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A long-standing goal of computational protein design is to
create proteins similar to those found in Nature. One moti-
vation is to harness the exquisite functional capabilities of
proteins for our own purposes. The extent of similarity
between designed and natural proteins also reports on how
faithfully our models represent the selective pressures that
determine protein sequences. As the field of protein design
shifts emphasis from reproducing native-like protein struc-
ture to function, it has become important that these models
treat the notion of specificity in molecular interactions.
Although specificity may, in some cases, be achieved by optimi-
zation of a desired protein in isolation, methods have been
developed to address directly the desire for proteins that exhibit
specific functions and interactions.

The field of computational protein design pursues two goals.
One is practical and regards the products of the design pro-
cess: we desire the ability to engineer proteins for arbitrary
functions. The second goal emphasizes scientific, rather
than engineering, aims. This goal is concerned with themod-
els that serve as input for the process: we desire a quantita-
tive description of the principles that influence the selection of
natural proteins. The extent to which designed proteins resem-
ble natural proteins serves to evaluate how well our models
simulate the selective pressures for natural proteins. This mini-
review is concerned with efforts to endow designed proteins
with the specificity observed in naturally occurring proteins.
Excellent reviews of other aspects of computational protein
design have also appeared recently (1, 2).
Advances in molecular modeling have expanded the inven-

tory of protein properties that can be reproduced by computa-
tional design. Early computational efforts sought only to repli-
cate native-like packing arrangements for hydrophobic protein
cores (3). It was found that this was achievable using a simple
energy potential to enforce close packingwithout steric clashes.
The structural representation used was a fixed backbone from
an experimentally determined structure and a discrete set of
commonly observed side chain conformations. More complete
energy potentials enabled the complete redesign of a protein (4)
and the construction of novel hydrogen-bonding networks (5).
The incorporation of backbone relaxation techniques was

important for the redesign of loop conformations (6). Finally,
the design of the Top7 protein achieved the milestone goal of
constructing a protein for which neither backbone topology
nor amino acid sequence was derived from any naturally occur-
ring protein (7). However, continuing differences in the prop-
erties of designed and natural proteins provide evidence (if any
was needed) that the pressures applied by protein design poten-
tials incompletely simulate those of natural selection (8).
The improvements in energy functions and conformational

sampling described above enhance the precision and correct-
nesswithwhich single protein structures or complexes are eval-
uated. However, specificity requires consideration of multiple
outcomes for a protein, both desired and undesired. The selec-
tion of a protein sequence that is optimal for a desired structure
or interaction is termed “positive design,” whereas the selection
of sequence elements to discourage undesired structures, or
complexes, is termed “negative design” (9). Multistate design
algorithms simultaneously consider both desired and undes-
ired outcomes when selecting sequences. In the following, I
describe the biological parallels for the functional specificity we
seek to encode in the protocols of protein design, describe tech-
niques for achieving specificity both with and without explicit
multistate design, and finally discuss recent algorithmic ad-
vances likely to advance the field in the near future.

Natural Exemplars for Biomolecular Specificity

Specificity is crucial for the proper flow of information
and energy through signal transduction, metabolic, and
transcriptional pathways. At the same time, duplication and
reuse of modular interaction domains are prevalent in the
assembly of these systems. Consequently, a single cell may
contain dozens of interacting partners drawn from a partic-
ular family of modular interactions. How is specificity main-
tained when interacting partners must coexist, but not inter-
fere, with family members that possess significant structural
and sequence similarity? Differing patterns of subcellular
localization or developmental expression may ensure that
undesired partners never meet, but often the specificity of
the physical interaction alone is sufficient to restrict success-
ful complex formation to cognate pairs.
In certain systems, specificity has been shown to be both

independent of context and shaped by considerations of nega-
tive design. Zarrinpar et al. (10) studied the interactions be-
tween the 27 SH32 domains in the yeast proteome and the Pbs2
peptide (the ligand for the Sho1 SH3 domain). They found no
binding between the Pbs2 peptide and the 26 non-cognate yeast
SH3 domains. However, 6 of 12 non-yeast SH3 domains were
able to bind the peptide. This suggests that the Pbs2 peptide has
been optimized to maintain specificity only with respect to
the relevant competing yeast SH3 domains. When confronted
with “extra-proteomic” SH3 domains, the peptide was broadly
cross-reactive. A large-scale study of PDZ domains in the* This minireview will be reprinted in the 2010 Minireview Compendium,
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mouse proteome suggests that negative selection has served to
minimize cross-reactivity in this system as well (11).
There are two lessons here for protein design. The first is that

specificity, for at least some families of interactions, is encoded
solely in the sequences of the interacting partners themselves.
For these interactions, specificity is not dependent on spatial or
temporal co-localization. This indicates that the engineering of
such a family falls within the scope of protein design. The sec-
ond lesson is that it is crucial to understand and enumerate the
relevant undesired partners in any interaction. This will be
entirely dependent on the context in which a protein is ex-
pected to function. Interactions between a small number of
purified components in a test tubewill require fewer competing
states than a protein that is expected to operate in a cell.

