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Abstract: Systemic juvenile idiopathic arthritis (sJIA) is a rare subtype of juvenile idiopathic arthritis,
whose clinical features are systemic fever and rash accompanied by painful joints and inflammation.
Even though sJIA has been reported to be an autoinflammatory disorder, its exact pathogenesis
remains unclear. In this study, we integrated a meta-analysis with a weighted gene co-expression net-
work analysis (WGCNA) using 5 microarray datasets and an RNA sequencing dataset to understand
the interconnection of susceptibility genes for sJIA. Using the integrative analysis, we identified a
robust sJIA signature that consisted of 2 co-expressed gene sets comprising 103 up-regulated genes
and 25 down-regulated genes in sJIA patients compared with healthy controls. Among the 128 sJIA
signature genes, we identified an up-regulated cluster of 11 genes and a down-regulated cluster
of 4 genes, which may play key roles in the pathogenesis of sJIA. We then detected 10 bioactive
molecules targeting the significant gene clusters as potential novel drug candidates for sJIA using an
in silico drug repositioning analysis. These findings suggest that the gene clusters may be potential
genetic markers of sJIA and 10 drug candidates can contribute to the development of new therapeutic
options for sJIA.

Keywords: systemic juvenile idiopathic arthritis; meta-analysis; weighted gene co-expression net-
work analysis (WGCNA); drug repositioning

1. Introduction

Juvenile idiopathic arthritis (JIA) is one of the most common rheumatic disorders in
children, with an incidence of 9.66/million/year in the United Kingdom between 2000–
2018 [1]. JIA is characterized by clinical manifestations such as swelling, painful joints,
and inflammation [2]. Systemic JIA (sJIA) is a rare form comprising 10–20% of JIA cases
and it presents with unique clinical features, such as systemic spiking fevers and rashes,
compared with the other subtypes [3]. It was previously reported that dysregulated innate
immune responses are prominent in sJIA patients and pro-inflammatory cytokines play
crucial roles in the manifestations of sJIA [4]. As such, sJIA is currently considered to
be an autoinflammatory disease; however, its complex pathogenesis has not yet been
completely understood.

The prognosis of sJIA among other subtypes is known to be the worst in terms of
complications and treatment response [5]. Thus, sJIA accounts for a large percentage of
mortality occurring in JIA patients, even though it is a rare subtype of JIA [6]. It has
been reported that severe complications, such as macrophage activation syndrome (MAS),
are associated with the high mortality rate of sJIA [6]. MAS is a life-threatening condi-
tion characterized by the excessive activation of T cells and macrophages, resulting in
hepatosplenomegaly, lymphadenopathy, cytopenia, coagulopathy, serious liver disease,
and kidney failure [7,8]. These fatal complications amplify the need to understand the
underlying biological mechanisms of sJIA.
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With the advancement of microarray and high-throughput sequencing technologies,
previous studies identified differentially expressed genes (DEGs) to unravel genetic factors
contributing to the etiology of sJIA [9–11]. Several genes, such as interleukin 1 (IL-1), inter-
leukin 6 (IL-6), and tumor necrosis factor-α (TNF-α) have been identified to be involved in
sJIA [9,12]. The majority of DEG studies tend to depend on comprehending the expression
profiles of individual genes without accounting for the co-regulation and interactions
between genes. However, understanding the intricate interconnection of genes as a unit
of a gene set is important in discovering bona fide risk factors. Co-expression network
analysis that puts similar gene expression profiles together can be used for determining a
set of genes that are simultaneously active in a specific biological process [13]. By applying
this analysis to sJIA, thousands of genes can be clustered into co-expression gene sets that
may be involved in biologically meaningful pathways.

Along with the transcriptome studies, various treatment options have been developed
to manage the clinical symptoms of sJIA, the most commonly used medications being
methotrexate, canakinumab, and TNF inhibitors [11,14]. Biological therapies targeting IL-1
and IL-6 are also commonly used for sJIA; however, these therapies have limitations as
they only aim to alleviate clinical symptoms and, more seriously, may even promote the
development of MAS in some patients [15]. Due to these limitations, there is an increasing
demand for new drug candidates and new therapeutic options.

In this study, we report the meta-analysis combining multiple microarray datasets
from different studies of sJIA for the first time, and the results were confirmed by using
an NGS sequencing dataset. Then, co-expression modules that are regarded as clusters
of correlated genes were identified using a co-expression network via weighted gene
co-expression network analysis (WGCNA) [16]. By integrating the meta-analysis and
WGCNA, we were able to obtain robust gene sets made up of positively co-expressed genes
as potential genetic markers. Finally, we conducted an in silico drug repositioning analysis
to suggest potential drug candidates for sJIA. We believe that our results may provide
information on the pathogenesis of sJIA and offer insights into key processes associated
with its progression.

