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Objective: The correlation between the performance of coordination

movement and brain activity is still not fully understood. The current study

aimed to identify activated brain regions and brain network connectivity

changes for several coordinated finger movements with different difficulty

levels and to correlate the brain hemodynamics and connectivity with

kinematic performance.

Methods: Twenty-one right-dominant-handed subjects were recruited and

asked to complete circular motions of single and bilateral fingers in the

same direction (in-phase, IP) and in opposite directions (anti-phase, AP) on

a plane. Kinematic data including radius and angular velocity at each task and

synchronized blood oxygen concentration data using functional near-infrared

spectroscopy (fNIRS) were recorded covering six brain regions including the

prefrontal cortex, motor cortex, and occipital lobes. A general linear model

was used to locate activated brain regions, and changes compared with

baseline in blood oxygen concentration were used to evaluate the degree

of brain region activation. Small-world properties, clustering coefficients, and

efficiency were used to measure information interaction in brain activity

during the movement.

Result: It was found that the radius error of the dominant hand was

significantly lower than that of the non-dominant hand (p < 0.001) in both

clockwise and counterclockwise movements. The fNIRS results confirmed

that the contralateral brain region was activated during single finger

movement and the dominant motor area was activated in IP movement,

while both motor areas were activated simultaneously in AP movement.

The 1hbo were weakly correlated with radius errors (p = 0.002). Brain

information interaction in IP movement was significantly larger than that

from AP movement in the brain network (p < 0.02) in the right prefrontal
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cortex. Brain activity in the right motor cortex reduces motor performance

(p < 0.001), while the right prefrontal cortex region promotes it (p < 0.05).

Conclusion: Our results suggest there was a significant correlation between

motion performance and brain activation level, as well as between motion

deviation and brain functional connectivity. The findings may provide a basis

for further exploration of the operation of complex brain networks.
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Introduction

Coordination ability is defined as the ability of both limbs
to perform a specific movement through the coordination of
the nervous system and muscles, which is essential in daily
life (Walhain et al., 2016). For instance, daily tasks, such
as eating, dressing, and using tools, require the coordinated
movement of multiple muscles in the upper body (Yu et al.,
2017), often consisting of the symmetrical way of the hands
(such as serving a plate) or asymmetrical way (such as opening
a can). Previous studies have revealed that coordination ability
training evokes brain activation that may contribute to the
reorganization of the motor cortex (Li et al., 2013; Han and
Kim, 2016; Wu et al., 2020). Recently, it has been demonstrated
that bilateral coordinated movement can promote the neurotic
recombination of the motor region of patients after stroke (Wu
et al., 2020) and benefit stroke patients’ recovery (Fu et al., 2021).
However, the underlying neural mechanisms remain unclear in
coordination ability training. Therefore, it is still essential to
further explore the information related to the neural mechanism
of motor control in the coordination movement.

The bilateral coordinated movements can be modeled as a
combination of anti-phase (AP) and in-phase (IP) movements
(Shih et al., 2021). The bilateral IP movements contract
homologous muscles on both sides simultaneously, while the
AP movements alternately activate the corresponding bilateral
muscles (Swinnen, 2002). Previous research suggests that IP
movements depend more on the left-dominant cerebral cortical
control, that is, the dominant hemisphere (Maki et al., 2008).
In contrast, both dominant and non-dominant hemispheres all
contribute to the control of the AP movements (Shih et al.,
2021). Moreover, previous Transcranial Magnetic Stimulation
(TMS) study reveals that the movement-related facilitation
from the right front motor cortex to the left primary motor
cortex (rPMd-IM1) is correlated to a better performance in AP
movement (Liuzzi et al., 2011), suggesting that efficient brain
connectivity is essential in bilateral coordinated movements.
However, most previous studies have only focused on the
function of specific brain regions in coordinated movement,

ignoring the mutual influence and connections of various brain
regions on bilateral coordinated movements.

Previous electroencephalogram (EEG) studies disclose
age-related differences inbilateral coordinated movements at
the neural activity level and brain hemisphere connectivity
(Shih et al., 2021). However, there is only the analysis
of the whole brain activity due to the spatial resolution
of EEG when performing bilateral coordinated movements,
still lacking functional analysis of specific brain regions
and their connectivity. Brain imaging techniques have also
examined brain region activity analysis during coordinated
movement. For example, Heuninckx et al. (2008) disclosed
that coordinated movement is highly correlated with the
activation of three regions: classical motor coordination,
higher-level sensorimotor, and frontal regions. Moreover, in a
functional magnetic resonance imaging (fMRI) study, networks
constructed by temporal correlations in the finger-tapping task
explain the functional impact of brain regions, revealing the
contributions of these regions to the coordinated movements
(Maki et al., 2008). Nevertheless, these researches neglect
the brain connectivity activity under functionally coordinated
movements. As a result, it remains unclear whether the
connections between the cerebral cortex are related to motor
performance during coordinate movements.

