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Patient-specific Deformation 
Modelling via Elastography: 
Application to Image-guided 
Prostate Interventions
Yi Wang1, Dong Ni2, Jing Qin3,4, Ming Xu5, Xiaoyan Xie5 & Pheng-Ann Heng1,3

Image-guided prostate interventions often require the registration of preoperative magnetic resonance 
(MR) images to real-time transrectal ultrasound (TRUS) images to provide high-quality guidance. 
One of the main challenges for registering MR images to TRUS images is how to estimate the TRUS-
probe-induced prostate deformation that occurs during TRUS imaging. The combined statistical and 
biomechanical modeling approach shows promise for the adequate estimation of prostate deformation. 
However, the right setting of the biomechanical parameters is very crucial for realistic deformation 
modeling. We propose a patient-specific deformation model equipped with personalized biomechanical 
parameters obtained from shear wave elastography to reliably predict the prostate deformation during 
image-guided interventions. Using data acquired from a prostate phantom and twelve patients with 
suspected prostate cancer, we compared the prostate deformation model with and without patient-
specific biomechanical parameters in terms of deformation estimation accuracy. The results show 
that the patient-specific deformation model possesses favorable model ability, and outperforms the 
model without patient-specific biomechanical parameters. The employment of the patient-specific 
biomechanical parameters obtained from elastography for deformation modeling shows promise for 
providing more precise deformation estimation in applications that use computer-assisted image-
guided intervention systems.

Prostate cancer is the most common noncutaneous cancer and the second leading cause of cancer death in men1. 
Currently, the routine clinical modality for imaging the prostate, especially for image-guided prostate biopsy and 
treatments, is transrectal ultrasound (TRUS) because it is safe, portable, and inexpensive. However, some chal-
lenges still face surgeons when performing TRUS-guided prostate interventions. One of them is how to locate 
the targets accurately, given the poorly distinguishing capability of tumors using TRUS imaging. In practice, 
we can solve this problem either by accurately predicting the prostate deformation and precisely practicing the 
intervention in a simulation before the interventions or by fusing preoperative magnetic resonance (MR) images 
with the TRUS images to increase the accuracy of the interventions. Both of these computer-assisted solutions 
need an accurate model to estimate the prostate deformation so that the surgeons can easily track the targets and 
perform the operation. However, developing such a deformation model is difficult. Deformations of the prostate 
are inevitable and various during TRUS imaging because of the insertion of TRUS probe (see Fig. 1), such diverse 
deformations that occur in TRUS images are difficult to compensate when performing the MR-TRUS registration. 
On the other hand, each patient’s prostate tissue has specific biomechanical properties, especially when there are 
pathological changes within the prostate. Furthermore, different regions of the prostate gland may have different 
biomechanical properties2, making the deformation of this inhomogeneous gland difficult to estimate.
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In the last decade, prostate deformation modeling has been investigated as a solution for image-guided pros-
tate interventions. Two main methodological categories have been studied: biomechanical modeling and statis-
tical modeling. Because it is easy to implement, the mass-spring model (MSM) initially came to dominate the 
biomechanical models3,4. However, MSMs are usually not consistent with the governing equations of biome-
chanical systems and thus could not produce reliable results for deformation estimation. The other stream of bio-
mechanical models uses finite element (FE) methods. Bharatha et al.5 employed a linear elastic materials model 
to estimate the deformation between pre- and intraoperative prostate images. However, linear models cannot 
adequately model large deformations of the prostate6. When non-linear models are applied, the time performance 
of FE methods is usually not satisfactory for intraoperative guidance7. In addition, acquiring patient-specific 
biomechanical parameters to ensure the accuracy of FE models is difficult.

On the other hand, statistical modeling methods have been proposed for predicting the deformation by ana-
lyzing a set of training data and generating a statistical model, which can be applied in real-time applications. 
Dam et al.8 trained the prostate shape model from real patient data. However, collecting training data from a 
large number of patients is very difficult. Later, Hu et al.9 proposed an FE-based statistical motion model (SMM) 
to predict prostate deformation. Unfortunately, the biomechanical parameters that were used to generate the 
deformation instances were randomly sampled within a specific range. This limitation may reduce the robustness 
of this method, especially because pathological changes may cause the biomechanical parameters to be outside 
the predetermined range.

