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Aims/Introduction. Evidences have shown that the deteriorated procession of disease is not a smooth change with time and
conditions, in which a critical transition point denoted as predisease state drives the state from normal to disease. Considering
individual differences, this paper provides a sample-specific method that constructs an index with individual-specific dynamical
network biomarkers (DNB) which are defined as early warning index (EWI) for detecting predisease state of individual sample.
Based on microarray data of influenza A disease, 144 genes are selected as DNB and the 7th time period is defined as predisease
state. In addition, according to functional analysis of the discovered DNB, it is relevant with experience data, which can illustrate
the effectiveness of our sample-specific method.

1. Introduction

Adrastic change in the complex biological processes has been
shown in recent studies, after which the system shifts rapidly
from a stable state to another [1, 2].This tipping point may be
better known with respect to the earth climate system [3] and
global finance [4] but now is applied in other areas gradually
such as complex disease [5, 6]. In present studies, the disease
progression is divided into three parts named normal state,
predisease state (tipping point), and disease state, respectively
[7]. Researches on predisease state of complex disease are
only used to provide clinical patients with disease state the
necessary information and are not to predict a patient in
predisease state directly.

The earliest disease progression is identified by using a
single molecular biomarker [8]. With further researches on
disease progression, as early as 2008, Jin et al. applied the
protein network to cardiovascular diseases, by identifying
a group with high confidence of interacting proteins to
form a network, which can be more accurate to divide into
two groups of patients compared with a single molecular
biomarker [9]. A more important role of network markers
and a single molecular biomarker is to distinguish disease
status, rather than to detect the critical state of the disease.
Given this situation, Chen et al. proposed a theory of DNB

to identify the critical state of the disease, which was based
on model free, small sample, and high-throughput data.
Three conditions to determine the DNB are put forward [10].
Generally, the studies of identifying predisease state are based
on two types of data (high-throughput data and sequence
data). Gao et al. extracted the larger mutation of influenza
A virus proteins to form DNB based on sequence data with
consecutive years, and according to the changes in DNB of
each year, a warning index can be constructed to identify the
outbreak year and before [11]. In addition, the development
of high-throughput technology enables us to observe a large
number of biomolecules by one time. Even if the number
of patients’ samples in the early state is small, it can also
maintain each sampling point with high-throughput data on
molecular level of high dimensionality [12–15].

Based on rapid advanced high-throughput technologies,
we can obtain gene or protein expression at genome-wild
scale with over thousands of measurements of long-term
dynamics. Considering individual differences, our study is
different from the method with multiple patient samples at
each time period for detecting predisease state instead of
proposing a sample-specificmethod [16–18]. In our study, the
data sets which are divided into case group and control group
were used to select differential expressed genes (DEGs) by
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𝑡-test. Genes in DEGs were clustered into 40 categories by
using hierarchical clustering analysis. Then, 144 genes in a
group which satisfied the three criteria of DNB identification
proposed by Chen were selected as DNB.Therefore, based on
individual-specific data, we can predict and identify whether
a time period is in predisease state by observing the variation
of EWI value combined with the three indicators.

2. Materials and Methods

2.1. Data Collection. The microarray gene expression data
is downloaded from the National Center for Biotechnology
Information’s Gene Expression Omnibus (GEO) database
(series accession number: GSE19392). The gene expression
data set is generated by usingAffymetrixHTHumanGenome
U133A (HT HG-U133A) Microarrays, which are obtained
from an experiment of primary human bronchial epithelial
cells that are infected with the wild-type PR8 influenza virus
(A/PR/8/34). In our study, 10 out of 20 samples are defined
as case group which are collected from primary human
bronchial epithelial cells infected with the wild-type PR8
influenza virus after 0.25 h, 0.5 h, 1 h, 1.5 h, 2 h, 4 h, 6 h, 8 h,
12 h, and 18 h and the rest of the 20 samples are defined
as control group which treated the same process but in the
absence of virus. Moreover, 22277 probe sets are mapped to
13915 unique gene symbols involved in the influenza data set.