Compared to EEG, functional near-infrared spectroscopy
(fNIRS) has advantages in functional connection analysis with
higher probe resolution in space (Ge et al., 2017). By contrast,
although fMRI can provide high-precision scans of the brain,
the technology of limitations of the equipment results in the
experiment design merely covering elementary movements,
such as finger tapping tasks (Zhuang et al., 2005). Furthermore,
fNIRS is more resistant to motion artifacts and electroless
noise than EEG and fMRI. As a non-invasive neuroimaging
approach, fNIRS could measure the changes in hemoglobin and
deoxygenated hemoglobin concentrations, thus indicating the
degree of brain activation (Toronov et al., 2000; Cui et al., 2011;
Ferrari and Quaresima, 2012; Sukal-Moulton et al., 2018). On
the other hand, fNIRS is also a harmless and low-cost approach
for detecting brain activity, which provides a more temporal
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resolution of higher blood motivational signals (Strangman
et al., 2002). fNIRS has emerged as a promising field to
study coordination capabilities using its real-time multi-channel
blood oxygen concentration signals, especially for the function
and connections analysis of various brain regions. Therefore, in
the present study, we utilized fNIRS to investigate the mutual
influence of corresponding active brain regions during bilateral
coordinated movements, which might benefit to understand the
underlying neural mechanisms in coordination ability training.
We hypothesized that the changes in brain activity correlate with
the coordinate ability, and the connections between the cerebral
cortex during coordinate movements are related to the motor
performance of limb movement. The relationship between the
kinematics and the information transmit ability of the brain
network was also scrutinized by analyzing the correlation values
of the kinematic data and the network indicators. In addition, we
also adopt the graph theory for characterizing complex networks
of the brain (Bullmore and Sporns, 2009) along with several
topological aspects (Rubinov and Sporns, 2010).

Materials and methods

Participants

Twenty-one healthy volunteers (11 males and 10 females,
age: 24.62 ± 1.5 years) were recruited from the Northwestern
Polytechnical University to participate in the study. According
to the Edinburgh Handedness Inventory, all subjects are right-
handed dominant with normal vision and without a history
of epilepsy or other psychiatric episodes. The institutional
ethical committee approved this study, which was registered
on the Chinese Clinical Trial Registry (ChiCTR2200057839).
All subjects have understood the purpose and content of the
experiment and signed informed consent before participation
in the experiment. Before the formal experiment, the right-
hand preliminary experimentation was performed to ensure
that the brain area activated normally. Also, the subjects were
allowed to have enough rest time to ensure their concentration
during the experiment.

Experimental procedures

Circle drawing task
The subjects needed to complete eight clockwise and

counterclockwise finger circle movements, categorized into
unilateral and bilateral coordination movements. The bilateral
coordination movements were further divided into anti-
phase (AP) and in-phase (IP) movements. Before the formal
experiment, all subjects took the same trial training as the formal
experiment without wearing the near-infrared collection cap to
facilitate adaptation to the movement speed and the laboratory

environment. Figure 1A shows the experimental procedure.
Before the formal experiment, all subjects took the same trial
training as the formal experiment without wearing the near-
infrared collection cap to facilitate adaptation to the movement
speed and the laboratory environment. At the beginning of the
experiment, the subjects were instructed to pay attention to the
experiment guidance using a sound and a sign prompt. Then,
they followed the movement mode prompting on the monitor
during the experiment with two semi-circular arrows, which
were randomly assigned from the eight kinds of movements
(Figure 2A). Also, the subjects need to confirm the circle
drawing mode using the self-designed circle drawing assistant
software mode and E-Prime3.0 (Psychology Software Tools,
Pittsburgh, PA, United States) shown in Figure 2B to start the
fNIRS and kinematic data collection. The subjects performed
each movement for approximately 12 s. The examination was
repeated to complete all eight movements composing a block
unit with a rest of 15 s between two consequent movement trials.
In addition, each subject was required to conduct 10-block units
with a rest of 2 min after completing five-block units.

Data acquisition
The fNIRS signal with the wavelengths of near-infrared light

at 740, 808, and 850 mm was collected using a multi-channel
fNIRS system (Danyang Huichuang Medical Instrument Co.,
Ltd., China) with a sampling rate of 11 Hz. As shown in
Figure 1B, we employed the standard cap with an international
10–20 system as the reference for the near-infrared probe layout.
Also, the light source was spaced at 30 mm from the probe to
ensure signal detection from the brain’s gray matter. Finally, a
total of 30 channels using the midpoint of the detector cover
the left and right prefrontal cortex (LPFC, RPFC), the left and
right motor cortex (LMC, RMC), and the left and right occipital
lobes (LOL, ROL). In addition, the hair underneath the cap
was carefully pulled aside to allow complete contact between
the probe and the scalp, thus ensuring signal strength and
effectiveness. The participants’ head was covered with a spring
mounted to secure the light source and probe. On the other
hand, as illustrated in Figure 2B, we developed a self-designed
application using Unity3D to collect the kinematic data at
a frequency of 28.5 Hz, which captures the circle trajectory
(Figure 2C) of the subject’s finger on the tablet for further
analysis. The self-designed application is also developed to guide
different circle movements at various speeds.