Specificity without Negative Design

As a rule of thumb, negative design considerations may be
omitted when competing states are structurally distinct (Fig.
1A). There are many examples of computationally designed
interactions that achieved specificity considering only the
desired complex as a target. These include the stabilization of
the open and closed forms of an integrin I domain (12), the

construction of novel protein interfaces (13), the redesign of
protein-DNA specificity (14), the design of small molecule-
binding receptors (15), and the tightening of specificity for a
protein with multiple partners (16).
In well characterized systems, a few key residues may suf-

fice to enforce specificity. These may be selected by hand,
with the remainder of the protein sequence determined in an
automated fashion. Carefully placed charged residues have
been used to destabilize undesired helical bundle arrange-
ments (17), favor heterospecificity inmeganuclease association
(18), and convert an amyloid-like fibril into a monomeric pro-
tein (19). Ambroggio and Kuhlman (20) used a common zinc-
binding motif to drive a conformational change between two
alternate backbone folds for a single sequence.
However, some design tasks require explicit negative de-

sign states. For instance, Grigoryan et al. (21) sought to
design coiled-coil inhibitors of basic leucine zipper (bZIP)
proteins thatwere specific to individual bZIP proteins and bZIP
families. Another common design goal requiring negative
design is the conversion of a homodimeric protein to an obli-
gate heterodimeric pair (22, 23). The related goal of converting
one homodimer scaffold to two or more distinct, non-interact-
ing homodimers cannot even be formulated in a single-state
design framework. The neglected negative heterodimeric state
is required to tie together what would be otherwise uncon-
nected (and presumably identical) homodimeric designs.

Models for Specificity in Computational Protein Design

Specificity may be conferred upon a protein by a carefully
constructed design process. For the limited goal of conforma-
tional, rather than functional, specificity, one approach is
to iterate between sequence and structural optimization. This
process converges upon mutually optimal sequence-structure
pairs for which any local conformation change or mutation
is predicted to decrease the value of the scoring function. This
procedure has been quite successful, generating proteins with a
novel backbone topology and novel loop conformations veri-
fied by structural characterization (6, 7).
Specific protein-protein interfaces can be designed using the

“second-site suppressor” strategy (Fig. 1B) (24). In this two-step
approach, both partners in a protein interface are mutated to
generate a novel pair of proteins that do not interact with the
wild-type proteins. First, destabilizing mutations across the
interface are identified, ensuring that complexes between wild-
type and designed partners are energetically unfavorable. Next,
compensatorymutations are found in the interacting partner to
construct a novel interface. By construction, the newcomplex is
predicted to have both high affinity and specificity against
the formation of wild-type/mutant hybrids. This approach has
been successfully demonstrated in three experimental systems.
The first application by Kortemme et al. (24) was the redesign
and structural characterization of a novel colicinDNase-immu-
nity protein pair with a specificity switch from the wild-type
complex. Recently, Sammond et al. (25) applied the method to
two systems: the G-protein component G�i1-RGS14 GoLoco
motif complex and the complex between UbcH7 and the ubiq-
uitin ligase E6AP. A common finding for both groups is that
the most successful designs utilize mutations to hydrophobic

FIGURE 1. Computational strategies for achieving specificity. A, positive
design only. When the desired and undesired states are structurally distinct,
as shown for hypothetical open and closed states for a protein, positive
design may be sufficient, and negative design states may be ignored (dashed
box on the right side of the equilibrium). B, second-site suppressor strategy
for redesigning protein-protein interfaces. Negative and positive design ele-
ments may be added sequentially. Here, the design proceeds in two steps.
First, point mutations are identified on both partners in the interaction that
destabilize the native complex. Second, compensatory mutations are identi-
fied that restore affinity while accommodating the specificity-conferring
amino acids. C, explicit multistate design. Here, a symmetric homodimer
(shown in red) is converted into an obligate heterodimer (green and purple).
The protein sequence is simultaneously selected both to stabilize the het-
erodimeric positive design state (left side of the equilibrium) and to destabi-
lize the homodimeric negative design states.
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amino acids and that lowered affinities are observed in com-
plexes containing engineered polar networks.
The prevalence of hydrophobic interactions over hydrogen-