The Student 𝑡-test, which can evaluate the significance of
genes with differential expression between case group and
control group, is applied in the selection of DEGs. The 𝑝
value figured out by 𝑡-test is directly used for the subsequent
filtering analysis without multiple-testing correction. Only
the genes with 𝑝 < 0.05 are regarded as DEGs.

2.1.1. Dynamical System Model. Studies have shown that a
biological process of the complex disease can be divided into
three parts concretely. The state between normal and disease
state is a tipping point which called predisease state. The
system will change dramatically when the phase of disease
approaches to the state. The following discrete-time state
system of a living organism can be described by a nonlinear
dynamical system equation:

A (𝑡 + 1) = 𝑓 (𝐴 (𝑡) ; 𝑝) , (1)

where 𝐴(𝑡) = (𝐴1(𝑡), . . . , 𝐴𝑛(𝑡))󸀠 is an 𝑛-dimensional vector
which represents observed values ormolecule concentrations
(e.g., gene expression or protein expression) at time point
𝑡 (𝑡 = 0, 1, . . .), for example, minutes, hours, or days. Param-
eter 𝑃 = (𝑝1, . . . , 𝑝𝑠) indicates the slowly changing factors
about genetic factors (e.g., SNP and CNV) and epigenetic
factors (e.g., methylation and acetylation). Yet 𝑝 is deter-
mined by its character and is not taken into consideration
in this study because it is a unknown parameter with slower
dynamics than 𝐴(𝑡). 𝑓 is general nonlinear functions of
𝐴(𝑡).
2.1.2. Data Normalization. The observed values or molecule
concentrations𝐴(𝑡) can be classified into two groups, namely,

the case group and the control group. They are denoted as
𝐴case(𝑡) and 𝐴control(𝑡), respectively:

𝐴case (𝑡) = (𝐴case1 (𝑡) , . . . , 𝐴case𝑛 (𝑡))󸀠 ,
𝐴control (𝑡) = (𝐴control1 (𝑡) , . . . , 𝐴control𝑛 (𝑡))󸀠 .

(2)

Due to the existing large differences in the expression
values of various genes or proteins, the data normalization
manner as follows is adopted to analyze the data:

𝑎𝑛𝑡 =
𝐴case𝑛 (𝑡) −mean (∑𝑡 𝐴control𝑛 (𝑡))

SD (∑𝑡 𝐴control𝑛 (𝑡)) , (3)

where 𝐴case𝑛 (𝑡) is the 𝑛th gene or protein expression of case
group and mean(∑𝑡 𝐴control𝑛 (𝑡)) and SD(∑𝑡 𝐴control𝑛 (𝑡)) are
the mean and standard deviation of 𝑛th gene or protein
expression at all time points in control group and the control
group, respectively. Then a 𝑛 × 𝑡 normalization matrix is
obtained:

𝐴 =
[[[[[[
[

𝑎11 𝑎12 ⋅ ⋅ ⋅ 𝑎1𝑡
𝑎21 𝑧̃22 ⋅ ⋅ ⋅ 𝑎2𝑡
... ... ... ...
𝑎𝑛1 𝑎𝑛2 ⋅ ⋅ ⋅ 𝑎𝑛𝑡

]]]]]]
]

, (4)

where 𝑎𝑛𝑡 represents the normalization data of the 𝑛th gene
or protein at time point t.

2.1.3. Sample-Specific Dynamical Network Biomarkers Selec-
tion. To further filtrate DNB, DEGs by 𝑡-test are isolated
from normalization data 𝐴 and denoted as 𝐴1, while the rest
are denoted as 𝐴2. It is assumed that 𝐴1 and 𝐴2 are 𝑟 × 𝑡
matrix and (𝑛−𝑟)×𝑡matrix, respectively. And𝐴1 is clustered
into 40 categories by using hierarchical clustering analysis.
The Euclidean distance is applied to calculate the distance
within genes or proteins of𝐴1.The optimal group of genes or
proteins is selected as DNB according to the following three
criteria of DNB identification proposed by Chen:

(i) The average standard deviation (SD) of molecule
concentration (𝐴 𝑖) in this group is significantly higher
comparing to others.

