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Conflict‑free collective stochastic 
decision making by orbital 
angular momentum of photons 
through quantum interference
Takashi Amakasu1*, Nicolas Chauvet1,2, Guillaume Bachelier3, Serge Huant3, 
Ryoichi Horisaki1,2 & Makoto Naruse1,2*

In recent cross‑disciplinary studies involving both optics and computing, single‑photon‑based 
decision‑making has been demonstrated by utilizing the wave‑particle duality of light to solve multi‑
armed bandit problems. Furthermore, entangled‑photon‑based decision‑making has managed to 
solve a competitive multi‑armed bandit problem in such a way that conflicts of decisions among 
players are avoided while ensuring equality. However, as these studies are based on the polarization of 
light, the number of available choices is limited to two, corresponding to two orthogonal polarization 
states. Here we propose a scalable principle to solve competitive decision‑making situations by using 
the orbital angular momentum of photons based on its high dimensionality, which theoretically allows 
an unlimited number of arms. Moreover, by extending the Hong‑Ou‑Mandel effect to more than two 
states, we theoretically establish an experimental configuration able to generate multi‑photon states 
with orbital angular momentum and conditions that provide conflict‑free selections at every turn. We 
numerically examine total rewards regarding three‑armed bandit problems, for which the proposed 
strategy accomplishes almost the theoretical maximum, which is greater than a conventional mixed 
strategy intending to realize Nash equilibrium. This is thanks to the quantum interference effect that 
achieves no‑conflict selections, even in the exploring phase to find the best arms.

Optics and photonics are expected to play crucial roles in future computing  systems1, making a variety of devices 
and systems to be intensively studied such as optical fibre-based neuromorphic  computing2, on-chip optical 
neural  networks3, optical reservoir  computing4, among others. While these works are basically categorized in 
supervised learning, reinforcement learning is another important branch of artificial  intelligence5. The Multi-
Armed Bandit (MAB) problem is an example of a reinforcement learning situation, which formulates a funda-
mental issue of decision making in dynamically changing uncertain environments where the target is to find the 
best selection among many slot machines, also referred to as arms, whose reward probabilities are  unknown6. In 
solving MAB problems, exploration actions are necessary to find the best arm, although too much exploration 
may reduce the final amount of obtained reward from the exploitation. On the opposite, insufficient explora-
tion may lead to miss the best arm. Furthermore, when multiple players are involved, decision conflicts become 
serious, as they induce congestions and inhibit socially achievable  benefits7,8. Equality among players is another 
critical issue, as unfair repartition of outcomes may lead to distrust the system. This whole problem is known as 
the competitive MAB (CMAB) problem.

In order to solve these complex issues, photonic solutions have been recently considered. For example, the 
wave-particle duality of single photons has been utilized for the resolution of the two-armed bandit  problem9. 
Moreover, Chauvet et al. theoretically and experimentally demonstrated that polarization entangled photon pairs 
provide non-conflict and equality-assured decisions in two-player, two-armed bandit  problems10. Entangled 
photon states that allow more than three players while guaranteeing optimal outcome and equal repartition 
have also been  demonstrated11.
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However, since these former principles rely on the polarization of light as the tunable degree of freedom, the 
number of possible selections or arms is limited to only two, although potential scalability for the single-player 
MAB is feasible within a tournament-based  approach12. Therefore, the scalable principle of decision-making has 
been an important and fundamental issue, especially for multiplayer situations. In this paper, we introduce the 
use of the orbital angular momentum (OAM) of  photons13,14 to resolve the scalability issue of photonic decision 
making, following the concept summarized in Fig. 1.

Photons that carry  OAM13 realize high-dimensional state spaces, only restricted by the precision and accuracy 
of the generation technique and the transmission  medium15 (Fig. 1a); hence one of the basic ideas of this study is 
to associate individual selections to different-valued OAM (Fig. 1b). The applications of OAM have progressed in 
diverse areas ranging from the manipulation of cooled atoms, communications, nonlinear optics, optical solitons, 
and so on. The high-dimensionality of OAM is particularly attractive for quantum information processing in 
increasing the dimension of elementary quantum information carriers to go beyond the  qubit16–21. Likewise, in 
the present study, the multi-dimensionality of OAM plays a crucial role in extending the maximum number of 
arms as well as utilizing the probabilistic attribute of single photons carrying OAM.

Furthermore, to resolve CMAB problems when the number of arms is greater than two, we extend the notion 
of Hong-Ou-Mandel  effect22 to more than two (OAM) vector states to induce quantum interference. We show 
that conflicting decisions among two players can be perfectly avoided by the adequate quantum interference 
design to generate OAM 2-photon states, relying on a coherent photon pair source. In the literature, OAM has 
been examined from game-theoretic perspectives such as resolving prisoners  dilemma23 and duel  game24. In 
the present study, we benefit from quantum interference for non-conflicting decision-making to maximize total 
rewards, which is similar to the insight gained by quantum game literature. Additionally, in solving CMAB 
problems with many arms, exploration action is necessary. We numerically examine total rewards regarding 
three-armed bandit problems where the proposed quantum-interference-based strategy accomplishes nearly 
theoretical maximum total reward. We confirm that the proposed strategy clearly outperforms conventional 
ones, including the mixed strategy intending to realize Nash  equilibrium7.