Nevertheless, combining a statistical model with a biomechanical model with patient-specific parameters 
shows promise for achieving an adequate model of prostate deformation. Because collecting a sufficient number 
of representatives of the population as training data is essential for building an effective statistical model but col-
lecting a large number of patient data is often difficult in clinical practice, biomechanical modeling shows promise 
as a way to generate sufficient data for statistical analysis. On the other hand, to achieve a physically appropriate 
biomechanical model, determining the biomechanical parameters of prostate tissue is important10. However, the 
tissue properties of prostate vary from one person to another, and even appear quite distinctive in the different 
prostate zones of the same subject. Traditional methods either employ a specific value obtained from certain 
reports of biomechanical experiments or else apply randomly sampled values within a wide range to build the 
biomechanical model. Unfortunately, neither scheme is sufficient to build an accurate model for a patient-specific 
system. The former is obviously not patient-specific, and the latter is not sufficiently robust, especially when there 
are pathological changes in the prostate. In recent years, shear wave elastography (SWE)2 has emerged as an 
important and widely available imaging modality for lesion detection through tissue elastic variations, and shown 
to be a valuable complementary tool to the conventional TRUS and MR for prostate diagnosis. Unlike conven-
tional elastography methods, which measure relative stiffness, SWE computes the quantitative shear modulus via 
the shear wave propagation velocity through the tissues. Furthermore, compared with traditional elastography 
techniques, SWE is able to measure the quantitative shear modulus with high intra- and inter-observer reproduc-
ibility, and thus is less operator-dependent. Therefore, we employed SWE to measure the in vivo biomechanical 
parameters of the prostate and assigned them to an FE model to form a patient-specific deformation model.

The main contribution of this research is to investigate the impact of employing patient-specific biomechan-
ical parameters obtained from SWE data for prostate deformation modeling, by comparing the performance of 
deformation model constructed with and without patient-specific biomechanical parameters. We further imple-
mented a non-linear elastic material model to describe the non-linear stress-strain behavior of the prostate when 
undergoing TRUS-probe-induced deformations. Details are described in the method section. The experimental 
results show that the patient-specific deformation model outperforms the model without patient-specific biome-
chanical parameters in terms of deformation estimation accuracy.

Results
Impact of biomechanical parameter setting on deformation modeling. The 2D prostate phantom 
images with and without probe induced deformation are shown in Fig. 2. The Young’s modulus of the phantom 
prostate gland is 28 kPa obtained with SWE. The hypoechoic region inside the prostate is a synthetic lesion with 
Young’s modulus of 17 kPa. By adopting these biomechanical values, together with the calculated probe insertion 

Figure 1. MR and TRUS prostate images. (a) MR image and 3D prostate surface model without probe-
induced deformation, (b) TRUS images and 3D surface models with various probe-induced deformations.
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information, the deformation of prostate was modeled and illustrated in Fig. 2(c). The prostate gland, as well as 
the inner lesion region, were deformed more realistically and similarly toward the realistic deformation, whereas 
the modeling deficiency with improper tissue parameter (100 kPa) can be found in Fig. 2(d). On the other hand, 
Fig. 3 shows the Hausdorff distance values between various modeled deformations via different Young’s moduli 
and the realistic deformation. As shown in Fig. 3, the most accurate deformation modeling can be achieved with 
the parameters measured from the SWE. Furthermore, it can be observed that when the Young’s modulus was 
progressively deviated away from the patient-specific value, the modeled deformation also gradually derailed 
from the realistic deformation. It can be found in the Figs 2 and 3 that the use of the phantom-specific parameter 
measured from SWE attains the best modeling result that is closest to the real case.

Impact of patient-specific deformation model on MR-TRUS registration. To illustrate the effect 
of biomechanical parameter setting on the deformation estimation, we systematically perturbed the biomechan-
ical parameters of inner and outer prostate with positive and negative offsets from the SWE measures for the 
model-guided MR-TRUS registration on all the patient data. For the perturbing of outer prostate, the param-
eter of inner prostate was fixed as SWE the measurement, whereas the outer prostate parameter was similarly 
unchanged while perturbing the parameter of inner prostate.

Figure 4 visualizes one target TRUS slice, MR slice and the corresponding registered MR slice obtained using 
the patient-specific deformation model. The detailed relations between the parameter settings on inner and outer 
prostate and resulted registration performances of each patient are listed in Tables 1 and 2. Specifically, the mean 
and standard deviation of TRE values are reported. Table 3 further summarizes the registration performances 
with respect to the changes of inner and outer tissue parameters, and demonstrates the statistical significance 
(p-values of two-tailed student tests) between the registration results of using changed tissue parameter and 
unchanged SWE measurement.

It can be observed from Tables 1 and 2 that the employment of the SWE measures of the inner and outer pros-
tate can averagely yield satisfactory deformation estimation accuracy. It can also be observed from Table 3 that 
for the setting of biomechanical parameters, the performance differences of target registration will be statistically 
significant if the defined parameter is averagely deviated beyond 15 kPa from the SWE measurement.