Data analysis

Data preprocess
In this experiment, we aim to explore the relationship

between the nervous system activity and motor control
ability. Therefore, we first removed the redundant data and
motion artifacts from the kinematic and fNIRS data for the
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FIGURE 1

(A) Experiment procedure. There were eight tasks in this study. (B) The layout of fNIRS channels. The red dots represented sources and the blue
dots represented detectors. The 15 sources and 15 detectors constitute 30 channels, overlaying six brain regions: LPFC, RPFC, LMC, RMC, LOL,
and ROL.

FIGURE 2

(A) Condition 1–2: left side tasks, condition 3–4: right side tasks, condition 5–6: anti-phase tasks, condition 7–8: in-phase tasks. (B) Position 1:
hat with sensors, position 2: the application interface of collecting finger movement trajectory, position 3: the interface of E-prime. (C) The data
of motion track. (1) the blue line was the real trajectory of left hand, (2) the red line was the real trajectory of right hand, and (3) the black line
was the guide trajectory.

following analysis. The redundant kinematic data generated by
mode switching was removed by preprocessing the kinematic
data, followed by calculating the standard deviation and
error of radius and angular velocity to evaluate the motor
control ability of the participants. Because the task is circle
movements, kinematic data were required to convert to polar

coordinates from Cartesian coordinates. The standard deviation
and error of the radius and the angular velocity in polar
coordinates from the recorded kinematic data were calculated
and analyzed in MATLAB (The Mathworks, United States).
By contrast, the blood oxygen signal included two change
signals, oxyhemoglobin (1hbo) and deoxyhemoglobin (1hbr)
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concentration signals. According to the Beer–Lambert law, the
blood oxygen concentration could be calculated from light
intensity change under the assumption of constant scattering
(Boas et al., 2004). Similarly, we employed a sliding averaging
window with a 10-point duration on the fNIRS data to
automatically identify the motion artifacts caused by the
relative movement of the electrode and the skin using the
moving standard deviation larger than 5 mmol/L and manual
refinements, followed by the cubic spline interpolation to
artifacts removal. Moreover, a band-pass filter of 0.021–0.6 Hz
and a band-stop filter of 0.08–0.12 Hz were applied to remove
physiological signal interferences, including pulse oscillations
of about 1 Hz caused by heartbeat, 0.2–0.3 Hz disturbances
caused by respiratory activities, Mayer waves generated by blood
pressure oscillations in the range of 0.08–0.12 Hz, unexplained
spontaneous low-frequency signals (0.06–0.1 Hz), and ultra-low
frequency oscillation (0–0.04 Hz).

Kinematic data analysis
The kinematic profiles of the coordinate movement were

revealed by the following parameters:
Radius standard deviation (SDR): The standard deviation of

radius provides the variability of the trajectory within a trial by
calculating the radius change rate of the trajectory in each trial.
A lower standard deviation of the radius indicates a more stable
trajectory during motion. It is defined as follows:

SDR =

√∑n
i=1 (ri−r)2

n
(1)

Radius Error (RE): The radius error provides the relative
position error between the position of the tested circle and the
standard circle in one trial by calculating the relative position
distance in each trial, and it reflects the track performance of
subjects in the movements. The lower the radius error, the
participants have the better performance. It is defined as follows:

RE =

√∑n
i=1 (ri−ro)

2

n
(2)

Angular velocity standard deviation (SDAV): The standard
deviation, in which the angular velocity deviated from the
average value in the circle, reflects the fluctuation of the
movement process. It is defined as:

SDAV =

√∑n
i=1 (wi−w)2

n
(3)

Angular velocity error (AVE): The difference between the
angular velocity and the standard angular velocity in the circle
represents the following performance. It is defined as:

AVE =

√∑n
i=1 (wi−wo)

2

n
(4)

FNIRS data analysis
To identify the function of the brain region, the General

Linear Model (GLM) (Friston et al., 1997) can first be used
to analyze the hemodynamic response from the fNIRS data,
thus scrutinizing brain activation regions and then certifying
locations for brain network analysis. GLM is a commonly used
method for the standard linear estimates of the hemodynamic
response from fNIRS data, thus obtaining regions of the brain
activation with a good temporal resolution (Barahimi et al.,
2021). Also, the integral value of fNIRS data representing
blood oxygen concentration can measure brain activity intensity
during the task.

