since students’ opportunity to learn is an essential 
factor contributing to their learning outcomes (e.g., Törnroos, 
2005), the study will also examine how the intended curriculum 
may influence students’ understanding of energy across 
different jurisdictions.

Based on previous research (Neumann et al., 2013; Lacy et al., 
2014), this study hypothesizes that students understand energy by 
four hierarchical concepts: (1) forms of energy; (2) transfer and 
transformations of energy; (3) dissipation and degradation of 
energy; and (4) conservation of energy. The study will use data 
from a fourth-grade physical science assessment to address the 
following major questions:

 1. To what extent does the hypothesized learning progression 
match students’ observed progressions in understanding 
the energy concept, based on the results of the cognitive 
diagnostic model?

 2. What similarities in students’ knowledge mastery patterns 
are evident for different jurisdictions?

 3. How does the intended curriculum relate to students’ 
understanding of energy across different jurisdictions?

Learning progressions of energy

Learning progressions (LPs) are descriptions of increasingly 
sophisticated levels of thinking about or understanding a topic 
[National Research Council (NRC), 2007]. In the past two 
decades, as a core science concept, energy has received a lot of 
attention in the research on LPs across different grades or grade 
bands (e.g., Liu and McKeough, 2005; Lee and Liu, 2010; 
Neumann et  al., 2013; Yao et  al., 2017). These studies aim to 
develop corresponding assessments, examine students’ 
progression in understanding energy, and improve instruction 
and curriculum related to energy topics. Similar to approaches to 
developing learning progressions in other concepts in science, the 
development of LPs on energy mainly has used interviews 
(Dawson-Tunik, 2006; Lacy et al., 2014) and Rasch-type partial 
credit models (Lee and Liu, 2010; Neumann et al., 2013; Yao et al., 
2017; Herrmann-Abell et  al., 2018). The studied grades have 
ranged from third grade to twelfth grade. These studies include 
not only small samples but also large-scale samples, such as 
participants in the TIMSS (Liu and McKeough, 2005; Lee and Liu, 
2010). Though studies may use different terms to refer to the same 
concepts, most of these studies propose LPs of energy from four 
strands: energy sources and forms, transfer and transformation, 
degradation, and conservation. We  will introduce the studies 
specifically as follow.

Liu and McKeough’s (2005) results supported their 
hypothesized five levels of an energy concept sequence  
(i.e., activity/work, source/form, transfer, degradation, and 
conservation). Their study also showed that third-and fourth-
grade students can develop an understanding of the first two 
levels, that is, energy does work, and sources or forms of 
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energy. They also concluded that energy degradation should 
be  an important component for understanding energy 
conservation (Liu and McKeough, 2005). Herrmann-Abell 
et  al. (2018) examined Grade 6 to college students’ 
understanding of energy transformation, energy transfer, and 
conservation of energy using Rasch analysis. Their study 
supported that knowledge of forms of energy was important for 
students to successfully answer questions about energy 
transformation. They found the idea of conservation of energy 
was much more difficult than the ideas of energy transformation 
and energy transfer to students. They concluded that it was 
easier for students to know general principles than to apply 
them in real life.

Neumann et al. (2013) explored four hierarchical energy 
topics: forms, transfer, degradation, and conservation, each of 
which was conceptualized as having four hierarchical levels of 
complexity: facts, mappings, relations, and concepts. They 
confirmed a general progression of the four levels for energy 
conceptions (forms and sources, transfer and transformation, 
dissipation, and conservation), but they did not confirm the 
distinct levels of these conceptions. Their Rasch analysis 
and  analysis of variance (ANOVA) suggested that students 
may  develop an understanding of energy transfer and 
transformation in parallel with an understanding of energy 
degradation. Following Neumann et al.’s (2013) approach, Yao 
et al.’s (2017) study examined eighth- to twelfth-grade students’ 
developing understanding of energy in mainland China. 
Although their study followed the same sequence of four ideas 
about energy as Neumann et  al.’s (2013) study, their Rasch 
analysis results did not support the hypothesis that students 
actually progress along this sequence in their understanding of 
energy. Their findings showed that although “energy forms” are 
a foundational idea for developing a deeper understanding of 
energy, other ideas may not necessarily be  developed in a 
distinct sequence (Yao et al., 2017).

To allow students to accomplish understanding by the end of 
the elementary grades, Lacy et  al. (2014) proposed a detailed 
learning progression for energy from four strands, focusing on 
grades 3–5: forms of energy, transfer and transformations, 
dissipation and degradation, and conservation. Their proposed 
learning progression was established on the “aligned development 
of a network of interconnected and interdependent foundational 
ideas” (p. 265). Their proposed progression was also based on 
students’ intuitive ideas. The progression also takes students’ 
misinterpretations and hurdles in previous research into account. 
Their exploratory interviews and teaching interventions have 
supported that relevant instruction could increasingly enhance, 
transform, and integrate students’ knowledge toward a scientific 
understanding of energy. Since this study will focus on Grade 4 
students, we will hypothesize that students understand energy 
from four hierarchical concepts from the findings of Lacy et al.’s 
(2014) research: (1) forms of energy; (2) transfer and 
transformations of energy; (3) dissipation and degradation of 
energy; and (4) conservation of energy.

Instructional sensitivity and science 
curriculum of primary schools across 
three jurisdictions

Instructional sensitivity is “the degree to which students’ 
performances on a test accurately reflect the quality of instruction 
specifically provided to promote students’ mastery of what is being 
assessed” (Popham, 1971, p. 1). Instructional sensitivity is a concept 
related to the opportunity to learn. Through instructional sensitivity, 
we can see how the instructional opportunity can influence students’ 
attribute mastery from the cognitive diagnostic model. As part of 
instructional opportunity, instruction and curriculum could influence 
students’ learning progressions (Duncan and Hmelo-Silver, 2009). 
Learning progressions cannot develop without scaffolded instruction 
or curriculum (Duncan and Hmelo-Silver, 2009). Different written 
curricula (i.e., the intended curriculum) could be one possible reason 
leading to the difference in students’ performance (Schmidt et al., 
2001). In this study, we  will focus on how the written science 
curriculum as an instructional opportunity relates to students’ 
attribute mastery, performance, and learning progressions.

Written curricula have been revealed to influence students’ 
performance across countries (Schmidt et  al., 2001; Ramírez, 
2006). Different countries and regions have different science 
curricula. The detailed expectations specified in the curriculum 
may also vary by country or region. We will introduce the science 
curriculum of the three jurisdictions (i.e., Australia, Hong Kong, 
and Ontario) that will be included in this study. Australia, Hong 
Kong, and Ontario are chosen since their curriculum has changed 
or been updated before 2011, and they also have clear science 
curriculum descriptions. These three jurisdictions participated in 
the TIMSS 2011 assessment, which included items measuring 
understanding of energy and item-level curriculum coverage 
information. In addition, Ontario is chosen as one of six 
benchmarking participants in 2011 TIMSS.

Materials and methods

Data

This study used TIMSS student achievement test data and 
curriculum data from Grade 4 and Year 2011 [International 
Association for the Evaluation of Educational Achievement (IEA), 
2013]. TIMSS applies a two-stage random sample design: In the first 
stage, a sample of schools was drawn; in the second stage, one or 
more intact classes of students were selected from sampled schools 
(Martin et al., 2016). TIMSS 2011 assembled achievement test items 
in 14 booklets. Each item appeared in two booklets, and each 
student completed one booklet (Martin et al., 2016). Thus, there are 
designed missing responses of each item (about 85% designed 
missingness for each item of the selected data). The TIMSS datasets 
are suitable for the current investigation because (1) they provide 
reliable data on students’ science achievement, including 
performance on the energy topic, which is the main focus of the 
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study; and (2) it also provides curriculum data from countries, 
which allows us to analyze and compare how the science curriculum 
may relate to students’ understanding of energy across countries. In 
2011, Australia had 6,146 students, Ontario had 4,568 students, and 
Hong Kong had 3,957 students who participated in TIMSS.