Figure 2. The deformation modeling on prostate phantom 053-AEF. (a) TRUS prostate image without 
probe-induced deformation, (b) prostate image with the in-plane deformation caused by probe insertion, (c) 
the accurate deformation modeling of the prostate (red) and inner lesion (yellow) by adopting patient-specific 
biomechanical parameters, (d) the mismatched deformation modeling by using improper biomechanical 
parameters.

Figure 3. Comparison of the modeled deformations via different parameter settings and the realistic 
deformation. The blue square denotes the result with the SWE measurements.
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Discussion
We proposed a deformation model for estimating patient-specific prostate deformation during image-guided 
interventions. We employed shear wave elastography to obtain the patient-specific biomechanical parameters. 
Coupled with a non-linear elastic material model, these biomechanical parameters are beneficial for generating a 
realistic deformation model for practical applications. The experimental results demonstrated the superior per-
formance of our proposed deformation model over the traditional model without patient-specific biomechanical 
parameters in terms of deformation estimation accuracy.

Precise measurements of tissue properties have been shown to be crucial for a realistic biomechanical mode-
ling7,10. To demonstrate the necessity of adopting patient-specific parameters for the accurate deformation mod-
eling, we conducted twofold experiments. First, a prostate phantom-based validation experiment was conducted. 
The different deformation results in Fig. 2 demonstrate the importance of setting precise biomechanical param-
eters for deformation modeling. Furthermore, it can be observed from Fig. 3 that the most accurate deformation 
modeling can be attained with the patient-specific parameters, whereas deficient deformation results happened 
when modeling with improper biomechanical parameters. Second, we conducted model-guided MR-TRUS 
registrations to compare the deformation model with and without patient-specific biomechanical parameters 
in terms of deformation estimation accuracy. The comparison results in Tables 1 and 2 demonstrate that the 
patient-specific deformation model with SWE measurement is able to provide the most accurate deformation 
estimation for MR-TRUS registration. Table 3 further demonstrates the performance differences of the MR-TRUS 
registration can be statistically significant if the biomechanical setting is deviated beyond 15 kPa from the 
patient-specific value. Figure 5 displays the Young’s modulus for the inner and outer prostate glands of 10 healthy 
men and 12 patients and shows that the biomechanical parameters vary greatly between the two different prostate 
regions, as well as between different subjects. This further indicates the importance and necessity of employing 
patient-specific biomechanical parameters in deformation estimations.

Although the deformation model we developed in this study was primarily designed for the purpose of esti-
mating prostate deformation, it is a general modeling method that makes use of SWE data and has the potential 
for being applied in other clinical applications for the following reasons. First, shear wave elastography is widely 
utilized in clinical diagnosis and has become a valuable method for imaging the prostate, liver, thyroid, breast, etc., 
complementing conventional ultrasound and MR11. Second, combined biomechanical and statistical modeling 
methods have already been used for estimating the deformation of breast12 and liver13. However, these methods 
often used the same biomechanical properties for different patients, a practice which may lead to an inaccurate 
deformation estimation due to large individual differences. Therefore, since in vivo personalized biomechanical 
parameters can be acquired by readily accessible SWE, our patient-specific deformation modeling method should 
be easily adapted for these clinical applications to improve their accuracy of deformation estimation.

Methods
Data acquisition. Experiments were carried out on the datasets obtained from a prostate phantom and 
twelve patients with suspected prostate cancer at the First Affiliated Hospital of Sun Yat-Sen University. The study 
protocol was reviewed and approved by the Ethics Committee of Sun Yat-Sen University and informed consent 
was obtained from all patients. The methods were carried out in accordance with the approved guidelines. A 
set of MR, TRUS, and SWE data were acquired from each patient. The MR images were applied to construct 
the geometric model of the prostate; the SWE data were employed to obtain the patient-specific biomechanical 
parameters; the TRUS images that showed the deformed prostate were used to evaluate the deformation estima-
tion performance of the proposed deformation model through the MR-TRUS registration. The T2-weighted MR 
images were acquired using a 3.0 Tesla Siemens TrioTim MR-scanner (Erlangen, Germany) with a 32 channels 
body coil. The MR voxel size was 0.625 ×  0.625 ×  3.6 mm3 in x-, y- and z-direction. The 3D TRUS images were 
obtained by a Mindray DC-8 ultrasound system (Shenzhen, China) with an integrated 3D TRUS probe. The 
TRUS voxel size was 0.5 ×  0.5 ×  0.5 mm3 in x-, y- and z-direction. The shear wave elastography images were 
acquired using a Supersonic Aixplorer (Aix-en-Provence, France) ultrasound system. The Supersonic Aixplorer 
provides the Q-Box tool which can calculate the average Young’s modulus within an operator selected region. The 
average Young’s moduli of inner and outer prostate were obtained separately by sampling several Q-Boxes within 
the corresponding glands. To ensure the accuracy, the Q-Boxes were selected by experienced doctors.