(ii) The average Pearson correlation coefficient (PCC) in
absolute value of molecule concentrations (𝐴 𝑖) in this group
is relatively higher than the PCC between other molecules.

(iii) The average Pearson correlation coefficient in abso-
lute value betweenmolecule concentrations inside this group
(𝐴 𝑖) and anyone outside this group (𝐴𝑗) (OPCC) is much
lower.

2.1.4. Construct Sample-Specific Early Warning Index. The
optimal group containing 𝑞 genes or proteins is separated
from 𝐴1, which is marked as 𝐴DNB. Additionally, the rest
of the groups of 𝐴 are assigned to 𝐴other. There is a key
point called predisease state during the development of the
disease, in the figure of dynamic state (Figure 1(c)) originally
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Figure 1: Three parts of biological progression of disease of a living organism. (a) The disease progression consists of three states including
normal state, predisease state, and disease state, respectively. As shown in the picture, the process from normal to predisease state is reversible,
whereas the process frompredisease to disease state is irreversible. (b)The static variation displays the development progression of disease and
the average value ofmolecule concentrations (e.g., gene or protein expression) at each state. (c)The dynamic variation shows the development
progression of disease and the dynamic value of molecule concentrations (e.g., gene or protein expression) at each state.

proposed by Chen et al. [10]. The change of DNB before and
after predisease state is relatively stable and smooth, whereas
it turns into abrupt and drastic at predisease state. After
identifying the DNB, the early warning index of each time
point 𝑡 can be constructed by three criteria:

(i) The average coefficient variation (CV) of molecule
concentrations at different time points is the value of fluctu-
ation. The CV value approaching predisease state is higher
than that of other time point.

(ii) The average value of absolute difference (DIF) in
molecule concentrations inside DNB approaching predisease
state drastically decreases compared with the values at other
time points.

(iii) The average value of absolute difference between
molecule concentrations inside DNB and any other outside
DNB (ODIF) approaching predisease state is relatively higher
than others.

Hence, the EWI𝑡 of all time points can be constructed as

EWI𝑡 = CV𝑡 × DIF𝑡ODIF𝑡
, (5)

where

CV𝑡 =
SD (𝐴DNB (𝑡))

mean (𝐴DNB (𝑡)) (6)

DIF𝑡 =
∑𝑖

1
,𝑖
2

󵄨󵄨󵄨󵄨󵄨𝑎𝑖1𝑡 − 𝑎𝑖2𝑡
󵄨󵄨󵄨󵄨󵄨

𝑖1 × 𝑖2
(𝑖1, 𝑖2 = 1, 2, . . . , the number of DNB)

(7)

ODIF𝑡 =
∑𝑖,𝑗 󵄨󵄨󵄨󵄨󵄨𝑎𝑖𝑡 − 𝑎𝑗𝑡

󵄨󵄨󵄨󵄨󵄨
𝑖 × 𝑗

(𝑗 = 1, 2, . . . , the number of genes or proteins outside DNB) .
(8)

In the light of the characteristic in predisease state, a
time point with the largest value can be considered as the
predisease state. After the point, the disease progression of
a living organism shifts rapidly from normal to disease state.

3. Result

All without-correct-corresponding gene symbols are
screened out, and probe of the same genes is combined by
the averaging method. There are 13915 genes left. Based on
the 13915 genes, Student’s 𝑡-test is applied to calculate the
𝑝 value of each gene by comparing its expression profile
between case groups and control groups. We identify 264
genes with𝑝 < 0.05 asDEGs. Next, 264 genes are classified by
hierarchical clustering analysis into 40 categories. Analyzing
all clusters or groups, a group of 144 genes is identified as
DNB, which satisfies the three criteria of DNB identification.
Among them, the values of average SD and average PCC
in this group are 1.2585797 and 0.3047569, which is higher
than others (e.g., 0.8802955 and 0.2940955), and the average
OPCC is relatively high.