Variables

Student level variables
We focused on achievement test item variables assessing each 

student’s knowledge mastery of energy topics under the physical 
science domain in the year 2011. The cognitive domain of each 
item is specified in the assessment’s framework. Specific item IDs 
are listed in Supplementary Appendix Table A.1. There are 28 
items in total. In total, 12 items only had two score categories, and 
all other items had more than two score categories. It should 
be noted here that items have multiple types of correct answers 
and/or multiple types of incorrect answers, but do not have 
partially correct answers. The items with more than two score 
categories were classified into two categories (correct will be coded 
as 1 and incorrect will be coded as 0) in the analysis.

Country-level variables
Country-level variables came from TIMSS test-curriculum 

matching analysis (TCMA). TCMA was conducted to investigate 
“the appropriateness of the TIMSS mathematics and science 
assessments for the fourth and eighth grade students in the 
participating countries” (Foy et al., 2013, p. 102). Binary coding 
indicated whether items in the assessment were included in the 
national curriculum, or not, for a particular participating country.

Analysis

The data analysis was divided into four steps, and we followed 
the Q-matrix validation procedure of Mirzaei et al. (2020) while 
we improve their procedure by validating through different data 
(see detail below). First, after experts reviewed the proposed 
Q-matrix and we revised the Q-matrix (these would be introduced 
in the following sections), we used CDM to analyze and validated 
our revised Q-matrix. We randomly drew half of the data within 
each jurisdiction and combined those into one dataset for the first 
validation of the Q-matrix. We  combined the rest of each 
jurisdiction’s data for the second validation. We  revised the 
Q-matrix according to the first analysis result, again referring to 
the expert review information. Then, we used the second half 
of  the combined dataset to do the second validation 
analysis.  We  conducted the validation analysis using the 
R software CDM package (Robitzsch et al., 2022). Since most of 
the items (91.66%) only measure one attribute in this study (see 
Supplementary Appendix Table A.2), the results of CDM analysis 
are expected to be similar across different models. Thus, we used 
the parsimonious and interpretable “deterministic inputs, noisy, 

‘and’ gate” (DINA; Junker and Sijtsma, 2001) model, with results 
obtained by weighted maximum likelihood estimation and adding 
sampling weights to deal with specific sampling features and 
missingness in the survey data. Maximum likelihood estimation 
allows us to “estimate a set of parameters that maximize the 
probability of getting the data that was observed” (Newman, 2003, 
p. 332), and it is an effective way to treat missingness on outcome 
variables. Adding sampling weights to the analysis allows the 
sample results to reconstruct those that would be obtained if it was 
a random draw from the total population and leads to accurate 
population parameter estimates (Friedman, 2013).

We also compared the unrestricted DINA model and a more 
general model G-DINA using the likelihood ratio test (Robitzsch 
et al., 2022). The unrestricted DINA model was not significantly 
worse fitting than the G-DINA model (χ2 = 9.26, df = 4, p = 0.05486). 
Thus, we  used the unrestricted DINA model for parsimony. 
We also tested the DINA model by specifying the hierarchical 
relations between attributes according to our hypothetical learning 
progression, that is, the attributes from the first strand of the 
learning progression should be mastered before those from the 
second strand. Comparing it to the unrestricted DINA model 
through likelihood ratio tests (χ2 = −0.07053, df = 4, p = 1), the χ2 is 
negative, suggesting the test is not suitable for this data. However, 
the Bayesian information criterion (BIC) value provides consistent 
estimates (Grasa, 1989) and the BIC value of the DINA model with 
hierarchical relations is smaller than that of the DINA model, 
which indicates a better fit of DINA model with hierarchical 
relations (see Supplementary Appendix Table A.3). The DINA 
model with hierarchical relations is also consistent with the 
hypothesis in the learning progression. Thus, we used the DINA 
model with hierarchical relations for subsequent analysis. 
We assume the ordering of the attributes involved in the learning 
progression of energy is deterministic, that is, mastery of strand 1’s 
attributes is prerequisite for mastery of strand 2’s attributes. It 
should be  noted here that the higher-order DINA model 
(HO-DINA) is different from hierarchical CDMs. HO-DINA 
model refers to a higher-order latent trait in conjunction with the 
DINA model (De la Torre and Douglas, 2004; De la Torre, 2009). 
The higher-order latent trait can be  interpreted as “a broadly 
defined general proficiency or overall aptitude in a particular 
domain” (De la Torre, 2009, p.  120). Students with higher 
proficiency are more likely to have a greater likelihood of mastering 
skills in this domain (De la Torre, 2009). Hierarchical CDMs 
constrain the number of permissible skills patterns using 
theoretically based hierarchical skills structures (De la Torre, 2009).

Second, we  analyzed the achievement test items of each 
jurisdiction using the DINA model with hierarchical relations to 
obtain students’ mastery patterns. Third, we  compared the 
similarities and differences between students’ mastery patterns in 
different jurisdictions from step one. Fourth, we analyzed how the 
intended curriculum may influence students’ mastery or 
understanding of the concept of energy. We  used logistic 
regression to see whether students’ performance on each item 
differs depending on whether it was covered or not covered in the 
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national curriculum, that is, detecting the instructional sensitivity 
of each item, using Mplus 8.5 software. In this step, the nested 
structure of the data (i.e., the class is nested within school) will 
be accounted for by using complex sampling adjustment analysis, 
that is, specifying the sampling probability weights and the class 
as a source of the clustering (Stapleton, 2006). The missing data 
will be  handled through full information maximum 
likelihood estimation.

DINA model

CDMs are special cases of latent class models that characterize 
the relationship of observable data to a set of categorical latent 
ability attributes (Templin and Henson, 2006). CDMs can diagnose 
the presence or absence of each attribute for every student and 
illuminate different mastery patterns. The DINA model is one of 
the most parsimonious and interpretable CDM models with only 
two item parameters (i.e., guessing parameter and slipping 
parameter). The DINA model is a noncompensatory model with a 
conjunctive condensation rule. The respondent needs to master all 
the attributes required for a particular item (Rupp et al., 2010) to 
have a high probability of answering the item correctly. A latent 
variable hij  represents whether or not respondent i has all of the 
required attributes to resolve item j in the DINA model (Hsu and 
Wang, 2015). The latent variable hij  is a function of the determinist 
input which is defined as Equation 1:

 
hij = =Õ aik

q
k
K ik

1  
(1)

where hij  = 1 when respondent i masters all of the required 
attributes for item j, hij  = 0 when respondent i lacks at least one 
of the required attributes, andaik  is the attribute vector for 
respondent i and attribute k. If an attribute is not measured by an 
item, then qik  = 0, which means that a jk

0 =1. If an attribute is 
measured by an item, then qik  = 1, which means that whether the 
respondent masters the attribute or not matters for the probability 
of correct response (Rupp et al., 2010).

The DINA model accounts for the noise (i.e., random error) 
introduced in the underlying stochastic process with slip and guessing 
parameters. Even respondents who have mastered all measured 
attributes for an item can slip and miss the item. The respondents 
who have not mastered at least one of the measured attributes may 
guess and answer a question correctly (Rupp et  al., 2010). The 
probability of respondent i with the skill vector ai  answering item j 
correctly in the DINA model is defined as Equation 2:

 
P X g sij i j j

ij ij=( ) = -( )-
1 1

1
|a h h

 
(2)

where g j  is the guessing parameter, s j  is the slipping 
parameter, and all other terms are as defined previously.