Figure 4. Example slices: (a) the TRUS image, (b) the MR image, (c) the registered MR image using our 
deformation model.
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Patient-specific biomechanical modeling. Our modeling framework consisted of two steps (see Fig. 6). 
We first constructed a patient-specific biomechanical model based on anatomical meshes derived from MR 
images and biomechanical parameters acquired from ultrasound elastography. Then, we used principal com-
ponent analysis (PCA) to generate a statistical deformation model from a set of patient-specific biomechanical 
models with randomly sampled boundary conditions.

When undergoing image-guided interventions, the prostate often deforms, primarily due to the insertion 
of the TRUS probe. Previous mass-spring and finite element methods modeled using linear elastic models have 
not been able to simulate such large deformations. In our implementation, we assumed that the involved tissues 
are elastic/hyperelastic isochoric materials and employed a neo-Hookean model to formulate the biomechanical 
behaviors of the prostate. Many studies have applied this model to predict the non-linear stress-strain behaviors 

Patient Case 1: Young’s modulus of outer prostate =  26 kPa

  Young’s modulus of inner 
prostate (kPa) 32 37 42 47 52 57 62 97 147 197 247

 TRE: mean (SD) 2.76 (0.45) 2.40 (0.47) 2.32 (0.46) 2.22 (0.54) 2.22 (0.55) 2.39 (0.43) 2.47 (0.45) 2.62 (0.52) 2.72 (0.58) 2.88 (0.68) 3.01 (0.71)

Patient Case 2: Young’s modulus of outer prostate =  19 kPa

  Young’s modulus of inner 
prostate (kPa) 15 20 25 30 35 40 45 80 130 180 230

 TRE: mean (SD) 3.05 (0.45) 2.56 (0.41) 2.18 (0.40) 2.07 (0.43) 2.16 (0.42) 2.23 (0.42) 2.31 (0.42) 2.58 (0.37) 2.73 (0.38) 2.76 (0.40) 2.93 (0.47)

Patient Case 3: Young’s modulus of outer prostate =  25 kPa

  Young’s modulus of inner 
prostate (kPa) 7 42 47 52 57 62 67 72 107 157 207

 TRE: mean (SD) 2.73 (0.46) 2.04 (0.19) 1.90 (0.19) 1.80 (0.14) 1.55 (0.36) 1.77 (0.21) 1.87 (0.24) 1.94 (0.30) 2.09 (0.24) 2.16 (0.25) 2.22 (0.27)

Patient Case 4: Young’s modulus of outer prostate =  16 kPa

  Young’s modulus of inner 
prostate (kPa) 25 75 110 115 120 125 130 135 140 175 225

 TRE: mean (SD) 2.78 (0.32) 2.55 (0.27) 2.30 (0.28) 2.22 (0.29) 2.17 (0.30) 2.13 (0.31) 2.18 (0.30) 2.28 (0.28) 2.37 (0.27) 2.61 (0.28) 2.71 (0.26)

Patient Case 5: Young’s modulus of outer prostate =  26 kPa

  Young’s modulus of inner 
prostate (kPa) 9 44 49 54 59 64 69 74 109 159 209

 TRE: mean (SD) 2.75 (0.23) 2.30 (0.32) 2.19 (0.26) 2.11 (0.31) 2.07 (0.29) 2.15 (0.22) 2.18 (0.23) 2.29 (0.22) 2.42 (0.27) 2.49 (0.26) 2.55 (0.31)

Patient Case 6: Young’s modulus of outer prostate =  18 kPa

  Young’s modulus of inner 
prostate (kPa) 28 33 38 43 48 53 58 93 143 193 243

 TRE: mean (SD) 2.44 (0.37) 2.30 (0.38) 2.12 (0.31) 2.10 (0.33) 2.21 (0.27) 2.19 (0.32) 2.25 (0.31) 2.30 (0.38) 2.32 (0.40) 2.39 (0.41) 2.44 (0.35)

Patient Case 7: Young’s modulus of outer prostate =  39 kPa

  Young’s modulus of inner 
prostate (kPa) 44 79 84 89 94 99 104 109 144 194 244

 TRE: mean (SD) 2.33 (0.35) 2.05 (0.31) 2.01 (0.36) 1.93 (0.33) 1.88 (0.33) 1.92 (0.30) 1.97 (0.29) 2.03 (0.32) 2.30 (0.31) 2.33 (0.28) 2.45 (0.28)