Moreover, equality among players is important in CMAB problems. We demonstrate that equality is perfectly 
ensured by appropriate quantum interference constructions when the number of arms is three. At the same time, 
however, we also show that it is unfortunately impossible to accomplish perfect equality in the proposed scheme 
and with the current hypotheses when the number of arms is equal to or larger than four. Note also that perfect 
collision avoidance is ensured for any number of arms.

These properties are made possible thanks to the high dimensionalities of OAM for scalability and the quan-
tum interference effect for non-conflict selections even in the exploring phase to find the best arms.

Results
Scalable decision maker with OAM. System architecture for solving 1‑player K‑armed bandit prob‑
lem. We first describe the problem under study, which is a stochastic multi-armed bandit problem with re-
wards following Bernoulli distributions defined as follows. There are K available slot machines (or arms): when 
the player selects one arm i, the player wins with probability Pi (and receives a fixed reward of 1), or loses with 
probability 1− Pi (and receives a fixed reward of 0), with i an integer ranging from 1 to K. Let a player choose 
an arm each time and allow a total of T times, then the goal of the bandit problem is to find out which strategy 
should be followed to choose arms so that the resultant accumulated outcome is maximized. When the slot 
machine with the highest winning probability is known, the best strategy is to draw that specific arm for all T 

Figure 1.  (a) Schematic illustration of the phase surface of a beam with OAM. The direction of travel is upward. 
It is a surface with |l| spirals. The pitch of each spiral is one wavelength divided by |l|. (b) Stochastic detection of 
OAM states directly corresponds to a player probabilistically selecting a machine.
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times, but the player initially has no information about the arms. Therefore, exploration actions are required to 
know the best arm, whereas too much exploration potentially leads to missing a higher total amount of rewards 
from the best machine.

In the previous work on single-photon decision maker using  polarization9, two orthogonal linear polarizations 
of photons are associated with two slot machines; that is, horizontal and vertical polarizations correspond to 
slot machine 1 and 2, respectively. The exploration is physically realized by the probabilistic attribute of photon 
measurement, whose outcome depends on the direction of the polarization of linearly polarized single photons. 
Therein, the polarization degree of freedom physically and directly allows specifying the probabilistic selection 
of slot machines. However, as mentioned in the “Introduction” section, the number of arms is limited to only 
two, although extendable in a single-player setup to powers of two via a tournament-based  approach12.

The fundamental idea of the present study is to associate the dimension of OAM with the selection of mul-
tiple arms, whatever the number of arms. Allen et al. have pointed out that a Laguerre-Gaussian (LG) beam 
has an angular momentum independent from polarization; they have called it OAM to distinguish it from the 
polarization-dependent spin angular  momentum25. The spatial mode of a LG beam can be expressed using the 
near-axis approximation

where ρ is the distance from the optical axis, θ is the azimuthal angle around the optical axis, z is the coordinate 
of the propagation direction, fm is the complex amplitude distribution, and k is the wavenumber. m and l are 
integer numbers that respectively describe the order of the Laguerre polynomial for the radial distribution and 
the azimuthal rotation number. In our study, m is fixed at 0, while l takes any integer numbers. Correspond-
ingly, |l� is the state in which there is one photon in the l mode, whose angular momentum is equal to l� where 
� is Planck’s constant divided by 2π . Since the modes with different l are orthogonal to each other, the quantum 
state can be expressed by a linear superposition, using these modes as a basis. Figure 1a schematically illustrates 
examples of beams with different l-valued OAM where l is an integer from −3 to 3. Non-zero l beams exhibit 
spiral isophase spatial distributions. Figure 2 shows a schematic diagram of the proposed system architecture 
for solving the MAB problem using OAM. Here we illustrate the case where the number of arms is three, but the 
same principle applies in extending to a larger number of arms.

Conventional laser sources generate beams that do not have orbital angular momentum. Technologically, 
methods to generate light with OAM from a plane wave or a Gaussian beam include the use of phase  plates26, 
computer generated holograms (CGH)27, or mode  converters28,29. Spatial light modulators (SLMs) are widely 
utilized for this purpose, as they enable direct and tunable amplitude and/or phase modulation of an incoming 
light  beam30. The simplest and the most widely used method is a CGH-based approach implemented with an 
SLM and a 4f optical  setup15. In Fig. 2, a photon with a Gaussian spatial profile emitted from a laser is sent to a 
phase SLM, displaying a CGH pattern to generate OAM states, each carrying a phase factor eilθ which depends 
on the azimuthal angle θ and the OAM number l. l could be any integer, but when all generated l are expected 
to be positive, the output photon is described by the state:

(1)ul = fm(ρ, z)e
ilθ eikz

(2)SLM(φ1,φ2, . . . ,φK )|0� =
1√
K

K
∑

l=1

eiφl |+l�

Figure 2.  Design of the system architecture for solving single-player 3-armed bandit problems. d1, d2, d3 denote 
the transmittance of each attenuator.
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where φ1,φ2, . . . ,φK depict phase changes associated with each OAM with l values being +1, +2, . . . , and +K , 
respectively, and |l� denotes the photon state with OAM value of l. That is to say, a single photon is emitted from 
the source system that contain K OAM states with equal probability amplitude.