2. Results
2.1. Identification of a Meta-Signature in Human sJIA Datasets

To identify robust genetic markers from multiple gene expression datasets, so-called
the meta-signature, involved in the pathogenesis of sJIA, a total of 5 microarray datasets,
consisting of 81 sJIA patients and 176 healthy control subjects, were collected from the NCBI
gene expression omnibus (GEO) (Table 1). Since all of the datasets came from independent
studies, batch effects from non-biological variations were adjusted using the sva R package
and the total datasets were merged [17,18]. We then performed a principal component
analysis (PCA) with the merged dataset to examine whether the tissue source or platform of
each dataset resulted in variances of gene expression patterns between samples. The result
showed that the gene expression pattern of the merged dataset was mainly classified
into sJIA patients and healthy control subjects by disease state, regardless of the tissue
source and/or the platform. (Figure S1). We conducted a meta-analysis on the merged
microarray dataset and detected DEGs by comparing the expression levels between the
sJIA group and the control group. We identified 599 genes as DEGs (false discovery rate,
FDR < 0.05), made up of 497 up-regulated genes (log2(fold change), log2FC > 0.5) and 102
down-regulated genes (log2FC < −0.5) (Figure 1A). Comparing the DEGs from individual
studies and the meta-analysis revealed that the meta-analysis detected 13 significant genes
that were not detected in single studies (Figure S2 and Table S1).
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Figure 1. Identification of a meta-signature for systemic juvenile idiopathic arthritis (sJIA). (A) A 
volcano plot showing differentially expressed genes (DEGs) derived from a meta-analysis using 
microarray datasets. Red and blue dots represent 497 up-regulated genes and 102 down-regulated 
genes, respectively. The grey dashed vertical and horizontal lines indicate the significance thresh-
olds of log2FC (|log2FC| > 0.5) and false discovery rate (FDR) (FDR < 0.05), respectively. (B) A vol-
cano plot showing DEGs obtained from the RNA-seq dataset. Red and blue dots represent 1041 up-
regulated genes and 253 down-regulated genes, respectively. The grey dashes indicate the same 
significant thresholds as in (A). (C) A Venn diagram showing the overlap between DEGs identified 
by the meta-analysis using microarray datasets and the analysis of the RNA-seq dataset. (D) A 
heatmap showing expression patterns of the meta-signature between 81 sJIA and 176 control sam-
ples after adjusting for batch effects from five microarray datasets. Rows and columns indicate each 
gene in the meta-signature and individual samples, respectively. (E) A heatmap showing the ex-
pression profiles of the meta-signature between 26 sJIA and 12 control samples from the RNA-seq 
dataset. 

2.2. Selecting Co-Expressed Gene Sets from the Meta-Signature as the sJIA Signature 
To comprehend the gene expression profiles in a set of interconnected genes across 

the sJIA and control samples, we constructed a co-expression network using the merged 
microarray dataset and WGCNA R package [16]. A soft-thresholding power (β) of 14 was 
selected for the network construction (scale-free r2 = 0.9) (Figure S3). Based on the network, 
the genes with similar expression profiles were clustered into a co-expression module (r > 
0.85). As a result, we identified 23 co-expression modules consisting of genes that had 
highly-correlated expression patterns (Figure 2A). The genes in each co-expression mod-
ule are listed in Table S3. To examine whether the clustering patterns of the modules are 
recapitulated in the RNA-seq dataset, we performed a module preservation analysis using 

Figure 1. Identification of a meta-signature for systemic juvenile idiopathic arthritis (sJIA). (A) A
volcano plot showing differentially expressed genes (DEGs) derived from a meta-analysis using
microarray datasets. Red and blue dots represent 497 up-regulated genes and 102 down-regulated
genes, respectively. The grey dashed vertical and horizontal lines indicate the significance thresholds
of log2FC (|log2FC| > 0.5) and false discovery rate (FDR) (FDR < 0.05), respectively. (B) A volcano
plot showing DEGs obtained from the RNA-seq dataset. Red and blue dots represent 1041 up-
regulated genes and 253 down-regulated genes, respectively. The grey dashes indicate the same
significant thresholds as in (A). (C) A Venn diagram showing the overlap between DEGs identified by
the meta-analysis using microarray datasets and the analysis of the RNA-seq dataset. (D) A heatmap
showing expression patterns of the meta-signature between 81 sJIA and 176 control samples after
adjusting for batch effects from five microarray datasets. Rows and columns indicate each gene in the
meta-signature and individual samples, respectively. (E) A heatmap showing the expression profiles
of the meta-signature between 26 sJIA and 12 control samples from the RNA-seq dataset.

To validate whether the DEGs are also consistently detected in the NGS sequenc-
ing data, we selected an RNA sequencing (RNA-seq) dataset with 26 sJIA patients and
12 healthy controls from NCBI GEO (Table 1). We analyzed the RNA-seq dataset and
found 1294 DEGs (FDR < 0.05) comprising 1041 up-regulated genes (log2FC > 0.5) and 253
down-regulated genes (log2FC < −0.5) (Figure 1B). Then, we identified 261 common DEGs
that were simultaneously and significantly detected in the meta-analysis and the analy-
sis of the RNA-seq dataset (Figure 1C). Among the 261 DEGs in the merged microarray
dataset, 224 genes were up-regulated (log2FC > 0.5) and 37 genes were down-regulated
(log2FC < −0.5) (Figure 1D). For the 261 DEGs in the RNA-seq dataset, 225 genes were
up-regulated (log2FC > 0.5) and 36 genes were down-regulated (log2FC < −0.5) (Figure 1E).
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Among the 261 genes, we defined 260 genes as the meta-signature of mRNA expression
for sJIA (Table S2). One gene was excluded from the 261 genes to improve the consistency
of the data because it was regulated differently in the merged microarray dataset and the
RNA-seq dataset. Together, we obtained a highly robust meta-signature that could be a
representative gene set for sJIA.

Table 1. Information on gene expression omnibus (GEO) gene expression datasets used for this study.