Patient Case 8: Young’s modulus of outer prostate =  10 kPa

  Young’s modulus of inner 
prostate (kPa) 11 16 21 26 31 36 41 76 126 176 226

 TRE: mean (SD) 2.42 (0.23) 2.35 (0.22) 2.31 (0.24) 2.22 (0.22) 2.19 (0.24) 2.29 (0.22) 2.35 (0.20) 2.41 (0.22) 2.49 (0.22) 2.53 (0.18) 2.57 (0.20)

Patient Case 9: Young’s modulus of outer prostate =  16 kPa

  Young’s modulus of inner 
prostate (kPa) 5 10 15 20 25 30 65 115 165 215

 TRE: mean (SD) 2.22 (0.44) 2.19 (0.42) 2.19 (0.44) 2.25 (0.45) 2.28 (0.46) 2.28 (0.45) 2.35 (0.45) 2.39 (0.43) 2.45 (0.45) 2.52 (0.50)

Patient Case 10: Young’s modulus of outer prostate =  14 kPa

  Young’s modulus of inner 
prostate (kPa) 34 39 44 49 54 59 64 99 149 199 249

 TRE: mean (SD) 2.12 (0.28) 2.11 (0.30) 2.05 (0.26) 2.02 (0.28) 2.05 (0.28) 2.11 (0.28) 2.08 (0.32) 2.16 (0.28) 2.20 (0.33) 2.28 (0.32) 2.28 (0.31)

Patient Case 11: Young’s modulus of outer prostate =  21 kPa

  Young’s modulus of inner 
prostate (kPa) 14 49 54 59 64 69 74 79 114 164 214

 TRE: mean (SD) 2.62 (0.49) 2.32 (0.47) 2.31 (0.43) 2.29 (0.46) 2.22 (0.48) 2.23 (0.45) 2.27 (0.44) 2.31 (0.47) 2.47 (0.46) 2.45 (0.47) 2.53 (0.44)

Patient Case 12: Young’s modulus of outer prostate =  30 kPa

  Young’s modulus of inner 
prostate (kPa) 26 61 66 71 76 81 86 91 126 176 226

 TRE: mean (SD) 2.41 (0.32) 2.15 (0.35) 2.10 (0.35) 2.07 (0.37) 2.05 (0.36) 2.06 (0.32) 2.08 (0.32) 2.13 (0.33) 2.24 (0.36) 2.29 (0.35) 2.41 (0.33)

Table 1.  Detailed relations between the biomechanical parameter settings of inner prostate and the 
registration performances on each patient data. Values in bold italic represent the Young’s modulus measured 
by SWE.
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of materials undergoing large deformations14. We briefly introduce this model and its key parameters here; read-
ers can refer to14 for more details. In the neo-Hookean model, the strain energy density Ws is formulated as:

= − + −W G I K JC1
2

( ( ) 3) 1
2

( 1) (1)s elel1
2

where Cel is the isochoric-elastic right Cauchy-Green deformation tensor, I C( )el1  is the first invariant of Cel and is 
equal to the trace of Cel, Jel is the elastic volume ratio, G is the shear modulus and K is the bulk modulus. The 
I C( )el1  and Jel can be calculated from the elastic deformation tensor Fel:

Patient Case 1: Young’s modulus of inner prostate =  47 kPa

  Young’s modulus of outer 
prostate (kPa) 11 16 21 26 31 36 41 76 126 176 226

 TRE: mean (SD) 2.48 (0.50) 2.34 (0.47) 2.20 (0.43) 2.22 (0.54) 2.26 (0.45) 2.37 (0.49) 2.49 (0.51) 2.92 (0.65) 2.97 (0.69) 3.08 (0.78) 3.08 (0.87)

Patient Case 2: Young’s modulus of inner prostate =  30 kPa

  Young’s modulus of outer 
prostate (kPa) 4 9 14 19 24 29 34 69 119 169 219

 TRE: mean (SD) 2.78 (0.56) 2.49 (0.37) 2.28 (0.38) 2.07 (0.43) 2.00 (0.36) 2.37 (0.41) 2.58 (0.40) 2.97 (0.33) 3.04 (0.35) 3.26 (0.35) 3.36 (0.33)

Patient Case 3: Young’s modulus of inner prostate =  57 kPa

  Young’s modulus of outer 
prostate (kPa) 10 15 20 25 30 35 40 75 125 175 225

 TRE: mean (SD) 1.85 (0.26) 1.78 (0.23) 1.68 (0.25) 1.55 (0.36) 1.73 (0.25) 1.86 (0.26) 1.89 (0.35) 2.26 (0.32) 2.27 (0.44) 2.40 (0.37) 2.38 (0.60)