Logistic regression

In this study, we  used logistic regression to detect items’ 
instructional sensitivity. The outcome variable Yij indicates the 
natural log odds of a correct response for student i on item j. The 
coding of items is put forward in the variables section above. 
Whether the item is covered in the national curriculum will be the 
predictor variable (Curriculumij ). The items covered in the 
national curriculum will be  coded as 1; otherwise, they will 
be coded as 0. Studies exploring items’ instructional sensitivity 
using observational data control for students’ ability because 
students are not randomly assigned to instructional conditions 
(e.g., D’Agostino et al., 2007; Li et al., 2017). The rationale is that 
students’ ability would relate to students’ performance in each 
item, while performance on an instructional sensitive item is 
expected to increase with effective teaching (Baker, 1994). Thus, 
we examined the instructional sensitivity of the selected items, 
controlling for students’ ability ( Abilityij ). Instructional 
sensitivity analysis combines information from multiple attributes 
into a single ability score estimate. Students’ single ability is 
indicated by the number of attributes each student mastered from 
CDM analysis. The equation for the instructional sensitivity 
analysis, controlling students’ ability, is defined as Equation 3:

  
Yij = +b0 j b1j Curriculumij + b 2 j Abilityij  

(3)

where Yij  is the log odds of a correct response for student i on 
item j, b0 j  is the log odds when the predictor variables are zero, 
and b1j  is the logistic regression coefficient indicating 
instructional sensitivity regarding curriculum.

Development of the draft Q-matrix and 
expert review

A well-designed Q-matrix is essential in CDMs. We developed 
a draft Q-matrix based on the literature related to learning theory, 
learning progressions of energy in the physical science domain 
(Neumann et  al., 2013; Lacy et  al., 2014), TIMSS assessment 
framework (Mullis et  al., 2009), and Quebec Progression of 
Learning Science and Technology [Quebec Education Program 
(QEP), 2009]. There are two attributes under the “forms of energy” 
strand: Attribute 1 (A1) describes different forms of energy 
(mechanical, electrical, light, chemical, heat, sound, and nuclear); 
and A2 identifies sources of energy in his/her environment (e.g., 
moving water, the chemical reaction in a battery, and sunlight). 
There are four attributes under the “transfer and transformations 
of energy” strand: A3 distinguishes between substances that are 
conductors and those that are insulators; A4 explains that simple 
electrical systems, such as a flashlight, require a complete 
(unbroken) electrical pathway; A5 relates familiar physical 
phenomena to the behavior of light (e.g., reflections, rainbows, 
and shadows); and A6 understands heat transfer. According to the 
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hypothesized learning progression from Lacy et al. (2014) and 
Neumann et al. (2013), we hypothesized that the six attributes in 
this study are not necessarily fully ordered, but the four attributes 
for the strand “transfer and transformations of energy” are 
followed by the two attributes for the strand “forms of energy” in 
learning sequence, and attributes are not ordered within the 
strands. There are 28 items in the proposed Q-matrix, and 24 out 
of 28 items (85.71%) are only measuring one attribute.

Then, five experts from science education were invited to review 
the draft matrix and the proposed attributes. The five experts were 
K-9 physical science teachers and faculty members in physical 
science education. All five experts had obtained their Bachelor’s 
degrees and Master’s degrees in science education. An interview was 
conducted with each expert by discussing each item’s endorsed 
attributes. The length of each interview was about an hour to an 
hour and a half. Experts were asked whether each endorsed attribute 
was correct or not, and what revisions needed to be made. Experts 
were also asked whether new attributes needed to be added to fully 
describe the available items’ content. The Q-matrix was revised after 
the expert review. Due to the word count limitation, the specific 
changes of Q-matrix would not be presented from expert review 
results in the main text but are listed in Supplementary Appendix B.

Q-matrix validation using real data

The revised Q-matrix was analyzed and validated using CDMs 
and two split datasets. The current dataset was divided into halves. 
We randomly drew half of the data within each jurisdiction and 
combined those into one dataset for the first validation of the 
Q-matrix. We combined the rest of each jurisdiction’s data for the 
second validation. We conducted the validation analysis using the 
DINA model. We revised the Q-matrix according to the first analysis 
result, again referring to the expert review information. Then, 
we used the second half of the combined dataset to do the second 
validation analysis. Because the Q-matrix constructed by the domain 
experts may have misspecification, De la Torre and Chiu (2016) 
proposed a discrimination index, along with other indices to provide 
a more holistic approach to the diagnosis of model misfit (De la Torre 
and Chiu, 2016). In this study, we followed Mirzaei et al. (2020) 
procedure of diagnosing the model misfit. The absolute model fit will 
be identified using the standardized mean square root of squared 
residuals (SRMSR), mean of absolute deviations in observed and 
expected correlations (MADcor), mean of absolute values of Q3 
statistic (MADQ3), and a maximum of all chi-square statistics 
(max[χ2]). To calculate MADQ3, residuals eni  = Xni  − eni  of 
observed and expected responses for respondents n and items i are 
constructed (Robitzsch et al., 2022, p. 167). Then, the average of the 
absolute values of pairwise correlations of these residuals is computed 
for MADQ3 (Robitzsch et al., 2022, p. 167). The max(χ2) statistic is 
the maximum of all item pairs χ2

jj statistics, and a statistically 
significant p-value shows that some item pairs violate statistical 
independence (Robitzsch et al., 2022). Thus, a non-significant value 
for max(χ2) (p > 0.05) indicates a good fit. The reported p-value of 

max (χ2) is based on the Holm correction for multiple comparisons. 
For all other model fit indices, the model fits the data better if these 
fit indices are close to zero (Ravand and Robitzsch, 2015).

Item level fit will be evaluated using the item-fit root mean 
square error of approximation (RMSEA) and item discrimination 
index (IDI). The criteria for interpreting item-fit RMSEA are as 
follows: Item-fit RMSEA below 0.05 indicates good fit, and item-fit 
RMSEA below 0.10 indicates moderate fit (Kunina-Habenicht 
et al., 2009). IDI for each item is calculated as IDI j = 1- -s gj j
(De la Torre, 2007; cited in Lee et  al., 2012), where s j is the 
slipping parameter and g j is the guessing parameter. IDI can 
be used as a diagnostic index about how an item discriminates 
between students having a response probability of 1- s j  
possessing all skills, and students guessing with probability ( g j ) 
without possessing any skills (George et al., 2016). IDI values close 
to 1 indicate good discrimination of the item, and IDI values close 
to 0 indicate items with low discrimination (George et al., 2016). 
The Q-matrix was revised according to the analysis result.

Results

Q-matrix validation results: Using real data

We divided the current data into two datasets, and we did the 
validation based on the first half of the data first using following 
procedure. First, we examined item-level fit indices to check how 
well the model fits each item’s observed response data. Item 
discrimination indexes (IDIs) are all good ranging from 0.103 to 
0.883 except item S041191 had a negative IDI -0.002, which violated 
the assumption of the DINA model that g j  < 1 − s j (George 
et al., 2016). Item S041191 was a multiple-choice item inquiring 
which material was the best conductor of heat. Then, we double-
checked this item’s attribute classification (the endorsed attribute 
was A3 “Distinguishes between substances that are conductors and 
those that are insulators”) and consulted with the experts again, who 
indicated that no further changes of this item’s attribute should 
be made based on its content. Since there were still multiple items 
measuring A3, this item was deleted due to its negative IDI. All 
other item-level indices were good. The IDI indices ranged from 
0.103 to 0.884. Item S051121A and item S051188E were two items 
with the lowest IDI index 0.103 and 0.137. Item S051121A and item 
S051188E were also found to have local dependence with other 
items (as presented in the next paragraph). Thus, these two items 
would be deleted. All items’ RMSEA values were below 0.05.

Then, we checked the absolute model fit indices. All other 
absolute model fit indices were good: SRMSR = 0.056, 
MADcor = 0.043, and MADQ3 = 0.080. However, the max (χ2) 
statistic was not good: max (χ2) = 38.029, p < 0.05. A significant 
p-value indicated a violation of the statistical independence of the 
item pair. Then, we checked the item pairs’ local independence. 
We found local dependence among multiple items, and most of 
them came from the same set of items. Also, two of these items 
had the lowest IDI among all the items. Thus, we deleted items 
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that had largest chi-square statistics, items had statistically 
significant local dependence with other items, and/or items with 
a lower IDI, that is, S031273, S051201, S051121A, S051121B, 
S051188A, S051188B, and S051188E.