Meanwhile, a mirror causes flipping of the twisted structure of any given OAM; that is, the function of a beam 
splitter (BS) in the light propagation is represented by

where R represents flipping of OAM state, for example, R|+1� = |−1� . In the case K = 3 , we generate a photon 
state that carries equally l = +1,+2,+3 by setting φ1 = φ2 = φ3 = 0 . That is, the output after SLM is given by 
(1/

√
3)× (|+1� + |+2� + |+3�).

This photon is then transferred to an array of BSs and single photon detection system to examine which 
l-valued OAM is detected. Among a variety of methods in measuring the OAM of  light31, the system architecture 
shown in Fig. 2 illustrates a method utilizing a hologram (HG) followed by a zeroth-order extraction  system32. 
In practical implementation, a zeroth-order extraction system could be free-space optics with spatial filtering 
or single-mode optical fibre.

This hologram adds a phase factor of eilHGθ to the state |l� with OAM l, which results in a transformation 
|l� → |l + lHG� . After injection into a zeroth-order extraction system, only an l = 0 photon propagates in it. 
In other words, the zeroth-order extraction system acts as a filter to extract the l = 0 component only. If the 
hologram induces a shift of OAM by lHG and a photon is detected by the subsequent photodetector, the OAM of 
the incoming photon is identified to be l = −lHG . Based on this principle, in the system shown in Fig. 2, three 
holograms HG1, HG2, HG3 are arranged, which transform |l� into |l − 1�, |l − 2� , and |l − 3� , respectively.

One remark here is that, although multiple BSs and holograms are employed in Fig. 2, more compact realiza-
tion is indeed possible by, for example, a geometric optical transformation  technique33, which has been extended 
to more than 50 OAM  states34. The reason behind the introduction of the measurement architecture shown in 
Fig. 2 regards the following procedure related to photon detections.

The output light is subjected to attenuators (ATT1, ATT2, ATT3) to control detection probabilities and a 
zeroth-order extraction system, followed by photodetectors (PD1, PD2, PD3). Based on the filtering by the 
zeroth-order extraction system, photon detection by PD1, PD2, and PD3 means observing OAM values of 1, 
2, and 3, respectively. Photon detection by PD1 immediately means playing slot machine 1. Similarly, PD2 and 
PD3 are associated with the decision of playing slot machines 2 and 3, respectively. It should be emphasized that 
in this configuration, a machine is only selected if a photon is detected.

Initially, since the probabilities of the detected photons to be measured by PD1, PD2, and PD3 are all equal 
to 1/3, all machines are explored equally. Depending on the obtained results, the attenuation levels by ATT1, 
ATT2, ATT3 are updated.

After a single photon is detected by any photodetector, the selection yields eventual rewards from slot 
machines, and the results are registered into history H(t). While referring to the history H(t), the next decision 
is determined by following a certain policy of the player. The softmax policy is one of the most well-known feed-
back algorithms for the decision, which is also considered to accurately emulate the model of human decision 
 making35,36. In the softmax policy, the player selects each machine based on a maximum likelihood estimation 
of the reward probability P̂1(t), P̂2(t), . . . , P̂K (t) and the probability of selecting machine i is given by the fol-
lowing equation:

where β , which is also known as inverse temperature from analogy to statistical mechanics, is a parameter that 
influences the balance between exploration and exploitation. While optimal parameter β depends on reward 
probabilities and some methods for tuning β have been  proposed37, this paper, for simplicity, set it to a constant 
value β = 20 based on a moderate tuning. The amplitude transmittance of attenuators (ATT1, ATT2, ATT3) are 
denoted by d1, d2, d3 , which are initially all one. These values are updated after every trial based on:

In this way, di(t) is revised as the time elapses so that the photon detection event is highly likely induced at the 
photodetector that corresponds to the best slot machine or the highest reward probability machine. For example, 
if slot machine 1 is the highest reward probability one, the transmittance of ATT1 should be higher while those 
of ATT2 and ATT3 should become smaller.

Here is a remark about the denominator of the right side of Eq. (5). The probability of detecting state i is 
proportional to di(t)2 . Dividing each di(t)2 by the same value max

k
sk(t) does not give any unintended bias to the 

detection probabilities, but transmission efficiency by the attenuators is kept high. That is, the loss of photons by 
the attenuators is minimized.