Data Type GEO ID Tissue Source Platform Control/
Disease Total PMID

Microarray

GSE21521

Peripheral blood
mononuclear cells

(PBMCs)

Affymetrix Human
Genome U133 Plus 2.0

28/17 45 20576155 [19]

GSE20307 56/20 76 20662067 [20]

GSE13501 59/21 80 19565513 [21]

GSE7753 30/17 47 17968951 [22]

GSE57183
Whole blood

Illumina HumanHT-12
V4.0 expression beadchip 3/6 9 26267155 [23]

RNA-seq GSE112057 Illumina HiSeq 2000 12/26 38 29950172 [24]

Total - - - 188/107 295 -

2.2. Selecting Co-Expressed Gene Sets from the Meta-Signature as the sJIA Signature

To comprehend the gene expression profiles in a set of interconnected genes across
the sJIA and control samples, we constructed a co-expression network using the merged
microarray dataset and WGCNA R package [16]. A soft-thresholding power (β) of 14 was
selected for the network construction (scale-free r2 = 0.9) (Figure S3). Based on the network,
the genes with similar expression profiles were clustered into a co-expression module
(r > 0.85). As a result, we identified 23 co-expression modules consisting of genes that
had highly-correlated expression patterns (Figure 2A). The genes in each co-expression
module are listed in Table S3. To examine whether the clustering patterns of the modules
are recapitulated in the RNA-seq dataset, we performed a module preservation analysis
using the original dataset as a reference set and the RNA-seq dataset as a test set [25].
The clustering of 22 out of 23 modules from the original dataset was recapitulated in the
test set (Z-summary score > 2) (Figure S4). Among the 22 modules, 13 modules were highly
preserved in the RNA-seq dataset (Z-summary score > 10). Together, the results suggested
that the co-expression gene sets were successfully identified and could be applied across
the microarray and RNA-seq datasets of sJIA.

To identify co-expression of the meta-signature that is a robust gene set for sJIA,
we mapped each gene from the meta-signature onto the co-expression modules. We then as-
sessed the enrichment of the genes in each module to select the co-expression modules that
were highly associated with the meta-signature. The 260 genes of the meta-signature were
mapped onto red, brown, dark orange, orange, purple, and yellow modules (Figure 2A).
The results of the enrichment analysis between the meta-signature genes and each module
showed that most of the meta-signature genes were significantly enriched in the red (two-
sided Fisher’s exact test: odds ratio = 23.70 and p = 1.04 × 10−83), brown (two-sided Fisher’s
exact test: odds ratio = 11.39 and p = 2.72 × 10−43), and dark orange (two-sided Fisher’s
exact test: odds ratio = 14.62 and p = 1.20 × 10−19) modules (Figure 2A and Figure S5).
Among the 260 meta-signature genes, the majority of the up-regulated genes were enriched
in the red module and the down-regulated genes were enriched in the dark orange module,
respectively (Figure 2A). We then performed a correlation analysis between the module
eigengene (ME) representing the summary expression profile of each module and sJIA to
identify which module had the most significant correlation with sJIA. In line with the data
represented in Figure 2A and Figure S5, the results showed that the red and dark orange
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modules had the most significant positive and negative correlations with sJIA, respectively
(red: r = 0.71 and p = 1.0 × 10−40; dark orange: r = −0.59 and p = 1.0 × 10−25) (Figure 2B).
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Figure 2. Significant co-expression modules that were enriched with the meta-signature. (A) A dendrogram for co-expression
modules based on the dissimilarity of topological overlap measurements. Among the three rows at the bottom of the
plot, color bars in the first row indicate the randomly assigned colors for the co-expression module names. The orders
of the randomly assigned colors for the co-expression module names were light yellow, royal blue, brown, red, orange,
turquoise, green-yellow, black, blue, magenta, dark orange, midnight blue, hot pink, dark turquoise, purple, green, tan,
yellow, cyan, pink, dark red, salmon, and light cyan. In the second row, each gene in the meta-signature was represented by
black lines. Red and blue lines in the final row indicate up- and down-regulation, respectively. (B) A heatmap showing
the correlations between each module and sJIA. The color blocks shown on the left indicate the randomly selected colors
for the module names. Correlation coefficients and the p-value for each module are labeled on the heatmap. The range
of correlation coefficients is represented by a color bar on the right. (C) A scatter plot showing the correlation between
the gene significance for sJIA and module membership in the red module, using all of the genes from the module. (D) A
scatter plot showing the correlation of all of the genes from the dark orange module between gene significance for sJIA and
module membership (E) A scatter plot showing the correlation between gene significance for sJIA and module membership
in the red module, using the meta-signature enriched in the module. (F) A scatter plot showing the correlation of the
meta-signature enriched in the dark orange module between gene significance for sJIA and module membership. The blue
lines in (C–F) represent the regression lines of the scatter plots.
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To further investigate the association between sJIA and red and dark orange modules,
we conducted correlation analyses between the gene significance for sJIA and the module
membership, using all of the genes in the red and dark orange modules, respectively.
Gene significance and module membership indicated the correlations of a gene to sJIA and
the ME of the module, respectively. The genes that were highly associated with sJIA had
stronger positive correlations with the respective MEs of the red and dark orange modules
(red: r = 0.71 and p = 6.69 × 10−63; dark orange: r = 0.49 and p = 5.70 × 10−08) (Figure 2C,D).
To validate the representability of the meta-signature in each module, we also performed
the abovementioned procedure using the meta-signature genes enriched in the red and dark
orange modules. The results from the correlation tests using the meta-signature enriched
in each module were consistent with those using all of the genes contained in each module
(red: r = 0.45 and p = 2.34 × 10−06; dark orange: r = 0.45 and p = 2.40 × 10−02) (Figure 2E,F).
Based on these correlation analyses, we revealed that the 103 genes enriched in the red
co-expression module and 25 genes enriched in the dark orange co-expression module
were significantly correlated with sJIA among the 260 meta-signature genes.