Then, we  used the second half of the data to check the 
revised Q-matrix. The absolute model fit indices were all good: 
SRMSR = 0.034, MADcor = 0.024, MADQ3 = 0.084, max (χ2) = 9.485, 
and p = 0.052. The item-level fits were also all good. The IDI 
ranged from 0.104 to 0.942. RMSEA statistics were all below 0.05. 
Most items’ IDI increased at the second validation. We  also 
double-checked the model fit and the item-fit indices for subset 
datasets for three jurisdictions. The absolute model fit indices (see 
Supplementary Appendix Table A.4) and item-fit indices were 
good for each jurisdiction (item-level RMSEA statistics were all 
below 0.05; IDI values were all above zero). We invited science 
experts to review the revised Q-matrix and check whether they 
endorse the attributes believed to be measured by each item. The 
experts confirmed the final Q-matrix. Table 1 presents the final 
Q-matrix of this study. In total, there are 16 items and six 
attributes in the final matrix.

Attribute mastery profile across three 
jurisdictions

The population’s mastery probabilities are informative for  
the learning progressions (Briggs and Alonzo, 2012). Table  2 

presents the attribute mastery probabilities of the three 
jurisdictions from DINA model’s analysis result. They show each 
participant population’s mastery probability for each attribute, 
which is the relative difficulty levels of different sub-skills 
underlying the energy topic for each jurisdiction. Attribute 1 (A1) 
“describes different forms of energy” and A2 “identifies sources of 
energy” from Strand 1 of the hypothesized learning progression 
had the highest mastery probabilities for Australia and Ontario. 
The highest mastery probability of the two attributes from Strand 
1 indicates that the hypothesized learning progression could 
be matched to students’ observed progressions in understanding 
the energy concept using cognitive diagnostic models by detecting 
the attribute mastery probability. A4 “explains that simple 
electrical systems, such as a flashlight, require a complete 
(unbroken) electrical pathway” has the lowest mastery probability 
and was the most difficult for all students.

Latent class profiles

The latent class profiles could also inform the learning 
progressions. In this study, the DINA model with hierarchical 
relations defines 19 possible latent classes. Table 3 presents the latent 
class profiles and their attribute mastery pattern probabilities for 
each jurisdiction.

As is presented in Table  3, for Australia, the latent class 
“111011” had the highest latent class probability (0.10599 which 
means about 10.60% of the overall test-takers were estimated to 
have mastered all attributes). The latent class “111111,” to which 
9.03% of the test-takers belong, came second. About 9.03% of 
students could not master A4 “explains that simple electrical 
systems” while they could master all other attributes. The third 
frequently mastered latent class is “111110” (0.09056), which 
means that about 9.056% of test-takers did not master A6 
“recognizes that heating an object can increase its temperature and 
that hot objects can heat up cold objects” while they could master 
all other attributes. Besides, about 5.12% of test-takers did not 
master any attribute.

For Hong Kong, the highest probability is class “111010” and 
about 18.2% of test-takers were estimated to have mastered all 
attributes. The second-highest class probability of Hong Kong was 

Table 1 Final Q-matrix.

Items A1 A2 A3 A4 A5 A6

S031077 0 0 1 0 0 0

S031197A 1 0 0 0 0 0

S031197B 1 0 0 0 0 0

S031298 0 0 0 0 0 1

S031299 1 0 0 0 1 0

S041067 1 0 0 0 0 0

S041069 0 0 0 0 1 0

S041070 0 0 0 0 1 0

S041195 0 0 0 1 0 0

S051074 0 0 0 1 0 0

S051179 0 0 0 0 1 0

S051121C 0 0 1 0 0 0

S051121D 0 0 1 0 0 0

S051121E 0 0 1 0 0 0

S051188C 0 1 0 0 0 0

S051188D 0 1 0 0 0 0

Note. A1 = Describes different forms of energy (mechanical, electrical, light, chemical, 
heat, sound, nuclear); A2 = Identifies sources of energy (e.g., moving water, the chemical 
reaction in a battery, sunlight); A3 = Distinguishes between substances that are 
conductors and those that are insulators; A4 = Explains that simple electrical systems, 
such as a flashlight, require a complete (unbroken) electrical pathway; A5 = Relates 
familiar physical phenomena to the behavior of light (e.g., reflections, rainbows, 
shadows); A6 = Recognizes that heating an object can increase its temperature and that 
hot objects can heat up cold objects.

Table 2 Attribute mastery probabilities across three jurisdictions.

Attribute Attribute mastery probability

Australia Hong Kong Ontario

A1 0.8068 0.9266 0.8583

A2 0.7332 0.9276 0.9203

A3 0.5947 0.8676 0.5482

A4 0.3517 0.4126 0.3637

A5 0.3806 0.4976 0.5314

A6 0.6975 0.3642 0.3968
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also a latent class “111100” (0.1252). About 12.52% of Hong Kong 
students could not master A4 “explains that simple electrical 
systems,” while they could master all other attributes. The 
percentage was relatively higher than for Australian students. The 
third highest class probability is “111110,” with about 11.95% of 
test-takers possessing this latent class.

For Ontario, the highest probability is class “111010” and about 
10.36% of test-takers did not master all the attributes except A4 (i.e., 
explains that simple electrical systems, such as a flashlight, require 
a complete electrical pathway) and A5 (i.e., relates familiar physical 
phenomena to the behavior of light). The second-highest class 
probability of Ontario is the latent class “111011” (0.09685), which 
means that about 9.685% of test-takers are masters of all the 
attributes. The third highest class probability is “010000,” with about 
8.26% of test-takers only mastering A2 “identifies sources of energy.”

Instructional sensitivity of the selected 
items after controlling student ability

From TCMA data, we  obtained the results of whether the 
selected items in this study were covered in the selected 
jurisdiction’s national curriculum or not (see Table 4). Of 16 items, 
6 (i.e., S031077, S031299, S041069, S041070, S041195, and 
S051179) did not have variation in national curriculum coverage. 
Items without variation will not provide any information about 
instructional sensitivity. Thus, these items were dropped. Then, 
we examined the instructional sensitivity of all items with variation 
in national curricular coverage, controlling for students’ abilities. 

We calculated the number of attributes each student mastered and 
treated this as an estimate of their overall competence in the energy 
domain. Table 5 presents results, and eight items were found to 
be  instructionally sensitive, that is, students have a better 
understanding of the item if the item is covered in the curriculum. 
Item S051074 assessing the description of forms of energy has the 
largest regression coefficient, 4.157, which indicates students whose 
curriculum covered the item have 63.88 times greater odds (e4.157) 
of scoring in a higher response category than students whose 
curriculum did not cover it. Item S051121C assessing whether 
students can distinguish between substances that are conductors 
and those that are insulators has a relatively high regression 
coefficient, 2.747, which means students whose curriculum covered 
the item have 15.60 times greater odds (e2.747) of scoring in higher 
response category than those not.