Finally, we discuss one more important remark regarding the architecture for solving the single-player, multi-
armed bandit problem shown in Fig. 2. The principle maximizes the detection probability of the OAM state 

(3)|�� 1:1 beam splitter−−−−−−−−−→ 1√
2
|��transmitted +

i√
2
R|��reflected ,

(4)
si(t + 1) = eβP̂i(t)

K
∑

k=1

eβP̂k(t)

(5)di(t) =
√

√

√

√

si(t)

max
k

sk(t)
.
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corresponding to the best machine. Actually, instead of reconfiguring the attenuators, we can accomplish the 
same functionality by reconfiguring the phase pattern displayed at the SLM located on the light source side. 
Indeed, this alternative way is directly and dynamically utilizing the high-dimensional property of  OAM38. This 
architecture, however, imposes a complex arbitration mechanism when we extend the principle to two-player 
situations in the following. That is, controlling the light source by a single player is indeed feasible, but the source 
management by two players is non-trivial. Instead, player-specific attenuator control does not impose any global 
server. For these reasons, we discuss the fundamental architecture shown in Fig. 2.

Simulation results for 1‑player 3‑armed bandit problem. Figure 3 summarizes simulation results for the 1-player 
3-armed bandit problem with the OAM system following the softmax policy. The solid, dashed, and dashed-
dotted curves in Fig. 3a show the time evolution of the selection probability of machine 1, 2, and 3, respec-
tively, when the reward probability of slot machines are given by [P1, P2, P3] = [0.9, 0.7, 0.1] . Here the number 
of repetitions is 1000. We can clearly observe that the probability of selecting the maximum reward probability 
machine, here machine 1, monotonically increases.

Figure 3b examines the correct decision rate, which is referred to as CDR, defined by the number of selections 
of the highest reward probability machine over 1000 trials when the reward environment is configured differently. 
The blue, red, and yellow curves show the time evolution of CDR when the reward environment [P1, P2, P3] is 
given by [0.9, 0.7, 0.1], [0.9, 0.5, 0.1], and [0.9, 0.3, 0.1], respectively. Here the maximum and minimum reward 
probabilities are commonly configured. As the difference between the maximum and the second maximum 
reward probability becomes smaller, the increase of CDR toward unity becomes slow. Nevertheless, we can 
observe that the monotonic increase of selecting the best machine in Figs. 3a,b. Since there is no theoretical 
limitation regarding the number of OAM states, the system configuration herein can be used for the probabilistic 
selection among a large number of selections. Note that the softmax policy itself is also scalable.

Solving 2‑player 3‑armed bandit problem with OAM and quantum interference. System ar‑
chitecture for solving 2‑player 3‑armed competitive bandit problem with OAM and quantum interference. This 
section discusses stochastic selections of arms in the CMAB problem using photon pair OAM quantum states. 
The system presented in Fig. 2 has been extended to the case of two players (Player A and B) by the architecture 
represented in Fig. 4. This time, the assumption is that the selection only happens when exactly one photon is 
detected simultaneously by each player on their photodetectors.

In the source part, a photon pair is created by a nonlinear crystal such as a periodically poled KTP (PPKTP) 
and then subjected to an interferometer. One of the photon pair is supplied to the Detection A system, and the 
other goes to the Detection B system. The internal structure of Detection systems is the same as the one-player 
system depicted in Fig. 2. Thanks to the quantum interference, even though there is no explicit communica-
tion between the players, the detection results of the two photons are correlated with each other, as discussed 
in detail later.

In quantum research using light, it has been common to use quantum states based on properties such as 
polarization, spatial mode, and phase, but since the discovery of orbital angular momentum, many studies on 
quantum states using orbital angular momentum of light have been  reported39. The availability of orbital angular 
momentum with an infinite number of states is very important in quantum research. In 2001, Mair et al. used 
parametric down conversion (PDC) to study the generation of photon pairs in states with entangled orbital 
angular  momentum39. Subsequently, a theoretical study of the change in orbital angular momentum during the 
PDC process was  performed40, and photon pairs with three entangled orbital angular momentum states were 
also  studied41. In the present study, we utilize quantum interference given by an extension of the Hong-Ou-
Mandel  effect22.

Figure 3.  Simulation results for solving 1-player 3-armed bandit problem with OAM system and softmax 
policy. (a) Probability of selecting each machine over 1000 times when [P1, P2, P3] = [0.9, 0.7, 0.1] averaged over 
1000 repetitions. (b) Correct decision rate over 1000 repetitions in different reward environment.
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Generation of OAM photon pair with quantum interference. Hong-Ou-Mandel effect has been well studied 
for two identical photons always detected together in the same output path when they enter into a 1:1 beam 
 splitter22. We extend the description of this phenomenon for multiple-OAM states carrying input photons. 
When OAM states of input photon |�� is sent to the beam splitter, transmitted term A and reflected term B can 
be described with the following forms:

where R represents flipping of OAM state, for example, R|+1� = |−1� . As shown in Fig. 5a, when OAM states 
of input photons are |��, |�� on the two BS inputs, the output state |�′� ⊗ |� ′� can be described with the fol-
lowing forms:

(6)|�� 1:1 beam splitter−−−−−−−−−→ 1√
2
|��A + i√

2
R|��B.

Figure 4.  System architecture for solving 2-player 3-armed bandit problem.