We selected 128 genes consisting of 103 up-regulated genes from the red module and
25 down-regulated genes from the dark orange module as the sJIA signature (Figure 2E,F,
and Table S4). Collectively, the meta-signature was enriched in the most highly-correlated
co-expression modules with sJIA and was identified as a representative gene set in the
modules, indicating that the sJIA signature may have a genetic contribution to sJIA.

2.3. Exploring the Biological Pathways Associated with the sJIA Signature

To investigate the biological effects derived from each co-expression module, we con-
ducted functional enrichment analyses on the 23 modules using gene ontology biological
process (GO BP) gene sets, then identified GO gene sets significantly associated with each
module (p < 0.01) (Table S5) [26,27]. The most significantly-associated biological pathways
with the modules were presented in the order of module colors in Figure 2A: chemical
synaptic transmission (light yellow: p = 2.94 × 10−04), defense response to virus (royal blue:
p = 6.31 × 10−28), inflammatory response (brown: p = 1.62 × 10−12), negative regulation of
apoptotic process (red: p = 6.03 × 10−06), platelet degranulation (orange: p = 7.72 × 10−13),
signal transduction (turquoise: p = 6.64 × 10−05), DNA-templated positive regulation of
transcription (green yellow: p = 7.98 × 10−06), translational initiation (black: p = 5.65 ×
10−19), protein folding (blue: p = 1.85 × 10−05), SRP-dependent co-translational protein
targeting to membrane (magenta: p = 5.38 × 10−08), cellular defense response (dark orange:
p = 1.36 × 10−06), phospholipid biosynthetic process (midnight blue: p = 6.59 × 10−03),
viral process (hot pink: p = 2.39 × 10−04), RNA processing (dark turquoise: p = 5.83 ×
10−04), cellular response to zinc ion (purple: p = 2.27 × 10−07), mitochondrial translational
elongation (green: p = 5.91 × 10−13), intracellular protein transport (tan: p = 1.06 × 10−05),
mitochondrial respiratory chain complex I assembly (yellow: p = 8.19 × 10−05), cell cycle
(cyan: p = 1.70 × 10−04), DNA-templated transcription (pink: p = 2.68 × 10−04), B cell
proliferation (dark red: p = 1.59 × 10−03), DNA-templated regulation of transcription
(salmon: p = 7.76 × 10−09), and mRNA processing (light cyan: p = 1.07 × 10−10).

Among them, the most highly-correlated modules with sJIA, the red and dark orange
modules, were respectively involved in negative regulation of apoptotic process and
cellular defense response, which may be related to immune responses. We then conducted
a functional annotation of the sJIA signature to further focus on its biological effects.
The analysis was performed on 103 up-regulated genes and 25 down-regulated genes,
respectively. A total of 5 GO terms were associated with the up-regulated genes of the
sJIA signature (p < 0.01) (Figure 3A and Table S6). Three out of 5 biological pathways,
antibacterial humoral response, negative regulation of growth of symbiont in the host,
and innate immune response in the mucosa, were involved in innate immune responses
that have been emphasized as representative features of sJIA. The other 2 terms were
involved in erythrocyte differentiation and hemopoiesis. Erythrocyte differentiation is
the process of development from erythropoietic stem cells to mature red blood cells and



Int. J. Mol. Sci. 2021, 22, 712 7 of 19

hemopoiesis is the formation of cellular components of the blood in myeloid or lymphatic
tissue [28,29]. Even though the major function of red blood cells is carrying oxygen, they are
also involved in inflammatory processes that are the characteristics of sJIA [30].
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Figure 3. Functional enrichment analysis of the sJIA signature. The sJIA signature used as an input
to the database for annotation, visualization, and integrated discovery (DAVID) is composed of
103 up- and 25 down-regulated genes. (A) A barplot showing biological pathways significantly
associated with the up-regulated genes of the sJIA signature (p < 0.01). (B) A barplot showing
biological processes significantly associated with the down-regulated genes of the sJIA signature
(p < 0.01).

For the functional annotation of down-regulated genes, a total of 4 GO terms, regula-
tion of immune response, cell surface receptor signaling pathway, cellular defense response,
and cellular response to prostaglandin D stimulus were associated with the down-regulated
genes of the sJIA signature (p < 0.01) (Figure 3B and Table S7). Most pathways, such as
the regulation of immune responses, cell surface receptor signaling pathway, and cellular
defense response, are involved in the dysregulation of cellular responses. These results
were mainly attributed to the genes encoding killer cell lectin-like receptor (KLR) proteins
among the 25 down-regulated genes (Table S7). Put and colleagues reported that the
expression levels of immune-regulating genes were decreased in sJIA patients and natural
killer cells exhibited decreased expression of KLRG1 [7]. Together, our results suggest that
innate immune responses and dysregulation of cell signaling pathways in natural killer
cells may be significantly involved in the pathogenesis of sJIA.