Discussion

Students’ learning progressions in energy 
across three jurisdictions

The highest mastery probability of the two attributes from 
Strand 1 indicates that the hypothesized learning progression could 
be matched to students’ observed progressions in understanding the 
energy concept using cognitive diagnostic models by detecting the 
attribute mastery probability. This is consistent with previous 
research about the learning progression in energy (Neumann et al., 
2013; Lacy et al., 2014) that showed the stand “forms of energy” 
learned before the Strand “transfer and transformations of energy” 
in the learning progression. In addition, we also found that A4 from 
Strand 2 was learned the latest by students. The mastery probability 
of the A4 “explains that simple electrical systems, such as a flashlight, 
require a complete electrical pathway” from Strand 2 “transfer and 
transformation of energy” is the lowest among all the attributes for 
all the three selected participating jurisdictions: Australia (0.3517), 
Hong Kong (0.4126), and Ontario (0.3637). Besides, almost 10% of 
students from each jurisdiction (Australia, 10.6%; Hong Kong, 
10.3%; and Ontario, 9.68%) have the latent class pattern (111011). 
These results show that no matter where students came from, they 
performed worse in mastering A4 “explains that simple electrical 
systems, such as a flashlight, require a complete electrical pathway,” 
and more than half of the students in each jurisdiction failed to 
acquire A4. There were mainly two items assessing A4: item 
S041195 and item S051074. For item S041195, none of the three 
jurisdictions’ curriculum covered this item. Item S051074 showed 
large instructional sensitivity, which means that the performance of 
the item was related to whether the item was covered in the 
curriculum or not. Students performed better at this item if this 
item was covered in the national curriculum. However, neither 
Ontario nor Australia covered this item in the national curriculum. 
When we examined the description of energy for each jurisdiction 
in the curriculum carefully, “electrical circuits” [Australian 
Curriculum, Assessment and Reporting Authority (ACARA), 2020] 

Table 3 Latent class probabilities.

Latent 
Class

Attribute 
Mastery Pattern

Australia Hong Kong Ontario

1 000000 0.05118 0.06194 0.05905

2 100000 0.04110 0.01042 0.02065

3 010000 0.05666 0.01143 0.08262

4 110000 0.04566 0.00190 0.02908

5 111000 0.07249 0.11679 0.06823

6 110100 0.03065 0.00190 0.02543

7 111100 0.05147 0.12521 0.06267

8 110010 0.02857 0.00296 0.04605

9 111010 0.10477 0.18201 0.10360

10 110110 0.02330 0.00178 0.03121

11 111110 0.09056 0.11949 0.07466

12 110001 0.03740 0.00958 0.02541

13 111001 0.04382 0.07425 0.03858

14 110101 0.02477 0.00956 0.02194

15 111101 0.03065 0.07943 0.03495

16 110011 0.03917 0.01309 0.06619

17 111011 0.10599 0.10307 0.09685

18 110111 0.03151 0.00787 0.04420

19 111111 0.09028 0.06731 0.06863
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were highlighted in Australia’s curriculum in Grade 6. Similarly, the 
Ontario curriculum described “simple circuits” in Grade 6. Though 
Hong Kong reported covering this item in their curriculum, the 
grade band structure of the national curriculum makes it difficult 
to identify whether circuits are generally covered in Grades 4, 5, 
and/or 6. Thus, there was still a large possibility that students in 
Grade 4 had not had the opportunity to learn to master this 
attribute. In addition, students’ misconceptions about circuits are 
common worldwide (Moodley and Gaigher, 2019). This may 
explain students’ lowest mastery of Attribute 4 “explains that simple 
electrical systems, such as a flashlight, require a complete electrical 
pathway” in this study. Studies have shown that students have many 

different misconceptions about electric circuits (e.g., Çepni and 
Keleş, 2006; Peşman and Eryılmaz, 2010). For instance, Çepni and 
Keleş (2006) summarized four models used by students that resulted 
in misunderstanding circuits: a unipolar model; the clashing current 
model; the current consumed model; and the scientist model with 
current conserved. For example, in the unipolar model, students 
believe that only one cable is enough to complete a circuit, which 
would hinder their mastery of A4 “explains that simple electrical 
systems, such as a flashlight, require a complete electrical pathway.” 
Science teachers should get to know different misconceptions that 
students have in mastering A4 and utilize these misconceptions to 
help students to change their misconceptions and enhance their 
conceptual understanding, for example, by asking students to 
demonstrate that one cable is not enough to complete a circuit.

The content of a country’s curriculum (i.e., the intended 
curriculum) has been shown to affect students’ performance 
(Schmidt et al., 2001; Ramírez, 2006). Schmidt et al. (2005) also 
found that curricular coherence was the most dominant predictive 
factor for Grade 1 to Grade 8 students’ academic performance in 
science and mathematics, where the curricular coherence is defined 
as curriculum standards sequenced progressively toward the 
understanding of the deeper structure of each topic both within and 
across grades. This study reemphasized the importance of the 
curriculum for students’ performance, which is consistent with 
earlier studies (Schmidt et  al., 2001, 2005; Ramírez, 2006). In 
addition, LPs can provide a framework to coordinate standards, 
assessments, and instruction (Alonzo and Gotwals, 2012). The 
alignment of standards, assessments, and instruction could 
be achieved through LPs. LPs are essential in designing curricula 
materials that allow learners to develop integrated understandings 
of key scientific ideas and practices across time (Fortus and Krajcik, 
2012). However, currently, not all curricula are designed based on 
students’ LPs. It is common that the curriculum was not built to 
coherently help learners make connections between ideas within 
and among disciplines nor help learners develop an integrated 
understanding (Fortus and Krajcik, 2012). The development of 
coherent curriculum materials calls for “multiple cycles of design 
and development, testing and revising the materials, aligning 
materials, assessments, and teacher support with learning 
progressions” (Fortus and Krajcik, 2012, p. 796).

Students’ knowledge mastery patterns 
for different jurisdiction

Overall, this study’s results showed that Australia had the 
highest percentages of students mastering all the attributes, while 
lower percentages of Ontario students mastered all the attributes 
and most individual attributes. These indicate that Ontario 
students perform relatively worse than Australian and Hong 
Kong students on the energy topic. Among 16 selected items 
assessing the attributes in the Q-matrix, Hong Kong had 11 items 
that were reported to be covered in their curriculum according 
to the TCMA data and Australia had 13 items. However, Ontario 

Table 4 Items covered in national curricula.

Items Item covered in national curriculum

Australia Hong Kong Ontario

S031077 no no no

S031197A yes no no

S031197B yes no no

S031298 yes yes no

S031299 yes yes yes

S041067 yes no no

S041069 yes yes yes

S041070 yes yes yes

S041195 no no no

S051074 no yes no

S051179 yes yes yes

S051121C yes yes no

S051121D yes yes no

S051121E yes yes no

S051188C yes yes no

S051188D yes yes no

Note. This data is from the TIMSS Test Curriculum Matching Analysis (IEA, 2013).

Table 5 Results of the instructional sensitivity for all items after 
controlling student ability.

Items Logistic regression 
coefficient of curriculum

ecoefficient p

S031197A* 1.411 4.10 0.045

S031197B* 1.585 4.88 0.008

S030298* 1.878 6.54 0.000

S041067* 0.477 1.61 0.000

S051074* 4.157 63.88 0.000

S051121C* 2.747 15.60 0.000

S051121D* 2.090 8.08 0.000

S051121E* 2.060 7.85 0.001

S051188C 0.745 2.11 0.143

S051188D 1.097 3.00 0.755

Note. * Items that were found to show instructional sensitivity.
ecoefficient stands for e to the power of logistic regression coefficient of curriculum, where e 
is 2.71828.
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only had four items, many fewer than were covered in the 
comparison jurisdictions. Ontario students’ relatively poor 
performance in energy learning may be caused by their much 
lesser curriculum exposure to learn these attributes.

This study found some other similarities in students’ knowledge 
mastery patterns across the selected jurisdictions using cognitive 
diagnostic models. There were high proportions of students in the 
latent class pattern “111010” for all three jurisdictions. This 
implicated that most students had weakness in mastering both A4 
“explains that simple electrical systems, such as a flashlight, require 
a complete electrical pathway” and A6 “recognizes that heating an 
object can increase its temperature and that hot objects can heat up 
cold objects.” The latent class pattern “111110” was another frequent 
mastered knowledge mastery pattern among three jurisdictions: 
Besides, the overall mastery probability of A6 was the second-lowest 
next to A4’s. These results indicated that A6 “recognizes that heating 
an object can increase its temperature and that hot objects can heat 
up cold objects” was also difficult for all the participants from three 
jurisdictions. Students in primary schools always hold some 
misconceptions about heat and temperature. Students may believe 
the temperature of an object is related to its physical properties, that 
is, the object’s temperature differs by its material properties 
(Erickson and Tiberghien, 1985; Paik et al., 2007), and may confuse 
it with heat (Paik et  al., 2007). For instance, some students in 
primary schools thought that objects of different materials in the 
same room were at different temperatures, and there was a 
misconception of the students that wood objects were hotter than 
metal objects (Erickson and Tiberghien, 1985). These 
misconceptions about the temperature of objects may lead to 
students’ poor mastery in A6.