bonding interactions in these designed complexes could be due
to at least three causes. First, the amino acids initially selected
to destabilize the template interface are often large hydropho-
bic residues that create steric clashes. In the subsequent design
step, these amino acids aremore likely to nucleate the selection
of hydrophobic clusters than polar networks, with which they
can participate only weakly. Second, the introduction of polar
networks may require a larger number of concerted mutations
than are typically included in a design calculation. Finally, the
conformational resolution provided by standard design proto-
cols may be sufficient for modeling hydrophobic interactions
but not for hydrogen-bonding interactions, resulting in a bias
toward hydrophobic interfaces. Along these lines, it is notewor-
thy that the use of multiple-backbone models in the design of a
colicin DNase-immunity protein interface (which results in an
effectively higher resolution) yielded a novel hydrogen-bonding
network, whereas single-backbone designs in the same system
resulted primarily inmutations to hydrophobic amino acids (5).

Explicit Specificity via Multistate Design

Specificity may be explicitly demanded in a design calcu-
lation by including both positive and negative design states
(Fig. 1C) (9). This was first demonstrated experimentally with
coiled coils. Both the homodimeric and heterodimeric states
for two distinct peptides were structurally modeled, and in sep-
arate designs, amino acid sequences were selected that shifted
the equilibrium toward either state. Four pairs of obligate het-
erodimers and four pairs of non-interacting homodimers were
experimentally validated (23). Barth et al. (26) combined this
method with iterative structural relaxation to design a specific
coiled-coil inhibitor targeting ametastable coiled-coil region in
the yeast septin Cdc12p. Bolon et al. (22) studied the trade-offs
between stability and specificity in the design and biophysical
characterization of obligate heterodimeric mutants of the
Haemophilus influenzae SspB protein. They concluded that
negative design was necessary for association specificity in this
system, where competing states possess significant structural
similarity. Boas andHarbury (27) utilized amultistate approach
to require both stability and affinity from a protein ligand-bind-
ing site. The most extensive use of negative design comes from
a computational and experimental tour de force fromGrigoryan
et al. (21), who designed peptides to target each of 46 different
human bZIP coiled-coil regions taken from 20 different bZIP
families, using 20 negative design states (examples from each of
19 other families as well as the undesired homodimeric state).
The experimental characterization was similarly comprehen-
sive, as specificities were determined using a coiled-coil array
consisting of all possible partners, demonstrating that most of
the designs were successful.

Insights from Multistate Design

The scientific motivation for protein design is to codify and
test our understanding of macromolecular function, in partic-
ular the pressures that determine the sequences of natural pro-
teins. The limitations in current scoring functions and confor-

mational sampling notwithstanding, the amino acid sequences
selected by a design calculation report back upon the models
that are used as input. By comparing designed proteins with
natural proteins, we can assess the completeness (or otherwise)
of our understanding of the requirements placeduponproteins.
In what way does the inclusion of explicit models for specificity
improve the match between designed and natural proteins?
One fruitful line of inquiry involves multispecific proteins,

proteins that serve as hubs in regulatory networks and interact
with multiple partners. In the parlance of computational de-
sign, these proteins must accommodate multiple positive de-
sign states. An interesting result is that when the interacting
surfaces of these proteins are redesigned under the require-
ment that they bind well with multiple partners, the selected
sequences are significantly more native-like than if they are
required to bind only one of their partners (28). This indicates
that the introduction of a model for (multi)specificity into pro-
tein design results in a more realistic description of how the
sequences of proteins are selected by evolution and, by exten-
sion, that utilizing such amodel for futurede novodesign efforts
will generate proteins that behave in a more natural way. An
experimental application of multispecificity is the design of the
Sw2 protein, whose amino acid sequence was designed to be
compatible with both the coiled-coil and zinc finger folds (with
the protein switching between the folds in a zinc-dependent
fashion) (20).
The insight into specificity gained fromprotein design can be

contrasted with knowledge-based approaches. Data-derived
recognition codes (29) and covariance data (30) can suggest
ways tomix andmatch previously observed interactions to con-
struct hybrid interaction specificities. However, structure-
based protein design holds out the promise of generating gen-
uinely novel proteins and interactions. For instance, the design
of Top7, an engineered protein with a previously unobserved
topology, demonstrated that Nature has not exploited the
entirety of allowable fold space (7). Similarly, the redesign of
specific interfaces has revealed motifs for specificity that have
not yet been observed in naturally occurring proteins. This is
even true for interaction families with many known examples,
such as the coiled-coil regions of the bZIP transcription factor
family (21, 23).