2.4. Identification of Key Genes among the sJIA Signature by Network Analysis

To identify key player genes within the sJIA signature, we constructed a protein-
protein interaction (PPI) network using 128 genes of the sJIA signature as nodes. After fil-
tering the nodes using the search tool for the retrieval of interacting genes (STRING), the re-
maining 66 genes were incorporated into the final network (Figure S6 and Table S8) [31].
As expected, we observed that the majority of the genes were linked to the other genes
included in the same module. Then, highly-interconnected genes were detected as clusters
based on the topology of the PPI network using molecular complex detection (MCODE) [32].
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We identified the most significant cluster having the highest rank score generated by
MCODE in the up-regulated genes of the red module and the down-regulated genes
of the dark orange module, respectively. The cluster with the highest rank score of 11
from the red module is comprised of 11 up-regulated genes (Figure 4A). Among these
genes, the highest-scoring node, also known as the seed node, was defensin alpha 4 (DEFA4;
mean log2FC = 2.88 and total degree = 14) and the gene with the highest log2FC value
was olfactomedin 4 (OLFM4; mean log2FC = 3.82 and total degree = 10). DEFA4 encodes a
member of defensins thought to be associated with host defense and OLFM4 encodes an
anti-apoptotic factor that promotes tumor growth [33,34]. Since the 2 genes were reported
as up-regulated DEGs of sJIA by Brachat et al., we were able to confirm that our result
conformed with the previous research [11]. Even though the majority of the components in
the cluster were mentioned as sJIA- or JIA-related genes, they were rarely highlighted as ge-
netic markers for sJIA in previous studies [4,11,22,35–37]. Especially, orosomucoid 1 (ORM1;
mean log2FC = 1.91 and total degree = 10) and transcobalamin 1 (TCN1; mean log2FC = 1.56
and total degree = 10) were not mentioned in previous studies regarding sJIA, as far as we
know. Together, we identified 2 novel genes, ORM1 and TCN1, that are involved with sJIA
and the up-regulated gene cluster including these 2 genes may possibly be a set of actual
genetic markers and druggable targets for sJIA (Figure 4A).
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The cluster with the highest rank score of 4 from the dark orange module comprises
4 down-regulated genes (Figure 4B). Granzyme B (GZMB; mean log2FC = −0.83 and total
degree = 5) that encodes part of the peptidase S1 family of serine proteases was the seed
node and the gene with the most negative log2FC value in the cluster [38]. It was reported
by Zhou et al. that the expression level of GZMB was lower in sJIA patients compared
with healthy subjects [39]. KLRG1 (mean log2FC = −0.76 and total degree = 3) was also
reported as a down-regulated gene in sJIA [40]. Interleukin 2 receptor subunit beta (IL2RB;
mean log2FC = −0.77 and total degree = 3) was previously proposed to be significantly
associated with JIA, and a knock-out mice study showed that the absence of functional
IL2RB leads to severe arthritis [41]. Based on these previous studies, we were able to confirm
that our study reliably detected down-regulated genes of sJIA. Notably, T-box transcription
factor 21 (TBX21; mean log2FC = −0.82 and total degree = 3) has not previously been
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mentioned as a significant gene for sJIA, to the best of our knowledge. Together, we found
novel risk genes that may be used as therapeutic targets for sJIA and these significantly up-
and down-regulated gene clusters may be involved with the pathogenesis of sJIA.

2.5. Identification of in Silico Drug Candidates for sJIA

To discover drug candidates targeting the significant up- and down-regulated gene
clusters, we performed a drug repositioning analysis using more than 7000 drug signa-
tures in the database of connectivity map (CMap) [42]. The results showed that a total
of 10 bioactive molecules, N-(4-aminobutyl)-5-chloronaphthalene-2-sulfonamide (W-13),
ketanserin, gelsemine, lobeline, colforsin, suprofen, lycorine, vincamine, racecadotril,
and streptozocin, were identified as potential drug candidates for sJIA (p < 0.05) (Table 2).
The drug candidate with the highest enrichment score was W-13 (enrichment score = 0.95
and p = 5.77 × 10−03), which acts as a potent antagonist of calmodulin and is widely used
to examine Ca2+/calmodulin-regulated enzyme activities [43]. Audran et al. reported
that calmodulin is involved in rheumatoid arthritis and could be a therapeutic target in
inflammatory diseases [44]. Among the 10 potential drug candidates, the majority of the
candidates, such as ketanserin, gelsemine, lobeline, colforsin, suprofen, lycorine, and vin-
camine, are known to be anti-inflammatory molecules. The topical application of ketanserin
(enrichment score = 0.79 and p = 3.94 × 10−03) was previously suggested as a promising
approach to relieve inflammation in arthritis [45]. Gelsemine (enrichment score = 0.77 and
p = 5.61× 10−03), lobeline (enrichment score = 0.74 and p = 8.55 × 10−03), and colforsin
(enrichment score = 0.62 and p = 2.33 × 10−02) were found to possess anti-inflammatory
effects with or without additional anti-cancer effects [46–48]. Another candidate, suprofen
(enrichment score = 0.69 and p = 1.99 × 10−02), reportedly reduces the symptoms of adju-
vant arthritis, including joint inflammation and impaired growth in arthritis model rats [49].
Lycorine (enrichment score = 0.65 and p = 1.40 × 10−02) has a therapeutic effect on os-
teoarthritis, gout, and other rheumatic autoimmune diseases [50]. Vincamine (enrichment
score = 0.53 and p = 4.21 × 10−02) was previously shown to prevent inflammation induced
by lipopolysaccharide in a human corneal epithelial cell line [51]. A synthetic derivative
of vincamine was suggested to have potent anti-arthritic and anti-inflammatory effects
in rat models [52]. The other drug candidates that were indirectly linked to rheumatic
diseases were racecadotril (enrichment score = 0.67 and p = 2.47 × 10−02) and streptozocin
(enrichment score = 0.65 and p = 3.34 × 10−02). Racecadotril (enrichment score = 0.67 and
p = 2.47 × 10−02) is a commonly used treatment for children with acute diarrhea indirectly
linked to inflammatory diseases by overactive immune responses [53,54]. Streptozocin
(enrichment score = 0.65 and p = 3.34 × 10−02) was suggested as an antibiotic and an
anti-cancer drug [55,56]. Because 8 out of 10 bioactive molecules for sJIA are reported to be
directly associated with inflammation or rheumatic disease, we suggest that the 10 novel
drug candidates detected by CMap may, at least in part, be potential therapeutic options
for sJIA.