Limitations and future directions

Since this study used existing TIMSS Grade 4 science datasets, 
we  could only detect students’ proficiency on attributes of the 
energy topic that were measured by the test’s items, and only two 
strands of the hypothesized learning progression could be tested 
due to the limited number of items that TIMSS administered on 
the energy topic. In future research, we  could develop an 
assessment from a cognitive diagnostic model approach to include 
more attributes, so we can separately detect more abilities and skills 
of students’ energy mastery learning progression (Neumann et al., 
2013). Second, in the Q-matrix validation process, we  invited 
experts in physical science education to review the Q-matrix while 
Grade 4 students were not interviewed to talk through their 
problem-solving methods for each item. In future research, 
we could also include students’ think-aloud process for each item 
to validate the Q-matrix. It would be  more comprehensive to 
include both experts’ and students’ views. Third, we  coded all 
students’ responses as binary and applied a CDM for dichotomous 
item responses. This recoding would be expected to result in some 
loss of information, compared to using the original polytomous 
responses. A diagnostic model for ordinal polytomous data has 

been formulated by Ma and de la Torre (2016) and Culpepper 
(2019), but is not yet implemented in widely available software. In 
future studies, researchers may be able to fit polytomous CDMs to 
detect students’ LPs. Fourth, we attempted to run multiple-group 
CDM for detecting differential item functioning (DIF) across the 
three countries. We tried DIF procedures [i.e., Wald test (Hou 
et al., 2014)], but the codes only work for the DINA model and 
cannot work for the DINA model with hierarchical relations, 
which results in warnings and the code cannot be run. There may 
be some items that function differentially across three countries but 
could not be identified based on this study. Future studies could 
work on detecting DIF using a multiple-group DINA model with 
hierarchical relations. Fifth, this study mainly considered whether 
the item is covered in the curriculum as reported in the TIMSS 
TCMA data as the potential factor contributing to students’ 
performance of each item in the analysis. In future studies, 
we could test other contextual and cultural factors. Finally, this 
study only included three jurisdictions in the analysis. We will 
extend the analysis to more jurisdictions in future. In summary, 
our study indicates that CDM can be used to validate students’ 
learning progression and curriculum-related issues may influence 
students’ learning progression. Future studies could explore other 
domain’s learning progressions using CDM.

Data availability statement

The original contributions presented in the study are included 
in the article/Supplementary material, further inquiries can 
be directed to the corresponding author.

Author contributions

SZ wrote the introduction, literature review, did the analysis, 
wrote up method, results, and discussion parts. AT gave feedbacks 
and revised the paper. All authors contributed to the article and 
approved the submitted version.

Funding

The research is supported by the Fundamental Research 
Funds for the Central Universities (No. 2232022E-15). The work 
reported here is based on the dissertation by the first author 
submitted in partial fulfillment of the requirements of the degree 
of Doctor of Philosophy at Purdue University.

Acknowledgments

We are grateful for experts who participated in the review of 
the Q-matrix. We are also grateful for the suggestions that the 
reviewers provided in the review proceess.

https://doi.org/10.3389/fpsyg.2022.892884
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org


Zhou and Traynor 10.3389/fpsyg.2022.892884

Frontiers in Psychology 11 frontiersin.org

Conflict of interest

The authors declare that the research was conducted in the 
absence of any commercial or financial relationships that could 
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 

organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or 
claim that may be made by its manufacturer, is not guaranteed or 
endorsed by the publisher.

Supplementary material

The supplementary material for this article can be found 
online at: https://www.frontiersin.org/articles/10.3389/fpsyg. 
2022.892884/full#supplementary-material

References
Alonzo, A. C., and Gotwals, A. W. (Eds.). (2012). Learning Progressions in Science: 

Current Challenges and Future Directions. Berlin, Heidelberg: Springer Science & 
Business Media.

Australian Curriculum, Assessment and Reporting Authority (ACARA) (2020). 
Science key ideas. Available at: https://www.australiancurriculum.edu.au/f-10- 
curriculum/science (Accessed July 14, 2022).

Baker, E. L. (1994). Making performance assessment work: the road ahead. Educ. 
Leadersh. 51, 58–62.

Briggs, D. C., and Alonzo, A. C. (2012). “The psychometric modeling of ordered 
multiple-choice item responses for diagnostic assessment with a learning 
progression,” in Learning Progressions in Science. eds. A. C. Alonzo and A. W. 
Gotwals (Boston, MA: Brill Sense), 293–316.

Brown, J. S., and VanLehn, K. (1980). Repair theory: a generative theory of bugs 
in procedural skills. Cogn. Sci. 4, 379–426. doi: 10.1016/S0364-0213(80)80010-3

Carragher, N., Templin, J., Jones, P., Shulruf, B., and Velan, G. M. (2019). 
Diagnostic measurement: Modeling checklists for practitioners (Digital ITEMS 
Model 04). Educ. Meas: Issues Pract. 38, 89–90.

Çepni, S., and Keleş, E. (2006). Turkish students’ conceptions about the simple 
electric circuits. Int. J. Sci. Math. Educ. 4, 269–291. doi: 10.1007/s10763-005-9001-z

Chen, R. F., Eisenkraft, A., Fortus, D., Krajcik, J., Neumann, K., and Nordine, J.et al. 
(Eds.). (2014). Teaching and Learning of Energy in K-12 Education. New York: Springer.

Culpepper, S. A. (2019). An exploratory diagnostic model for ordinal responses 
with binary attributes: identifiability and estimation. Psychometrika 84, 921–940. 
doi: 10.1007/s11336-019-09683-4

D’Agostino, J. V., Welsh, M. E., and Corson, N. M. (2007). Instructional sensitivity 
of a state’s standards-based assessment. Educ. Assess. 12, 1–22. doi: 
10.1080/10627190709336945

Dawson-Tunik, T. L. (2006). “Stage-like patterns in the development of 
conceptions of energy,” in Applications of Rasch Measurement in Science Education. 
eds. X. Liu and W. J. Boone (Maple Grove, MN: JAM Press), 111–136.

De la Torre, J. (2007). Evaluation of model fit in a large-scale assessment application 
of cognitive diagnosis [Conference presentation]. Annual Meeting of the National 
Council on Measurement in Education, Chicago, IL.

De la Torre, J. (2009). DINA model and parameter estimation: A didactic. J. Educ. 
Behav. Stat. 34, 115–130. doi: 10.3102/1076998607309474

De la Torre, J., and Chiu, C.-Y. (2016). A general method of empirical Q-matrix 
validation. Psychometrika 81, 253–273. doi: 10.1111/10.1007/s11336-015-9467-8

De la Torre, J., and Douglas, J. A. (2004). Higher-order latent trait models for 
cognitive diagnosis. Psychometrika 69, 333–353. doi: 10.1007/BF02295640

Duit, R. (2014). “Teaching and learning the physics energy concept,” in Teaching 
and Learning of Energy in K-12 Education. eds. R. F. Chen, A. Eisenkraft, D. Fortus, J. 
Krajcik, K. Neumann and J. Nordine et al. (Cham: Springer), 67–85.

Duncan, R. G., and Hmelo-Silver, C. E. (2009). Learning progressions: aligning 
curriculum, instruction, and assessment. J. Res. Sci. Teach. 46, 606–609. doi: 
10.1002/tea.20316

Erickson, G., and Tiberghien, A. (1985). “Heat and temperature,” in Children’s 
Ideas in Science. ed. R. Driver (New York: McGraw-Hill Education), 52–84.