Future Directions

Computational protein design is a technology-driven field,
and it is reasonable to survey current algorithmic development
as a prelude to future experimental work. Recent advances in
several areas will contribute to an improved ability to engi-
neer specific proteins. Most directly, there has been an
increased interest in new algorithms for explicit multistate
design. Standard techniques for single-state design find opti-
mal combinations of protein side chain conformations and are
not transferrable to multistate design, where the desired pro-
tein sequences may adopt different conformations in positive
and negative design states. Early work inmultistate design used
genetic algorithms and Monte Carlo optimization to search
sequence space, with structural optimization performed for
each state using standard repacking algorithms. An impressive
large-scale demonstration ofmultistate design in the bZIP fam-

MINIREVIEW: Specificity in Computational Protein Design

OCTOBER 8, 2010 • VOLUME 285 • NUMBER 41 JOURNAL OF BIOLOGICAL CHEMISTRY 31097



ily of transcription factors has been reported using integer lin-
ear programming to select optimal protein sequences (31). In
addition, novel multistate design methodologies based on
dead-end elimination (32) and the FASTER algorithm for side
chain optimization (33) have been described. The evaluation of
these alternative approaches will require thorough experimen-
tal characterization of designed proteins but will be invaluable
for identifying tractable and effective approaches for specific
protein design.
A second area of recent activity with implications for pro-

tein design is the treatment of protein backbone flexibility.
Both positive and negative designs benefit from conforma-
tional flexibility because the allowable sequence space is
expanded as additional low-energy conformations become
accessible. Algorithms that combine dead-end elimination
with side chain “backrub” moves (34) and cluster expansions
that incorporate template backbone diversity (35) have been
reported to provide this benefit. An additional benefit of these
methods is that the mismatch between the coarse sampling of
protein structure and the steep spatial dependence of certain
energy terms of molecular mechanics potentials is reduced.
This is particularly important for negative design states, which
are selectively destabilized during the design process. Often the
interactions that are predicted to destabilize these states (such
as steric clashes) are easily alleviated bymodes of relaxation not
permitted when the fixed backbone and side chain approxima-
tions are used.
Larger scale flexibility in loop regions is important primarily

for positive design states. When the goal of a design is to
repurpose a protein for a novel function, the conformation of
the starting template protein is unlikely to be optimal. One
remedy for this problem involves generating a set of native-
like loops and selecting the best loop (or combination of loops)
from this set. A robotics-inspired algorithm has been reported
recently that can generate large numbers of native-like loops,
frequently sampling loop reconstructions �1.0-Å C� root
mean square deviation from the native conformation (36). To
take advantage of this development, the ability to identify opti-
mal loops by energy and to efficiently incorporate loop sam-
pling into design algorithms must be improved. Along these
lines,Murphy et al. (37)were able to remodel a protein loop and
switch the substrate specificity of an enzyme by requiring that
the loop accommodate a specified functional amino acid in the
active site. The use of functional constraints for individual
amino acids, or sets of amino acids taken from a library of anal-
ogous interactions, is an attractive approach to guiding the
selection of optimal loops from a large set of possibilities (38).
A third component of protein design that has received a

second look is the scoring function. In the vast majority of
design calculations, the scoring function for selecting an opti-
mal protein sequence is based upon a molecular mechanics
potential (39). Although additional knowledge-based terms
are often included, the resolution of the energy potential in a
design calculation is generally that of an all-atommodel. The
cluster expansion method for expressing macromolecular
energies as a function of sequence alone breaks from this tradi-
tion. In this method, a sequence-based energy model is trained
by evaluating a large set of random sequences using a structural

model (31). A concern with sequence-only models is that they
“average out” all structural information. In a design calculation,
a combination of amino acids may be erroneously scored as
favorable if it containsmultiple sequence level interactions that
cannot be realized by any single conformation. In the cluster
expansion framework, higher order (e.g. three-body) interac-
tions provide corrections for this type of error and have been
shown to be necessary for describing proteins with compact
folds (31). Nevertheless, the advantages of evaluating energies
from sequence alone are striking: the decrease in computa-
tional burden enabled the inclusion of an unprecedented num-
ber of states in a multistate design calculation involving coiled
coils (21). Whether the cluster expansion method proves as
successful for other folds remains to be seen, but the intentional
reassignment of computational resources from scoring func-
tions to multiple negative design states underscores the grow-
ing importance of specificity in protein design.

Conclusions

A remarkable property of naturally occurring proteins is
the specificity with which they process information, energy,
and matter in living cells. In constructing models for protein
design, we try both to mimic this property to engineer useful
molecules and to understand how the underlying energetic and
statistical principles combine to encode this property in protein
sequences. A number of computational methods have been
developed that have generated proteins that participate in some
specific molecular interaction, and experimental results have
been encouraging. The rising interest in this aspect of protein
design and the current innovation in novel computational
approacheswill greatly increase our ability to design proteins as
elegant as those in Nature.
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