To further determine whether the potential drug candidates are associated with the
currently used drugs for sJIA, a drug interactive network was constructed using our
drug candidates and methotrexate, an immunosuppressant with anti-inflammatory effects,
by mode of action by network analysis (MANTRA) (Figure S7) [57,58]. Methotrexate was
used as a reference node, and we found that our 4 drug candidates, W-13, ketanserin,
lycorine, and colforsin, were connected to methotrexate with up to 2 stopover neighboring
nodes on their routes (Figure 5). It is worth mentioning that W-13 with the highest
enrichment score in CMap was directly connected to methotrexate by one stopover in
MANTRA. Colforsin was also directly connected to the reference node. Ketanserin and
lycorine were indirectly connected to methotrexate by 2 stopover neighbors. Overall, 8 of
the 10 potentially novel drug candidates have already been implicated in inflammation
and/or rheumatic diseases, and 4 out of the 8 candidates were predicted to be directly or
indirectly associated with methotrexate in terms of their mechanisms of actions (MOAs)
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in this study, suggesting that our drug candidates may, at least in part, have potential
therapeutic effects on sJIA.

Table 2. Bioactive small molecules detected by CMap as potential drug candidates (p < 0.05).

CMap Name PubChem Name PubChem CID Enrichment Score p-Value

W-13 N-(4-Aminobutyl)-5-chloronaphthalene-2-
sulfonamide 4299 0.95 5.77 × 10−03

Ketanserin Ketanserin 3822 0.79 3.94 × 10−03

Gelsemine Gelsemine 279057 0.77 5.61 × 10−03

Lobeline Lobeline 101616 0.74 8.55 × 10−03

Suprofen Suprofen 5359 0.69 1.99 × 10−02

Racecadotril Racecadotril 107751 0.67 2.47 × 10−02

Streptozocin Streptozocin 29327 0.65 3.34 × 10−02

Lycorine Lycorine 72378 0.65 1.40 × 10−02

Colforsin Forskolin 47936 0.62 2.33 × 10−02

Vincamine Vincamine 15376 0.53 4.21 × 10−02
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Drug candidates were connected to methotrexate, the reference node, with up to 2 stopover neigh-
boring nodes on their way. Methotrexate and the drug candidates are represented by red nodes and
their neighboring drugs are displayed with grey circles. Only the drug candidates and the stopover
neighbors en route to the reference node were labeled on the network.

3. Discussion

To understand the complex pathogenesis of sJIA and the expression profiles of the co-
expressed gene sets in sJIA, we identified the meta-signature first using meta-analysis and
then co-expression modules detected by WGCNA (Figures 1 and 2). Given the large scale
of the microarray data accumulated over the decades, microarray datasets are regarded as
valuable resources for research [59]. Because the RNA-seq dataset provides advantages
for more accurate quantification of gene expression than microarray data, it was used as a
validation set for both analyses (Table 1) [59]. Then, we conducted the meta-analysis and
WGCNA using microarray datasets complemented with the results of the RNA-seq dataset.
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The transcriptional profiling using microarrays is usually in accordance with that using
RNA-seq technologies, but it also exhibits some discordance in the extent of differential
gene expression [59,60]. To enhance the robustness of the results from the meta-analysis,
we defined 260 DEGs that were consistently identified as up- or down-regulated genes
in the microarray and RNA-seq dataset as the meta-signature. For WGCNA, we used a
signed WGCNA contemplating only positive correlations between genes, since previous
studies reported that this approach can detect more biologically meaningful modules than
unsigned WGCNA [13,61].

Using the robust results derived from the combination of meta-analysis and WGCNA,
we identified the sJIA signature that comprises 2 co-expressed gene sets respectively consist-
ing of 103 up-regulated DEGs and 25 down-regulated DEGs (Figure 2). Up-regulated genes
of the sJIA signature were enriched in innate immune processes and pathways related to
producing red blood cells (Figure 3A). Among the 103 up-regulated genes, the most signifi-
cant gene cluster was detected by PPI network analysis and the seed node of the cluster
was DEFA4, which encodes a member of the defensin family of antimicrobial and cytotoxic
peptides involved in host defense (Figure 4A) [33]. Based on the GO database, each gene of
the cluster, including DEFA4, was identified as involved in neutrophil degranulation asso-
ciated with innate immune processes [27,62]. ORM1, which encodes an acute phase plasma
protein, may be one of the up-regulated novel risk genes in sJIA patients [63]. Although
the function of this protein is predicted to be related to neutrophil degranulation, it has not
yet been completely determined [64]. Previous studies also suggested that neutrophils play
significant roles in sJIA, especially in the early inflammatory phase of the disease [9,65].
Together, the results suggest that this cluster may act as a key player in the pathogenesis
and etiology of sJIA, attributed to the dysregulation of neutrophil degranulation.