Patient Case 4: Young’s modulus of inner prostate =  125 kPa

  Young’s modulus of outer 
prostate (kPa) 1 6 11 16 21 26 31 66 116 166 216

 TRE: mean (SD) 2.33 (0.33) 2.21 (0.28) 2.16 (0.28) 2.13 (0.31) 2.18 (0.40) 2.22 (0.34) 2.34 (0.33) 2.49 (0.26) 2.78 (0.32) 2.85 (0.33) 2.92 (0.31)

Patient Case 5: Young’s modulus of inner prostate =  59 kPa

  Young’s modulus of outer 
prostate (kPa) 11 16 21 26 31 36 41 76 126 176 226

  TRE: mean (SD) 2.25 (0.27) 2.15 (0.27) 2.09 (0.29) 2.07 (0.29) 2.09 (0.26) 2.14 (0.30) 2.20 (0.27) 2.58 (0.33) 2.63 (0.36) 2.69 (0.31) 2.77 (0.42)

Patient Case 6: Young’s modulus of inner prostate =  43 kPa

  Young’s modulus of outer 
prostate (kPa) 3 8 13 18 23 28 33 68 118 168 218

  TRE: mean (SD) 2.43 (0.33) 2.26 (0.33) 2.18 (0.29) 2.10 (0.33) 2.14 (0.33) 2.43 (0.27) 2.59 (0.26) 2.64 (0.28) 2.68 (0.33) 2.75 (0.37) 2.81 (0.40)

Patient Case 7: Young’s modulus of inner prostate =  94 kPa

  Young’s modulus of outer 
prostate (kPa) 24 29 34 39 44 49 54 89 139 189 239

 TRE: mean (SD) 2.01 (0.35) 1.98 (0.34) 1.90 (0.27) 1.88 (0.33) 1.93 (0.23) 1.95 (0.31) 2.01 (0.29) 2.28 (0.27) 2.32 (0.26) 2.37 (0.25) 2.42 (0.25)

Patient Case 8: Young’s modulus of inner prostate =  26 kPa

  Young’s modulus of outer 
prostate (kPa) 5 10 15 20 25 60 110 160 210

 TRE: mean (SD) 2.24 (0.18) 2.22 (0.22) 2.27 (0.25) 2.42 (0.23) 2.58 (0.17) 2.63 (0.19) 2.67 (0.18) 2.64 (0.23) 2.76 (0.22)

Patient Case 9: Young’s modulus of inner prostate =  15 kPa

  Young’s modulus of outer 
prostate (kPa) 1 6 11 16 21 26 31 66 116 166 216

 TRE: mean (SD) 2.31 (0.40) 2.27 (0.44) 2.27 (0.45) 2.19 (0.44) 2.20 (0.47) 2.26 (0.47) 2.27 (0.45) 2.31 (0.47) 2.38 (0.43) 2.45 (0.39) 2.46 (0.39)

Patient Case 10: Young’s modulus of inner prostate =  49 kPa

  Young’s modulus of outer 
prostate (kPa) 4 9 14 19 24 29 64 114 164 214

 TRE: mean (SD) 2.09 (0.27) 2.06 (0.28) 2.02 (0.28) 2.03 (0.28) 2.07 (0.25) 2.09 (0.26) 2.35 (0.20) 2.40 (0.22) 2.40 (0.17) 2.52 (0.09)

Patient Case 11: Young’s modulus of inner prostate =  64 kPa

  Young’s modulus of outer 
prostate (kPa) 6 11 16 21 26 31 36 71 121 171 221

 TRE: mean (SD) 2.31 (0.44) 2.25 (0.43) 2.21 (0.40) 2.22 (0.48) 2.27 (0.44) 2.28 (0.44) 2.31 (0.46) 2.79 (0.37) 2.87 (0.40) 2.92 (0.41) 3.00 (0.41)

Patient Case 12: Young’s modulus of inner prostate =  76 kPa

  Young’s modulus of outer 
prostate (kPa) 15 20 25 30 35 40 45 80 130 180 230

 TRE: mean (SD) 2.35 (0.34) 2.23 (0.35) 2.13 (0.34) 2.05 (0.36) 2.07 (0.33) 2.11 (0.37) 2.17 (0.32) 2.32 (0.33) 2.56 (0.34) 2.63 (0.33) 2.75 (0.35)

Table 2.  Detailed relations between the biomechanical parameter settings of outer prostate and the 
registration performances on each patient data. Values in bold italic represent the Young’s modulus measured 
by SWE.
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=J Fdet( ) (2)el el

= = −I J IC C C( ) trace( ) ( ) (3)elel el el1
2/3

1

where Cel =  Fel
TFel, is the elastic right Cauchy-Green deformation tensor and = ∇ +F u Iel  (u is the displacement 

vector and I is the unit matrix). On the other hand, with the strain energy density Ws, the second Piola-Kirchhoff 
stress can be calculated as:

=
∂
∂
.