Fortus, D., and Krajcik, J. (2012). “Curriculum coherence and learning 
progressions,” in Second International Handbook of Science Education. Springer 
International Handbooks of Education. Vol. 24 eds. B. Fraser, K. Tobin and C. 
McRobbie (Dordrecht: Springer).

Foy, P., Arora, A., and Stanco, G. M. (2013). TIMSS 2011 User Guide for the 
International Database. International Association for the Evaluation of Educational 
Achievement. Available at: https://eric.ed.gov/?id=ED544555 (Accessed July 14, 
2022).

Friedman, J. (2013). Tools of the trade: when to use those sample weights. Available 
at: https://blogs.worldbank.org/impactevaluations/tools-of-the-trade-when-to-use-
those-sample-weights (Accessed July 14, 2022).

George, A. C., Robitzsch, A., Kiefer, T., Groß, J., and Ünlü, A. (2016). The R 
package CDM for cognitive diagnosis models. J. Stat. Softw. 74, 1–24. doi: 10.18637/
jss.v074.i02

Grasa, A. A. (1989). Econometric Model Selection. Dordrecht: Kluwer.

Herrmann-Abell, C. F., Hardcastle, J., and DeBoer, G. E. (2018). Using Rasch to 
Develop and Validate an Assessment of Students’ Progress on the Energy Concept. 
Paper presented at the annual meeting of the American Educational Research 
Association, New York.

Hou, L., la Torre, J. D., and Nandakumar, R. (2014). Differential item functioning 
assessment in cognitive diagnostic modeling: application of the Wald test to 
investigate DIF in the DINA model. J. Educ. Meas. 51, 98–125. doi: 10.1111/
jedm.12036

Hsu, C. L., and Wang, W. C. (2015). Variable-length computerized adaptive testing 
using the higher order DINA model. J. Educ. Meas. 52, 125–143. doi: 10.1111/
jedm.12069

International Association for the Evaluation of Educational Achievement (IEA) 
(2013). TIMSS 2011 International Database [Data file]. Available at: https://
timssandpirls.bc.edu/timss2011/international-database.html

Jin, H., and Wei, X. (2014). “Using ideas from the history of science and 
linguistics to develop a learning progression for energy in socio-ecological 
systems,” in Teaching and Learning of Energy in K-12 Education. eds. R. F. Chen, A. 
Eisenkraft, D. Fortus, J. Krajcik, K. Neumann and J. Nordine et al. (Cham: 
Springer), 157–173.

Junker, B. W., and Sijtsma, K. (2001). Cognitive assessment models with few 
assumptions, and connections with nonparametric item response theory. Appl. 
Psychol. Meas. 25, 258–272. doi: 10.1177/01466210122032064

Kim, A. Y. (2015). Exploring ways to provide diagnostic feedback with an ESL 
placement test: cognitive diagnostic assessment of L2 reading ability. Lang. Test. 32, 
227–258. doi: 10.1177/0265532214558457

Kunina-Habenicht, O., Rupp, A. A., and Wilhelm, O. (2009). A practical 
illustration of multidimensional diagnostic skills profiling: comparing results from 
confirmatory factor analysis and diagnostic classification models. Stud. Educ. Eval. 
35, 64–70. doi: 10.1016/j.stueduc.2009.10.003

Lacy, S., Tobin, R. G., Wiser, M., and Crissman, S. (2014). Looking through the 
energy lens: a proposed learning progression for energy in grades 3–5. In Robert F. 
Chen, Arthur Eisenkraft, David Fortus, Joseph Krajcik, Knut Neumann and Jeffrey 
Nordine et al. (Eds.), Teaching and Learning of Energy in K-12 Education (pp. 241–
265). Springer, Cham, doi: 10.1007/978-3-319-05017-1_14

Lee, Y. S., de la Torre, J., and Park, Y. S. (2012). Relationships between cognitive 
diagnosis, CTT, and IRT indices: an empirical investigation. Asia Pac. Educ. Rev. 13, 
333–345. doi: 10.1007/s12564-011-9196-3

Lee, H. S., and Liu, O. L. (2010). Assessing learning progression of energy 
concepts across middle school grades: The knowledge integration perspective. Sci. 
Educ. 94, 665–688. doi: 10.1002/sce.20382

Leighton, J. P., and Gierl, M. J. (Eds.). (2007). Cognitive Diagnostic Assessment for 
Education: Theory and Applications. New York: Cambridge University Press.

https://doi.org/10.3389/fpsyg.2022.892884
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.892884/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.892884/full#supplementary-material
https://www.australiancurriculum.edu.au/f-10-curriculum/science
https://www.australiancurriculum.edu.au/f-10-curriculum/science
https://doi.org/10.1016/S0364-0213(80)80010-3
https://doi.org/10.1007/s10763-005-9001-z
https://doi.org/10.1007/s11336-019-09683-4
https://doi.org/10.1080/10627190709336945
https://doi.org/10.3102/1076998607309474
https://doi.org/10.1111/10.1007/s11336-015-9467-8
https://doi.org/10.1007/BF02295640
https://doi.org/10.1002/tea.20316
https://eric.ed.gov/?id=ED544555
https://blogs.worldbank.org/impactevaluations/tools-of-the-trade-when-to-use-those-sample-weights
https://blogs.worldbank.org/impactevaluations/tools-of-the-trade-when-to-use-those-sample-weights
https://doi.org/10.18637/jss.v074.i02
https://doi.org/10.18637/jss.v074.i02
https://doi.org/10.1111/jedm.12036
https://doi.org/10.1111/jedm.12036
https://doi.org/10.1111/jedm.12069
https://doi.org/10.1111/jedm.12069
https://timssandpirls.bc.edu/timss2011/international-database.html
https://timssandpirls.bc.edu/timss2011/international-database.html
https://doi.org/10.1177/01466210122032064
https://doi.org/10.1177/0265532214558457
https://doi.org/10.1016/j.stueduc.2009.10.003
https://doi.org/10.1007/978-3-319-05017-1_14
https://doi.org/10.1007/s12564-011-9196-3
https://doi.org/10.1002/sce.20382


Zhou and Traynor 10.3389/fpsyg.2022.892884

Frontiers in Psychology 12 frontiersin.org

Li, H., Qin, Q., and Lei, P. W. (2017). An examination of the instructional 
sensitivity of the TIMSS math items: A hierarchical differential item functioning 
approach. Educ. Assess. 22, 1–17. doi: 10.1080/10627197.2016.1271702

Liu, X., and McKeough, A. (2005). Developmental growth in students’ concept of 
energy: analysis of selected items from the TIMSS database. J. Res. Sci. Teach. 42, 
493–517. doi: 10.1002/tea.20060

Ma, W., and de la Torre, J. (2016). A sequential cognitive diagnosis model for 
polytomous responses. Br. J. Math. Stat. Psychol. 69, 253–275. doi: 10.1111/
bmsp.12070

Martin, M. O., Mullis, I. V. S., and Hooper, M. (Eds.). (2016). Methods and 
procedures in TIMSS 2015. Boston College: TIMSS & PIRLS International Study 
Center. 

Min, S., and He, L. (2022). Developing individualized feedback for listening 
assessment: combining standard setting and cognitive diagnostic assessment 
approaches. Lang. Test. 39, 90–116. doi: 10.1177/0265532221995475

Mirzaei, A., Vincheh, M. H., and Hashemian, M. (2020). Retrofitting the IELTS 
reading section with a general cognitive diagnostic model in an Iranian EAP 
context. Stud. Educ. Eval. 64:100817. doi: 10.1016/j.stueduc.2019.100817

Moodley, K., and Gaigher, E. (2019). Teaching electric circuits: teachers’ 
perceptions and learners’ misconceptions. Res. Sci. Educ. 49, 73–89. doi: 10.1007/
s11165-017-9615-5

Mullis, I., Martin, M., Ruddock, G., Sullivan, C., and Preuschoff, C. (2009). TIMSS 
2011 Assessment Frameworks. TIMSS & PIRLS International Study Center Lynch 
School of Education, Boston College. Available at: https://timssandpirls.bc.edu/
timss2011/downloads/TIMSS2011_Frameworks.pdf (Accessed July 14, 2022).