Of the 128 sJIA signature genes, the 25 down-regulated genes were involved in
cellular signaling pathways (Figure 3B). Among the down-regulated genes, the most signif-
icant gene cluster was identified by PPI network analysis and the seed node was GZMB
(Figure 4B). GZMB is secreted by natural killer cells and undergoes post-translational mod-
ification to produce the active protease that induces target cell apoptosis [66]. All of the
genes in the most significant down-regulated cluster, GZMB, KLRG1, IL2RB, and TBX21,
were reportedly associated with natural killer cells [66–69]. TBX21, encoded by the po-
tentially novel risk gene in this cluster, was implicated in the impaired development of
natural killer cells when absent [69,70]. Avau et al. described that the defective cytotoxic
capacity of natural killer cells has been detected in sJIA patients and may be involved in
the underlying pathogenesis of MAS [71]. Given that, we believe that this down-regulated
gene cluster in sJIA may have a shared genetic contribution to MAS.

Our study also identified drug candidates targeting the most significant up- and
down-regulated clusters of the sJIA signature by using CMap (Table 2). W-13, a potentially
novel drug candidate for sJIA, is regarded as an antagonist of calmodulin [43]. It was
reported that calmodulin activity is involved in the various functions of neutrophils and
that calmodulin inhibitors block neutrophil degranulation [72,73]. Thus, W-13 may be
associated with neutrophil degranulation, suggesting that it may lead to effective therapies
for sJIA. Other candidates connected to methotrexate, such as ketanserin, lycorine, and col-
forsin, are reported to have anti-inflammatory effects, which may also be effective for sJIA
(Figure 5). Overall, our results suggest that these potential drug candidates may be used
for the development of new therapeutic options for sJIA.

An integrative transcriptomic analysis can be a powerful approach to identify tran-
scriptomic risk factors associated with the pathogenesis of a specific disease by increased
statistical power due to a larger sample size than a single study (Figure 6) [74]. In addi-
tion, our study can detect robust susceptibility genes highly interconnected in a gene set
via integrating 2 different methodologies, meta-analysis, and WGCNA. Since sJIA is a
rare subtype of JIA, there have been substantial challenges in obtaining sufficient disease
samples, studying its complex pathogenesis, and developing new therapeutic options.
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Given that, it is useful to apply our integrative analysis and in silico drug repositioning
analysis together on the sJIA research to understand its pathogenesis comprehensively.
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While this study identified potentially novel genetic markers and drug candidates
for sJIA, we were not able to determine the causality of these genes to sJIA risk, because
there were very few publicly available data to perform genome-wide association study
(GWAS) or expression quantitative trait loci (eQTL) analysis. In addition, their actual
genetic effects under physiological conditions could not be fully elucidated, since the
results were obtained using only in silico analyses. Further functional studies may be
necessary to comprehensively validate the contribution of potential biomarkers and drug
candidates to the pathogenesis of sJIA. Because our study was focused only on the blood
tissue, extensive research on various affected tissues is also warranted to validate our
findings. Despite these limitations, we believe that our combination of meta-analysis and
co-expression network analysis successfully identified a robust genetic signature of sJIA.
The potential drug candidates targeting genetic markers obtained from the sJIA signature
can provide novel insights into the etiology of sJIA and may contribute to the development
of new therapeutic options for sJIA.
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4. Materials and Methods
4.1. Data Collection

Microarray and RNA-seq datasets from PBMCs that contain mRNA expression data on
human sJIA and healthy control subjects were retrieved from the NCBI GEO. Because sJIA
is considered to be an autoinflammatory disease associated with immune cells, microarray
and RNA-seq datasets obtained from whole blood were also collected. The selected datasets
are shown in Table 1. As the datasets contained other subtypes of JIA or other auto-immune
diseases, only sJIA samples were used from the collected datasets.

4.2. Data Preprocessing and Meta-Analysis

The preprocessing of the Affymetrix microarray datasets was conducted using the
oligo R package and normalization of each dataset was performed by the robust multiarray
average (rma) method [75–78]. For the Illumina dataset (GSE57183), the preprocessing
and the normalization were carried out using the limma R package [79]. Subsequently,
all microarray datasets were merged using the corresponding Entrez IDs of the probes and
were adjusted for batch effects using the ComBat function in the sva R package [17,18].
A meta-analysis was conducted on the merged dataset using the limma R package to
compute the false discovery rate (FDR) and log2 (fold change) (log2FC), which were used
to identify DEGs [79]. For the RNA-seq dataset (GSE112057), the preprocessing and
normalization of the raw count data was performed using the limma R package, and the
identification of DEGs was carried out using the DESeq2 R package [24,79,80].

4.3. Weighted Gene Co-Expression Network Analysis

A signed WGCNA was applied to the merged microarray dataset of sJIA to identify
co-expression modules of positively correlated genes [16]. A similarity matrix was calcu-
lated based on Pearson’s correlation between all paired genes and was converted into an
adjacency matrix by the soft-thresholding method. The soft-thresholding power (β) was
selected by a scale-free topology analysis. The adjacency matrix was transformed into
a topological overlap matrix accounting for the similarity of genes in the co-expression
network. Co-expression modules were determined by cutting a hierarchical cluster tree
using a hybrid tree-cut method [16]. The summary expression profile of each module
was characterized by module eigengene (ME). The minimum size of each module was
100 genes and modules with high ME correlations (r > 0.85) were merged. With the co-
expression modules, a module preservation analysis was performed using the merged
microarray dataset as a reference set and the RNA-seq dataset as a test set [25]. This analy-
sis was permuted up to 200 times and Z-summary scores were calculated to identify the
preserved modules.