Figure 5.  (a) Photons with OAM states |��, |�� go into BS as two inputs and go out to A and B. (b) Probability 
of detecting certain OAM states at each side of a beam splitter A and B. Some of the probabilities are constant, 
while the others depend on the phase difference between two input states. The probability of a pair of photons 
being detected at different sides is marked by the red frame.
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With K being the number of OAM used in the system, the input states |��, |�� can be set to

considering that the two photons have the same polarization, wavelength, and are synchronized on the beam 
splitter. Each term of the output state given by Eq. (7) is described by the following:

Therefore, the output state |�′� ⊗ |� ′� is given by the following terms:

Correspondingly, the probability of detecting the same state at the same side, that is |+k�A ⊗ |+k�A or 
|−k�B ⊗ |−k�B , is given by

By introducing parameters θk = φk−ψk
2

 , which depends on the phase difference of two input states, the prob-
ability of detecting different states on the same side, that is |+k1�A ⊗ |+k2�A or |−k1�B ⊗ |−k2�B , is given by

and finally the probability of detecting pair of states on different sides, that is |+k1�A ⊗ |−k2�B , is given by

(7)
|�′� ⊗ |� ′� =

(

1√
2
|��A + i√

2
R|��B

)

⊗
(

i√
2
R|��A + 1√

2
|��B

)

=
(

i

2
|��A ⊗ R|��A

)

+
(

1

2
|��A ⊗ |��B − 1

2
R|��A ⊗ R|��B

)

+
(

i

2
R|��B ⊗ |��B

)

.

(8)|�� = 1√
K

K
∑

k=1

eiφk |+k�, |�� = 1√
K

K
∑

k=1

eiψk |−k�,

(9)

|��A ⊗ R|��A =
(

K
∑

k=1

1√
K
eiφk | + k�A

)

⊗
(

K
∑

k=1

1√
K
eiψk | + k�A

)

=
K
∑

k=1

1

K
ei(φk+ψk)| + k�A ⊗ | + k�A +

K
∑

k1<k2

1

K

(

ei(φk1+ψk2
) + ei(ψk1

+φk2 )
)

| + k1�A ⊗ | + k2�A

(10)

|��A ⊗ |��B − R|��A ⊗ R|��B

=
K
∑

k=1

1√
K
e
iφk | + k�A ⊗

K
∑

k=1

1√
K
e
iψk | − k�B −

K
∑

k=1

1√
K
e
iψk | + k�A ⊗

K
∑

k=1

1√
K
e
iφk | − k�B

=
K
∑

k1=1

K
∑

k2=1

1

K
e
i(φk1+ψk2

)| + k1�A ⊗ | − k2�B −
K
∑

k1=1

K
∑

k2=1

1

K
e
i(ψk1

+φk2 )| + k1�A ⊗ | − k2�B

=
K
∑

k1=1

K
∑

k2=1

1

K

(

e
i(φk1+ψk2

) − e
i(ψk1

+φk2 )
)

| + k1�A ⊗ | − k2�B.

(11)

|�′� ⊗ |� ′� =
K
∑

k=1

i

2K
ei(φk+ψk)|+k�A ⊗ |+k�A

+
K
∑

k1<k2

i

2K

(

ei(φk1+ψk2
) + ei(ψk1

+φk2 )
)

|+k1�A ⊗ |+k2�A

+
K
∑

k1=1

K
∑

k2=1

1

2K

(

ei(φk1+ψk2
) − ei(ψk1

+φk2 )
)

|+k1�A ⊗ |−k2�B

+
K
∑

k=1

i

2K
ei(φk+ψk)|−k�B ⊗ |−k�B

+
K
∑

k1<k2

i

2K

(

ei(φk1+ψk2
) + ei(ψk1

+φk2 )
)

|−k1�B ⊗ |−k2�B.

(12)2 ·
∣

∣

∣

∣

i

2K
ei(φk+ψk)

∣

∣

∣

∣

2

= 1

2K2
.

(13)
∣

∣

∣

∣

i

2K

(

ei(φk1+ψk2
) + ei(ψk1

+φk2 )
)

∣

∣

∣

∣

2

= 1

K2
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Figure 5b summarizes the probability of detecting each output state, while Fig. 6 shows all the probabilities 
with K ranging from 1 to 4. The probabilities depend only on θk , which can be tuned by controlling the SLM 
phases φk and ψk.

A pair of photons being detected on both sides is displayed with the red frames in Fig. 6, which are utilized as 
selections by the two players. What is remarkable is that the probability of detecting the same states at different 
sides is always zero because the probability term sin2(θk − θk) is always equal to zero. For K = 1 , this phenom-
enon corresponds to what is known as the Hong-Ou-Mandel effect. As the detected OAM states correspond to 
the selection of players, the probability of both players selecting the same machine is only limited by experimental 
constraints such as multiple pair generation, meaning that conflict-free decisions are accomplished.