WS
C

2
(4)

s

el

Finally, the displacement u can be figured out from the S via Ws. Combining equations (1–4), it is clearly that 
the specific deformation of the prostate can be calculated given the patient-specific biomechanical parameters 
(G and K) and the boundary conditions (prostate geometry and external forces). Details of the implementation 
follow.

Assigning an accurate shear modulus G and bulk modulus K to the solver is essential. These two moduli are 
material-dependent and can be calculated by Young’s modulus E and Poisson’s ratio ν:

Inner prostate Outer prostate

Young’s 
moduli 
offsets 
(kPa)

TRE: mean 
(SD)

t-test: p-
value

TRE: mean 
(SD)

t-test: p-
value

− 100 2.78 (0.32) 0.0018 – –

− 50 2.54 (0.36) 1.97E-07 – –

− 15 2.37 (0.45) 0.0001 2.32 (0.44) 0.0013

− 10 2.23 (0.38) 0.0196 2.20 (0.37) 0.0599

− 5 2.13 (0.35) 0.3216 2.12 (0.34) 0.3854

0 2.07 (0.38) 1.0 2.07 (0.38) 1.0

5 2.12 (0.35) 0.4462 2.10 (0.35) 0.5962

10 2.18 (0.34) 0.0778 2.21 (0.37) 0.0392

15 2.24 (0.35) 0.0100 2.29 (0.39) 0.0015

50 2.39 (0.37) 4.79E-06 2.55 (0.41) 4.32E-10

100 2.46 (0.39) 1.33E-07 2.65 (0.43) 1.5E-12

150 2.51 (0.41) 2.07E-08 2.72 (0.46) 3.67E-14

200 2.66 (0.51) 1.03E-6 2.79 (0.49) 2.88E-15

Table 3.  The registration performances with respect to the changes of inner and outer prostate parameters. 
The p-values of student tests demonstrate the statistical significance between the registration results of using 
changed parameter and unchanged SWE measurement.

Figure 5. Variation in the Young’s moduli of the inner and outer prostate glands from different men. The 
black squares denote healthy men, and the red dots denote patients with suspected prostate cancer.
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ν
=

+
G E

2(1 ) (5)

and

ν
=

−
.K E

3(1 2 ) (6)

For the Poisson’s ratio ν, we assume that the prostate is nearly incompressible and simply set it to be a constant 
0.49515. However, acquiring an accurate Young’s modulus E for a specific patient can be challenging, especially 
because different regions of the prostate have different biomechanical characteristics. In addition, these proper-
ties vary from patient to patient2. In this research we employed quantitative shear wave elastography (SWE)16 to 
obtain a patient-specific Young’s modulus of the prostate. Figure 7 shows the prostate shear wave elastography 
images from two patients. The stiffness of the inner and outer glands is obviously different, but within either the 
inner or outer gland, the change in stiffness is quite small. In addition, the stiffness of the prostate varied greatly 
from patient to patient. These observations are consistent with a previous study on the biomechanical proper-
ties of the prostate2. We obtained the Young’s modulus for the inner and outer glands of each patient from the 
acquired SWE data by averaging the Young’s modulus values within the inner gland and within the outer gland. 
Finally, the shear modulus G and bulk modulus K were calculated and assigned to the neo-Hookean model.

To obtain the information for the geometric model, we segmented the prostate and bladder gland using data 
from MR images via an interactive segmentation software: SmartPaint17. In clinical practice, the prostate is usu-
ally divided into two parts: the inner gland and the outer gland, which have obviously different biomechanical 
properties. For this reason, in order to model the biomechanical behaviors of the prostate more accurately, an 
experienced physician further segmented and refined the outer and inner gland regions. The refined segmen-
tation results were converted into triangulated surface meshes using an adaptive skeleton climbing method18, 
which can overcome the gap-filling problem in traditional marching cubes algorithms. Then the noise on the 
surface meshes was removed by employing a recently developed coarse-to-fine normal filtering scheme19. Thus, 
patient-specific geometric models with accurate anatomic features and relationships were generated.

Figure 6. Workflow of patient-specific deformation modeling. 