To further clarify the early warning index for influenza A
disease with 10 time points, Figure 2 demonstrates variation
of four indicators in detail. As shown in (a), the curve of the
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Figure 2: The early warning index of influenza disease. In all the figures, the abscissa represents the time point t. (a) The average coefficient
variation (CV) of genes expression in DNB at 10 time points. (b) The average difference in absolute value between genes expression inside
DNB and any other outside DNB (ODIF) at 10 time points. (c) The average difference (DIF) in absolute value of genes expression in DNB at
10 time points. (d) The early warning index (EWI) of the case set of high-throughput experimental data for influenza A disease.

CV value of DNB strongly fluctuates with time and the value
at 7th time point (6 h) reaches the maximum value, which
indicates that the genes in DNB change drastically when
approaching 7th time point (6 h). And the value of DIF at
6 h shows the relatively lower value, which indicates that the
trend of genes expression inDNB is similarly approaching 7th
time point (6 h). Although the change inODIF is not obvious,
the early warning index at 7th time point (6 h) reaches the
maximum value. Thus, the most prominent physiological
effects occur approaching 7th time point (6 h). Meanwhile,
gene expression changes in HBECs in response to wild-type
influenza (PR8) show a strong float after 7th time point (6 h)
[19].

In order to analyze biological functional of the obtained
DNB, A bioinformatics database DAVID [20] (https://david
.abcc.ncifcrf.gov/) with Gene Ontology (GO) analysis and
KEGG Pathway analysis is mentioned. Some enriched GO
functions based on identified genes in DNB are listed in
Table 1. Gene Ontology can be divided into three parts:
molecular function, biological process, and cellular compo-
sition. The analysis of genes reveals that the DNB selected
by the sample-specific method is particularly related to
influenza disease, which confirms the validation of our theory

about the increasing index approaching predisease state. The
enriched GO functions underlying the identified DNBs are
particularly related to immune systems that are activated to
protect against influenza A virus and inordinate dysfunctions
associated with the performance in the viral life cycle. In
the DNBs, DCAF1 and ADGRG3, which play crucial roles in
cell differentiation, and ARVCF, COL19A1, and OLR1, which
are associated with cell adhesion, regulate the expression
of cell adhesion molecules [21]. Further, some genes in
the basic cellular processes are expressed in a disorderly
manner, for example, IFNA10, which is associated with the
regulation of cell death and abnormal reaction in transcrip-
tion and translation. Moreover, Some of them are involved
in the related triglyceride metabolic process, especially for
APOC3.

According to KEGG Pathway enrichment analysis, the
results show that genes in DNB of influenza A disease are
closely relevant to immune system and inflammation, such as
cytokine-cytokine receptor interaction, PPAR signaling path-
way, and Jak-STAT signaling pathway in Table 2. As key genes
in cytokine-cytokine receptor interaction, CXCR6, IFNA10,
IL21R, and TGFB3 in DNB participate in immune response
and immune regulation, regulate innate immune and adapt

https://david.abcc.ncifcrf.gov/
https://david.abcc.ncifcrf.gov/
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Table 1: Functional enrichment of GO for part of genes of identified DNB.

GO term Description DNB 𝑝 value Corrected 𝑝 value
GO:0007155 Cell adhesion ARVCF, COL19A1, OLR1, CD300A, PCDHA10,

CX3CL1, OMG, SIGLEC9 0.03844 0.85044

GO:0045766 Positive regulation of
angiogenesis ADM2, NOS3, CX3CL1, ALOX12 0.04448 0.86098

GO:0005886 Plasma membrane SCN3B, GRIK2, TGFB3, SLC7A9, DMPK,
APOA1,. . . 9.55𝐸 − 7 1.56𝐸 − 4

GO:0005615 Extracellular space LPL, CRISP3, LUM, AFM, IFNA10, TGFB3,
CX3CL, BMP15, APOA1, APOL1, IL18BP,. . . 1.23𝐸 − 4 0.00400

GO:0005102 Receptor binding HAO1, LPL, TENM2, HAO2, CX3CL1, LTB 0.03689 0.97736
GO:0010181 FMN binding HAO1, HAO2, NOS3 0.00418 0.67592

Table 2: Functional enrichment of KEGG pathways for part of genes of identified DNB.