The probabilities described in the red frames include the probabilities of detecting different states by the two 
players. It is remarkable that these probabilities can take equal value when K is less than or equal to three. For 
example, when K = 2 , by assigning θ1 = 0 and θ2 = π/2 , all such probabilities becomes 1/4. Similarly, when 
K = 3 , by setting (θ1, θ2, θ3) = (0,π/3, 2π/3) , the probabilities are all 1/12. Namely, all arm combinations except 
selecting the same arm are selected equally. Note, however, that when K is larger or equal to four, we cannot 
perfectly equalize these probabilities by only tuning θ1, θ2, . . . , θK . This point is discussed in the “Discussion” 
section. In this study, we focus on the case when K = 3 because the equivalent selection of pairs is ensured, as 
discussed above.

Simulation results for 2‑player 3‑armed bandit problem. In the CMAB problem in the present study, the rewards 
are equally split among the players who selected the same machine; that is, the decision conflict by multiple 
players reduces the individual benefit. Furthermore, total rewards are reduced because of the conflicted choice.

Figure 6.  Probability of detecting certain OAM states at either sides of the beam splitter with K ranging from 1 
to 4. The probability of a pair of photons being detected at different sides are marked by the red frame.
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Here we begin with a brief overview of the two-player decision-making situations by a game-theoretic 
 formalism42 while mentioning its intuitive implications. We denote Pk∗ , Pk∗∗ , Pk∗∗∗ respectively the first, second, 
and third highest reward probability. First, when Pk∗ > 2× Pk∗∗ , the situation of both players selecting machine 
1 is the only Nash equilibrium. That is, conflict is unavoidable if both players act in a greedy manner because the 
best machine is far better than the other machines.

Second, when Pk∗ < 2× Pk∗∗ , Nash equilibrium is achieved when player 1 chooses the best machine (machine 
k∗ ), and player 2 selects the second-best machine (machine k∗∗ ), and vice versa. That is, conflicting decisions 
are avoided because changing the player’s decision decreases his/her reward. However, there is a problem from 
the viewpoint of equality, as one of the players can keep selecting the higher reward machines while the other is 
locked with the lower reward decisions.

Third, there exists another symmetric Nash equilibrium with a mixed strategy, meaning that they select each 
machine with a certain probability. The details are described in the “Methods” section. Intuitively speaking, by 
this mixed strategy, both players sometimes intentionally refrain from choosing the best machine. Therefore, 
sometimes, decision conflicts can be avoided. Indeed, Lai et al. successfully utilized a mixed strategy in dynamic 
channel selection in communication  systems7. However, it should be remarked that perfect conflict avoidance 
cannot be ensured by mixed strategies.

In order to quantitatively evaluate the performance differences among different policies, we compare the 
quantum interference system with the following two policies. One is a greedy policy where both players take 
greedy actions as if they are playing alone. The second is an equilibrium policy where both players try to achieve 
the symmetric Nash equilibrium by a mixed strategy. The details are described in the “Methods” section.

Figure 7 shows the results for solving the 2-player 3-armed bandit problem. Figure 7a shows how the selection 
probabilities of both players evolve with each policy. With the greedy policy, reminding that machine 1 has the 
highest reward probability of 0.9, its selection probability approaches almost 1 for both players, as in the case of 
a single player. For the equilibrium policy, the selection probabilities of the two most rewarding machines 1 and 
2 converge to the probabilities defined by the mixed strategy. With the quantum interference strategy, however, 
machine 1 and machine 2 are selected with equal probability by both players. Figure 7b shows the ratio of each 
selection combination from both players. The greedy policy is associated with a large number of conflicts as 
both players almost only select machine 1, while the equilibrium policy reduces the number of conflicts to some 
extent as the selections are distributed. Finally, the quantum interference policy completely avoids conflicts. The 
final rewards with such selections are shown in Fig. 7c, for each player and for the total attributed reward. We 
observe that the quantum interference policy achieves almost ideal total rewards as well as equality between 
players. By contrast, the total reward by the greedy and the equilibrium policies becomes small compared with 
the quantum interference policy because they suffer from unavoidable decision conflicts.

Figure 7d shows how the final reward of each policy varies when the reward probabilities of the three 
machines are modified. In greedy and equilibrium policies, the total reward changes due to the rate of selection 
of the lowest rewarding machine 3 in the exploration phase. On the other hand, with the quantum interference 
policy, the larger the difference between the reward probabilities of machine 2 and machine 3, the easier it is to 
determine the top two machines, and the higher the final total reward; despite this, the difference in total reward 
is mild in comparison with the difference with the other two policies.

Discussion
In this study, we show that we can benefit from the high dimensionality of OAM for scalability in solving multi-
armed bandit problems. Furthermore, appropriate quantum interference constructions lead to achieving high 
rewards while maintaining a fair repartition between two players in competitive bandit problem situations. The 
total reward optimization is guaranteed by the selections of the two best machines by the two players in a non-
conflicting manner, while the fair repartition is guaranteed by the equal probabilities of selection among players 
through quantum interference.

The main assumption is the simultaneous detection of exactly one photon for all players. In the proposed 
optical design, this is for the purpose of the extended Hong-Ou-Mandel effect or quantum interference that 
guarantees that identical photons go to the same side of the beam splitter, at the price of a post-selection of half 
of all photon pairs. While this is a strong constraint for potential applications, this design is only an example, and 
nothing forbids the obtention of the target state with other designs that do not rely on post-selection.