4.4. Module Enrichment Analysis

To identify modules significantly associated with sJIA, the DEGs simultaneously
obtained from the meta-analysis and the RNA-seq dataset were mapped onto the co-
expression modules. The enrichment analysis of the common DEGs in each module was
carried out using a two-sided Fisher’s exact test. The correlation between the ME of each
module and the disease status was estimated using the WGCNA results with Pearson’s
correlation test. The most highly-correlated modules with sJIA, enriched with up- or down-
regulated common DEGs, were selected as representative modules of sJIA for subsequent
steps. For each gene in the modules, Pearson’s correlation test was performed between the
correlation of a gene to sJIA and that to ME of the modules. To verify the representability
of the common DEGs in the modules, the abovementioned procedure was performed and
the results were compared.

4.5. Functional Annotation of the sJIA Signature

The common DEGs included in the representative modules were regarded as genes of
the sJIA signature. Up- and down-regulated genes of the sJIA signature were subjected
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to functional enrichment analysis, respectively. DAVID was used to conduct functional
annotation of the signature [81]. Gene sets from GO BP, retrieved from the molecular
signatures database (MSigDB v7.0), were used as gene sets for annotation [27,82].

4.6. Network Analysis and Finding Significant Clusters for sJIA

The proteins encoded by the sJIA signature were used as nodes of the PPI network.
Edges between the nodes were added by using STRING [31]. The confidence level of
the edges was adjusted to 0.7, and only the nodes connected to the other nodes were
displayed. This network was visualized by Cytoscape (v3.7.1) and the identification of
highly-interconnected regions (clusters) was performed by MCODE [32,83].

4.7. Identification of Drug Candidates

To identify drug candidates for sJIA, in silico drug repositioning was performed
by CMap (build 02) using the up- and down-regulated gene clusters with the highest
rank score in the network analysis [42]. CMap contains a number of drug signatures,
which are derived from 5 cell types treated with bioactive small molecules, also known
as perturbagens, at various concentrations and exposure times [42]. To unify the input
signatures to probe IDs from the database of CMap, the format of the up- or down-regulated
genes were converted into probe IDs in the HG-U133A platform. The enrichment score and
p-value were computed for each perturbagen. Then, a drug network was constructed using
a computational tool, MANTRA (v2.0) [57]. The resulting significant perturbagens (p < 0.05)
and a representative medication for sJIA, methotrexate, were used as input nodes for the
drug network, and the neighboring nodes were produced by MANTRA. Methotrexate was
defined as the reference node of the network. The edges between the nodes were added
based on the pairwise distances of MOAs between drugs by MANTRA [57]. The neighbors
and the number of maximum nodes were adjusted to 20 and 500, respectively. The drugs
connected to methotrexate with up to 2 stopover neighbors on their routes were visualized
using Cytoscape (v3.7.1) [83].

Supplementary Materials: The following are available online at https://www.mdpi.com/1422-006
7/22/2/712/s1, Figure S1: Scatter plots showing the results of principal component analysis (PCA),
visualized by (A) disease states (control vs disease), (B) tissue sources (whole blood vs PBMC), and (C)
array platform (Affymetrix vs Illumina). The x-axis and y-axis represent principal component 1 (PC1)
and principal component 2 (PC2), respectively. The percentages of data variability explained by PC1
and PC2 were respectively labeled on the x- and y-axes. The color of dots represents the characteristics
of each sample (green: control and red: sJIA; gray: PBMC and navy: whole blood; yellow: Affymetrix
and sky-blue: Illumina Beadchip), Figure S2: A Venn diagram showing the overlap between genes
discovered by at least one single study and the meta-analysis (FDR < 0.05), Figure S3: Identification of
soft-thresholding power for co-expression network construction. Analyses of (A) scale-free topology
and (B) the mean connectivity for selecting an appropriate soft-thresholding power, Figure S4:
The result of module preservation analysis applied to the RNA-seq dataset. The green and red
dashed lines indicate the thresholds of significance, Z summary score > 2 and Z summary score > 10,
respectively, Figure S5: The number of genes from the meta-signature and non-meta-signature in each
module. The number of genes from the meta-signature and non-meta-signature in (A) red, (B) brown,
and (C) dark orange modules were labeled on the plot, Figure S6: A PPI network construction
using the sJIA signature. The nodes comprise the genes of the sJIA signature. The red and blue
nodes indicate up- and down-regulated genes from the red and dark orange modules, respectively.
The color of the nodes corresponds to the degree of the log2FC scores. The node size corresponds
to the degree of the node, Figure S7: A drug interactive network using all the 10 potential drug
candidates of sJIA and methotrexate as the reference node. Triangles represent the potential drug
candidates of sJIA and circles indicate their neighboring nodes. The nodes belonging to the same drug
community are represented by the same color. The edges were added by the similarities between the
drugs, Table S1: The list of 13 significant genes that were detected by the meta-analysis but not by
single studies, Table S2: The list of 260 meta-signature genes, Table S3: The list of Entrez IDs of genes
in 23 co-expression modules, Table S4: The list of genes in sJIA signature. Mean log2FC indicates the
mean value of log2FC from the merged microarray dataset and RNA-seq dataset, Table S5: Functional
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annotation of 23 co-expression modules using GO terms. GO terms significantly associated with each
module were displayed in each sheet of this file (p < 0.01), Table S6: The up-regulated GO terms in
sJIA, Table S7: The down-regulated GO terms in sJIA, Table S8: The information on 66 nodes in the
PPI network.
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