National Research Council (NRC). (2007). Taking Science to School: Learning 
and Teaching Science in Grades K-8. Washington, DC: The National 
Academies Press.

Neumann, K., Viering, T., Boone, W. J., and Fischer, H. E. (2013). Towards a 
learning progression of energy. J. Res. Sci. Teach. 50, 162–188. doi: 10.1002/tea.21061

Newman, D. A. (2003). Longitudinal modeling with randomly and 
systematically missing data: a simulation of ad hoc, maximum likelihood, and 
multiple imputation techniques. Organ. Res. Methods 6, 328–362. doi: 
10.1177/1094428103254673

Paik, S. H., Cho, B. K., and Go, Y. M. (2007). Korean 4-to 11-year-old student 
conceptions of heat and temperature. J. Res. Sci. Teach. 44, 284–302. doi: 10.1002/
tea.20174

Peşman, H., and Eryılmaz, A. (2010). Development of a three-tier test to assess 
misconceptions about simple electric circuits. J. Educ. Res. 103, 208–222. doi: 
10.1080/00220670903383002

Popham, J. W. (1971). “Indices of adequacy for criterion-reference test items” in 
Criterion-Referenced Measurement: An Introduction. ed. J. W. Popham (Englewood 
Cliffs, NJ: Educational Technology Publications), 79–98.

Quebec Education Program (QEP) (2009). Progression of Learning Science and 
Technology. Available at: https://stpaulelementary.files.wordpress.com/2019/02/5.4.4_
scitech_en_progressions-of-learning.pdf (Accessed July 14, 2022).

Ramírez, M. J. (2006). Understanding the low mathematics achievement of 
Chilean students: a cross-national analysis using TIMSS data. Int. J. Educ. Res. 45, 
102–116. doi: 10.1016/j.ijer.2006.11.005

Rasch, G. (1966). An item analysis which takes individual differences into account. Br. 
J. Math. Stat. Psychol. 19, 49–57. doi: 10.1111/j.2044-8317.1966.tb00354.x

Ravand, H., and Robitzsch, A. (2015). Cognitive diagnostic modelling using R. 
Pract. Assess. Res. Eval. 20, 1–12. doi: 10.7275/5g6f-ak15

Robitzsch, A., Kiefer, T., George, A. C., Uenlue, A., and Robitzsch, M. A. (2022). 
Package ‘CDM’. Handbook of Diagnostic Classification Models. New York: Springer.

Rupp, A. A., Templin, J., and Henson, R. A. (2010). Diagnostic Measurement: 
Theory, Methods, and Applications. New York: Guilford Press.

Schmidt, W. H., McKnight, C. C., Houang, R. T., Wang, H. C., Wiley, D. E., 
Cogan, L. S., et al. (2001). Why Schools Matter: A Cross-National Comparison of 
Curriculum and Learning. San Francisco, CA: Jossey-Bass.

Schmidt, W. H., Wang, H. C., and McKnight, C. C. (2005). Curriculum coherence: An 
examination of US mathematics and science content standards from an international 
perspective. J. Curric. Stud. 37, 525–559. doi: 10.1080/0022027042000294682

Stapleton, L. M. (2006). An assessment of practical solutions for structural 
equation modeling with complex sample data. Struct. Equ. Model. 13, 28–58. doi: 
10.1207/s15328007sem1301_2

Tang, F., and Zhan, P. (2021). Does diagnostic feedback promote learning? 
Evidence from a longitudinal cognitive diagnostic assessment. AERA Open 7:804. 
doi: 10.1177/23328584211060804

Tatsuoka, K. K. (1983). Rule space: an approach for dealing with misconceptions 
based on item response theory. J. Educ. Meas. 20, 345–354. doi: 10.1111/j.1745- 
3984.1983.tb00212.x

Templin, J. L., and Henson, R. A. (2006). Measurement of psychological disorders 
using cognitive diagnosis models. Psychol. Methods 11, 287–305. doi: 
10.1037/1082-989X.11.3.287

Törnroos, J. (2005). Mathematics textbooks, opportunity to learn and student 
achievement. Stud. Educ. Eval. 31, 315–327. doi: 10.1016/j.stueduc.2005.11.005

Wu, H. M. (2019). Online individualised tutor for improving mathematics 
learning: a cognitive diagnostic model approach. Educ. Psychol. 39, 1218–1232. doi: 
10.1080/01443410.2018.1494819

Xie, Q. (2017). Diagnosing university students’ academic writing in English: is 
cognitive diagnostic modelling the way forward? Educ. Psychol. 37, 26–47. doi: 
10.1080/01443410.2016.1202900

Yao, J. X., Guo, Y. Y., and Neumann, K. (2017). Refining a learning progression of 
energy. Int. J. Sci. Educ. 39, 2361–2381. doi: 10.1080/09500693.2017.1381356

https://doi.org/10.3389/fpsyg.2022.892884
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://doi.org/10.1080/10627197.2016.1271702
https://doi.org/10.1002/tea.20060
https://doi.org/10.1111/bmsp.12070
https://doi.org/10.1111/bmsp.12070
https://doi.org/10.1177/0265532221995475
https://doi.org/10.1016/j.stueduc.2019.100817
https://doi.org/10.1007/s11165-017-9615-5
https://doi.org/10.1007/s11165-017-9615-5
https://timssandpirls.bc.edu/timss2011/downloads/TIMSS2011_Frameworks.pdf
https://timssandpirls.bc.edu/timss2011/downloads/TIMSS2011_Frameworks.pdf
https://doi.org/10.1002/tea.21061
https://doi.org/10.1177/1094428103254673
https://doi.org/10.1002/tea.20174
https://doi.org/10.1002/tea.20174
https://doi.org/10.1080/00220670903383002
https://stpaulelementary.files.wordpress.com/2019/02/5.4.4_scitech_en_progressions-of-learning.pdf
https://stpaulelementary.files.wordpress.com/2019/02/5.4.4_scitech_en_progressions-of-learning.pdf
https://doi.org/10.1016/j.ijer.2006.11.005
https://doi.org/10.1111/j.2044-8317.1966.tb00354.x
https://doi.org/10.7275/5g6f-ak15
https://doi.org/10.1080/0022027042000294682
https://doi.org/10.1207/s15328007sem1301_2
https://doi.org/10.1177/23328584211060804
https://doi.org/10.1111/j.1745-3984.1983.tb00212.x
https://doi.org/10.1111/j.1745-3984.1983.tb00212.x
https://doi.org/10.1037/1082-989X.11.3.287
https://doi.org/10.1016/j.stueduc.2005.11.005
https://doi.org/10.1080/01443410.2018.1494819
https://doi.org/10.1080/01443410.2016.1202900
https://doi.org/10.1080/09500693.2017.1381356

	Measuring students’ learning progressions in energy using cognitive diagnostic models
	Introduction
	Learning progressions of energy
	Instructional sensitivity and science curriculum of primary schools across three jurisdictions

	Materials and methods
	Data
	Variables
	Student level variables
	Country-level variables
	Analysis
	DINA model
	Logistic regression
	Development of the draft Q-matrix and expert review
	Q-matrix validation using real data

	Results
	Q-matrix validation results: Using real data
	Attribute mastery profile across three jurisdictions
	Latent class profiles
	Instructional sensitivity of the selected items after controlling student ability

	Discussion
	Students’ learning progressions in energy across three jurisdictions
	Students’ knowledge mastery patterns for different jurisdiction
	Limitations and future directions

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material

	 References