Regarding the extension to more arms, the current design is limited to three arms due to fundamental con-
straints (lack of enough degrees of freedom to constrain the 2-photon state). This may be solved by allowing to 
tune the relative amplitude between each OAM with the SLM and/or additional mechanisms. Once again, the 
goal of the setup presented in this study is only to present the principle of utilizing OAM for multiple arms in 
MAB and quantum interference for competitive decision-making. We believe that the extension to many arms 
is a technological problem without theoretical  constraints34.

The next discussion point is about security. The two-player CMAB system herein intends to let the players 
directly influence the detection probability via the attenuation amplitude in front of the detectors. While this 
architecture ensures independent machine selection and revision of the attenuation among the players, it presents 
one fundamental weakness: if a player only wants to select the highest rewarding arm, then the attenuation will 
be maximized for the lower arms, only letting photons reach the corresponding detector. However, this situation 
is easily identifiable by the other player, who can recognize that the probability of selecting a particular machine 
decreases. The solution for that player is straightforward: attenuate more the second-best arm too to correct the 
imbalance (in case of slight inequality), which is equivalent to not playing anymore if the other player completely 
blocks the other photons.
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This brings the following discussion point about the photon utilization efficiency. In this study, only simul-
taneous detection of exactly one photon for all detectors of each and every player triggers the selection of arms 
from both players. The reason is to implement the post-selection of output states where one photon goes for both 
players instead of two photons for only one player. With the current operation principle based on quantum inter-
ference summarized in Fig. 6, half of all photon pairs are strictly unusable for the players. Although such a loss is 
unavoidable, further photon losses are induced in the system architecture shown in Fig. 4 because of the multiple 
BSs. As discussed earlier, this part can be improved by technological methods developed in the  literature33,34.

Conclusion
To overcome the scalability limitations in the former single-photon-based decision making that relies on two 
orthogonal polarizations to resolve the two-armed bandit problem, we associate orbital angular momentum 
of photons to individual arms, which theoretically allows ideal scalability. When multiple players are involved, 
conflict of decisions becomes a serious issue, which is known as the competitive multi-armed bandit problem. 
Formerly, polarization-entangled photons have been shown to realize conflict-free decision making in two-
player, two-armed situations; however, its arm-scalability is limited to only two. In this study, by extending the 
Hong-Ou-Mandel effect to more than two states, we theoretically establish an experimental configuration able 
to generate quantum interference among states with orbital angular momentum and conditions that provide 
conflict-free selections. We numerically examine total rewards regarding two-player, three-armed bandit prob-
lems, for which the proposed principle accomplishes almost the theoretical maximum, which is greater than a 
conventional mixed strategy intending to realize Nash equilibrium. This study paves a way toward photon-based 
intelligent systems as well as extending the utility of the high dimensionality of orbital angular momentum of 
photons and quantum interference in artificial intelligence domains.

Figure 7.  Simulation results for solving 2-player 3-armed competitive bandit problem with greedy, equilibrium 
and quantum interference policies. (a) Probability of selecting each machine over 1000 selections when 
[P1, P2, P3] = [0.9, 0.7, 0.1] averaged over 1000 repetitions. (b) Ratio of each selection pair over 1000 selections 
and 1000 repetitions. (c) Average rewards of player 1, player 2, and total rewards over 1000 selections with 
[P1, P2, P3] = [0.9, 0.7, 0.1] averaged over 1000 repetitions. (d) Average total rewards with different reward 
probability over 1000 selections and 5000 repetitions.
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Methods
Detail algorithm of greedy policy, equilibrium policy, and entanglement policy. Greedy policy 
(Strategty for single player MAB). Both players independently decide the probability of selecting each machine 
at each round. The algorithm is based on the softmax  policy5 and the probability of selecting machine i at round 
t is given by the following equation:

If there exists a non-selected machine, all the machines are selected randomly with the same probability. 
Otherwise, P̂k(t) = wk(t)

wk(t)+lk(t)
 when the player has been rewarded wk(t) times and not rewarded lk(t) times from 

machine k. As a moderate tuning, β is set to be 20 in this study.

Equilibrium policy. 
Table1 represents the profit table of the expected reward in a single selection. In Nash equilibrium, no player has 
anything to gain by changing only their own strategy. In Nash equilibrium, the strategy may be selecting one 
particular machine, but it could also be a strategy such that multiple machines are probabilistically chosen. In the 
situation of Table 1, strategies can be defined with the probabilities of selecting machine 1, machine 2, machine 3, 
or α1,α2,α3 for player A and β1,β2,β3 for player B. In what follows, the notations k∗, k∗∗, k∗∗∗ represent indices of 
the first, the second, and the third best machine, respectively. Nash equilibriums are summarized as shown below:

• in case Pk∗ > 2Pk∗∗

⋄ (αk∗ ,αk∗∗ ,αk∗∗∗) = (βk∗ ,βk∗∗ ,βk∗∗∗) = (1, 0, 0)