Pathway term DNB 𝑝 value
hsa04060 Cytokine-cytokine receptor interaction CXCR6; IFNA10; IL21R; TGFB3; LTB; EDA2R; CX3CL1; IL13RA1; IL3RA 3.24𝐸 − 4
hsa03320 PPAR signaling pathway LPL; APOA1; OLR1; APOC3 1.45𝐸 − 2

immune response, stimulate hematopoietic function, stim-
ulate cell activation, proliferation, and differentiation, and
induce apoptosis.The pathway of cytokine-cytokine receptor
interaction is the same with expressed data.

Moreover, the genes in PPAR signaling pathway like
LPL, APOA1, OLR1, and APOC3 play a significant role
in inhibiting inflammation, regulating cell apoptosis and
immune system. And the genes in DNB which are marked
red are placed the critical positions in cytokine-cytokine
receptor interaction and PPAR signaling pathway. As shown
in Figure 3. JAK-STAT signaling pathway is a signal trans-
duction pathway stimulated by cytokines in recent years [22],
which includes IFNA10, IL21R, IL13RA1, and IL3RA in DNB,
involved in cell proliferation, differentiation, apoptosis, and
immune regulation, and many other important biological
processes.

To further demonstrate the effectiveness of our method,
we analyze symptoms of patients and their complications.
Patients develop symptoms of illness of upper respiratory
tract infection. However, they are also accompanied by the
occurrence of pulmonary complications, and renal failure
[23]. Moreover, 18 out of 144 genes are validated with
significantly close relation with influenza A disease. The
CX3CL1 involves both acute and chronic inflammations,
which is characterized bymajor perturbations of the immune
homeostasis [24]. Especially surfactant proteins SFTPB plays
a key role in alveolar stability [25], Which is associated with
influenza A disease. And this gene encodes the pulmonary-
associated surfactant protein B. The surfactant is secreted by
the alveolar cells of the lung and maintains the stability of
pulmonary tissue by reducing the surface tension of fluids
that coat the lung.

4. Discussion

To detect the early warning signal of influenza A disease
using a small number of samples of high-throughput data, we

propose an early warning index serving as a leading indicator
to predict the critical transition based on the concept of
dynamical network biomarkers proposed by Chen, which
drives the disease progression from normal state to disease
state. Compared to the general biomarkers [26], dynamical
network biomarkers are more suitable for characterizing the
transfer of system status. In our study, We first select the
DEGs by 𝑡-test between case groups and control groups.
Then, a new type of normalization data is constructed by
the formula defined in this study for the sake of analysis
of the next step. Different from the previous methods, our
work regards the gene expression with time of each gene as a
vector for hierarchical clustering analysis. And the Euclidean
distance is applied to calculate the distance within genes
in DEGs. A group, which satisfies three criteria of DNB
identification, is identified as DNB. Further, the values of
CV, DIF, and ODIF are calculated to construct an index for
detecting predisease state of individual sample. The index
EWI is applied in early diagnosis with the microarray data
of influenza A disease, which demonstrates fluctuated values
with time. Although the ODIF value approaching predisease
state is not completely obvious, the expression value of the
other three indicators is significantly relevantwith our theory.
In addition, everyone with the same disease has different
DNB due to different driving factors. We will focus on this
important future topic and continue to refine the algorithm
in later research.
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Figure 3: Key biological pathways with DNB genes in cytokine-cytokine receptor interaction and PPAR signaling pathway.
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