Figure 7. Prostate shear wave elastography images from two patient. The + Q-Box and × Q-Box located 
in the inner and outer glands, respectively, yielded considerably different stiffness measures. The stiffness also 
varied greatly from patient to patient.
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The boundary conditions define the external forces and restrictions exerted on the prostate during 
TRUS-guided interventions. The insertion of the TRUS probe is the main cause of prostate deformation. To real-
istically model the interactions between the TRUS probe and the prostate, the front end of the TRUS probe was 
reconstructed based on its physical shape. Then the prostate and 3D TRUS probe models were set as mechanical 
contact pairs in our implementation. Other boundary conditions, such as the patient’s position and the pelvic 
bone surface, have little influence on the deformation of the prostate20. Therefore, we did not consider these 
boundary conditions in our implementation.

We employed COMSOL, an FE analysis software, to calculate the deformation of the prostate. We input the 
governing equations and the material-dependent parameters to the non-linear FE solver embedded in COMSOL. 
In our implementation environment, each deformation modeling took about 15 seconds to calculate the mesh 
displacement.

Combined statistical and biomechanical modeling. Although the anatomic geometry and biome-
chanical parameters are patient-specific for deformation modeling, the conditions of the TRUS probe insertion 
are very difficult to measure in vivo. To this end, we further employed the statistical modeling method to analyze 
the deformations under different probe insertion situations. To collect data that was representative of the pop-
ulation for statistical modeling, we conducted Q (Q =  100 is an empirical value in our implementation) biome-
chanical modelings for each patient using the same anatomic model and biomechanical parameters, but different 
settings for the probe insertion conditions. Through such personalized biomechanical modeling, each modeled 
result was able to efficiently represent the patient-specific prostate deformation induced by a particular insertion 
of the TRUS probe. Afterwards, the patient-specific deformation model for each patient was calculated by statis-
tically analyzing the Q modeled deformation instances using PCA method.

Validation of the impact of patient-specific biomechanical parameter setting on deformation 
modeling. Two experiments were conducted to validate the impact of patient-specific biomechanical param-
eter setting on deformation modeling.

Impact of biomechanical parameter setting on deformation modeling. To analyze the effect of the biomechanical 
parameter setting on the accuracy of deformation modeling, a validation experiment was first carried on one 
prostate phantom Model 053-AEF (CIRS, Norfolk, USA). Two specific TRUS image sets were acquired for the 
quantitative analysis on the efficacy of using patient-specific biomechanical parameters. First, one TRUS prostate 
image set, denoted as P1, without probe-induced deformation was obtained and manually segmented as the basis 
for the parameterized deformation modeling. The other TRUS image set (P2) was acquired with the in-plane 
deformation caused by the probe insertion. The position of the TRUS probe was recorded by the electromagnetic 
tracking sensor attached to the probe, thus the probe movement information can be accurately calculated. Our 
objective is to illustrate that whether the deformation modeling result on P1 by adopting patient-specific bio-
mechanical parameters is similar to the realistic prostate deformation on P2. To quantitatively demonstrate the 
influence of the biomechanical parameter setting for deformation modeling, eight uniformly sampled elasticity 
values from a specific range ([9, 230] kPa) of tissue parameter as recommended in Hu’s work9 were used to gener-
ate the respective deformation results. Meanwhile, the deformation modeling with the biomechanical parameter 
measured with SWE was also performed. We further compared the realistic deformation (P2) and the modeling 
results with the Hausdorff distance that can quantitatively illustrate the differences between the modeled and 
realistic phantom boundaries.

Application to MR-TRUS registration for prostate interventions. We employed the patient-specific deforma-
tion model to perform model-guided MR-TRUS registration21 on twelve patients, which is of high interest in 
image-guided intervention systems, to evaluate its ability to estimate the deformation. Given the manually seg-
mented TRUS and MR prostate surface point sets, we integrated the patient-specific deformation model into a 
robust point matching (RPM) framework22 to register MR surface with TRUS surface in order to realize the vol-
umetric prostate deformation. The registration algorithm proceeds by (1) establishing correspondence between 
MR and TRUS surface point sets using RPM, and (2) by estimating the deformation required to register the 
corresponding surface points using proposed deformation model. Processes (1) and (2) are embedded within 
an annealing scheme to dually update for registering MR surface with TRUS surface. The dual process is ended 
until certain Temperature is reached. Finally, based on the registered surfaces, the MR images can be warped to 
the TRUS images.

The target registration error (TRE)23, defined as the Euclidean distance between corresponding, 
manually-identified intrinsic landmarks in MR and TRUS images, was measured to evaluate the accuracy of the 
model-based registration. All the landmarks used for the TRE calculation were manually extracted by a urological 
physician with extensive experience in interpreting MR and TRUS prostate images. The locations of centers that 
corresponded to small nodules, cysts, and calcifications inside the prostate were selected as landmarks in both 
the MR and TRUS images. For each patient, 4–6 pairs of corresponding landmarks were manually extracted. And 
totally 61 pairs of landmarks were extracted from twelve patients for the TRE calculation.
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