• in case Pk∗ < 2Pk∗∗ and Pk∗Pk∗∗/Q > 2
5

– (αk∗ ,αk∗∗ ,αk∗∗∗) = (1, 0, 0), (βk∗ ,βk∗∗ ,βk∗∗∗) = (0, 1, 0)

– (αk∗ ,αk∗∗ ,αk∗∗∗) = (0, 1, 0), (βk∗ ,βk∗∗ ,βk∗∗∗) = (1, 0, 0)

  ⋄ (αk∗ ,αk∗∗ ,αk∗∗∗) = (βk∗ ,βk∗∗ ,βk∗∗∗) = (
2Pk∗−Pk∗∗
Pk∗+Pk∗∗

,
2Pk∗∗−Pk∗
Pk∗+Pk∗∗

, 0)

• in case Pk∗ < 2Pk∗∗ and Pk∗Pk∗∗/Q < 2
5

– (αk∗ ,αk∗∗ ,αk∗∗∗) = (1, 0, 0), (βk∗ ,βk∗∗ ,βk∗∗∗) = (0, 1, 0)

– (αk∗ ,αk∗∗ ,αk∗∗∗) = (0, 1, 0), (βk∗ ,βk∗∗ ,βk∗∗∗) = (1, 0, 0)

  ⋄ (αk∗ ,αk∗∗ ,αk∗∗∗) = (βk∗ ,βk∗∗ ,βk∗∗∗) = (2− 5Pk∗∗Pk∗∗∗
Q , 2− 5Pk∗∗∗Pk∗

Q , 2− 5Pk∗Pk∗∗
Q )

where Q = Pk∗Pk∗∗ + Pk∗∗Pk∗∗∗ + Pk∗∗∗Pk∗ . With the equilibrium policy, both players try to achieve symmetric 
Nash equilibrium, which is represented with the shape ⋄ above, under the situation that reward probabilities 
are not quite sure. In the simulation algorithm, each player decides which machines are better and which Nash 
equilibrium to achieve based on their own maximum likelihood estimation of reward probabilities. In an actual 
algorithm, the parameters of player 1 are calculated as below with k̂∗, k̂∗∗, k̂∗∗∗ respectively representing machine 
indices with the first, the second, and the third highest estimated reward probability:

• in case P̂
k̂∗ > 2P̂

k̂∗∗
– (α∗,α∗∗,α∗∗∗) = (1, 0, 0)

• in case P̂
k̂∗ > 2P̂

k̂∗∗ and P̂
k̂∗ P̂k̂∗∗/Q > 2

5

– (α∗,α∗∗,α∗∗∗) = (
2P̂

k̂∗−P̂
k̂∗∗

P̂
k̂∗+P̂

k̂∗∗
,
2P̂

k̂∗∗−P̂
k̂∗

P̂
k̂∗+P̂

k̂∗∗
, 0)

• in case P̂
k̂∗ < 2P̂

k̂∗∗ and P̂
k̂∗ P̂k̂∗∗/Q < 2

5
– (α∗,α∗∗,α∗∗∗) = (2− 5P̂

k̂∗∗ P̂k̂∗∗∗
Q , 2− 5P̂

k̂∗∗∗ P̂k̂∗
Q , 2− 5P̂

k̂∗ P̂k̂∗∗
Q )

(15)
sk(t + 1) = eβP̂k(t)

K
∑

n=1

eβP̂n(t)

.

Table 1.  Profit table of expected reward. Reward is splitted when the selection is in conflict between two 
players.

Expected reward for (Player 1, 
Player 2)

Selection of Player 2

Machine 1 Machine 2 Machine 3

Selection of Player 1

Machine 1 (P1/2, P1/2) (P1, P2) (P1, P3)

Machine 2 (P2, P1) (P2/2, P2/2) (P2, P3)

Machine 3 (P3, P1) (P3, P2) (P3/2, P3/2)
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where Q = P̂
k̂∗ P̂k̂∗∗ + P̂

k̂∗∗ P̂k̂∗∗∗ + P̂
k̂∗∗∗ P̂k̂∗ , and P̂

k̂∗ , P̂k̂∗∗ , P̂k̂∗∗∗ represent the first, the second, and the third high-
est estimated reward probability. The parameters of player 2 are also calculated in the same way with the different 
reward probability estimations. The probability of selecting each machine is calculated as below:

where, π(P
k̂∗ = Pk∗ |H(t)) represents the probability of machine k̂∗ to have the highest reward probability from 

the estimation based on the softmax policy. Here, π(Pa > Pb > Pc|H(t)) represents the probability of reward 
probabilities being Pa > Pb > Pc under this estimation and it is calculated as below:

Therefore, probabilities of Pa being the first, the second, and the third best machine under estimation with 
softmax policy are:

Quantum interference policy. In the quantum interference policy, both players try to select both the first and 
the second-best machine with the same probability to achieve fairness between the two players. Therefore, the 
probabilities of selecting machines are given by the following equation:
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