On the other hand, network analysis is necessary to
further explore the relationship between the connections
of the brain region after the brain activity analysis. Brain
network connections can generally be divided into anatomical,
functional, and effective connections (Lee et al., 2003), among
which functional connectivity refers to the temporal correlation
of spatially distant neurons due to physiological events. Previous
studies have suggested that functional connectivity can benefit
understanding brain connectivity activity under functionally
coordinated movements (Sauseng and Klimesch, 2008; Liu
et al., 2022). As Keles et al. (2016) have identified that
there is a correlation between neural activity in the alpha
and beta bands in the EEG and changes in hemoglobin
concentration in fNIRS, we perform a similar activation analysis
for fNIRS to validate the corresponding activation region
for coordinated movements similar to previous EEG studies
(Shih et al., 2021). Moreover, the phase lock value (PLV)
is the common method to define non-directional functional
connectivity (Mutlu et al., 2012; Wu et al., 2012), which
can be used to construct a brain network for exploring the
inter-relationship of each brain region, then further revealing
the mechanism of brain activity to coordinate movements
after further analysis of network indicators. Therefore, in
the present brain network analysis, we employed wavelet
transform to obtain the oxyhemoglobin concentration signal
in different frequency bands (high-frequency band; 0.145–
0.6 Hz and low-frequency band II; 0.021–0.145 Hz) (Shiogai
et al., 2010), followed by calculating PLV between each channel
from the instantaneous phase of the wavelet, thus constructing
the functional connectivity matrix. Finally, we calculated
commonly used network indicators, including the local and
global efficiency and clustering coefficient, to characterize the
functional connectivity of brain regions (Mukli et al., 2021),
where the clustering coefficient is a measure of network
isolation and global efficiency measures network integration.
By contrast, local efficiency represents the ability to integrate
adjacent nodes of a given node corresponding to a brain region
(Bullmore and Sporns, 2009; Xu et al., 2022). Furthermore,
the correlation between neural activity and control ability
was obtained by calculating neural activity indicators and
motor parameters.
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Brain activation analysis

According to multiple regression analysis, the GLM was
inserted into linear combinations of regressors to estimate
the activation amplitudes correlated to specific movements
(Wanniarachchi et al., 2020). Moreover, we derive the integral
value of the cerebral blood oxygen concentration in the task state
minus the concentration in the resting state, which defines the
degree of brain activation in the task state relative to the resting
state. The higher the integral value, the higher the activation
intensity of this brain area.

Brain network analysis

Each brain region corresponding to a specific function forms
a dynamic network with a complex distribution. Consequently,
there is a dynamic interaction among each functional brain
region to coordinate and respond to the specific environment
and task requirements. Functional connectivity analysis is a
valuable method to identify these brain region interconnections
by calculating the correlation between the activity of neurons
distributed in different spatial locations. In this study, the blood
oxygen signal can be divided into two prominent frequency
bands, including high-frequency band I (HF; 0.145–0.6 Hz)
and low-frequency band II (LF; 0.021–0.145 Hz), among
which the low-frequency band originated from the myogenic
and neurogenic activity (Shiogai et al., 2010). Therefore, we
extract these LF signals for the functional connectivity analysis
to explore the brain functional interaction, disclosing the
relationship between neural signals and kinematics.

Continuous wavelet transform (CWT) is the state-of-art
time-frequency method to characterize the non-stationarity
brain neurogenic activity signals. This study adopts the Morlet
wavelet (Grinsted et al., 2004) to scrutinize the physiological
signals in the LF band. At a specific frequency f and time point
tn, the complex wavelet coefficients are derived as below:

wk(tn) =Wk(f , tn) · eiϕk(f ,tn) = ak(f , tn)+ ibk(f , tn) (5)

ϕk(f , tn)is the Morlet wavelet.
The wavelet instantaneous phase [k(f,tn)] is defined as:

ϕk
(
f,tn

)
= arctan[bk(f,tn)/ak(f,tn)] (6)

By the wavelet transform, we can extract the dynamic phase
information from the different frequency bands of the time
series to transform the time series to phase series for further
channel-channel correlation analysis.

Some previous studies adopt the Pearson correlation
analysis, the coherence coefficient, and the phase lock value for
the network connection analysis (Wu et al., 2020), among which
the phase lock value reflected the synchronization connectivity.
The phase lock value not only represented the phase difference
tendency of the overall signal but also provide more information
interaction compare to correlation analysis and coherence

coefficient. The stronger connection between the two channels,
the larger the value of phase lock, and vice versa. Therefore,
a diagonally symmetrical network is generally constructed by
calculating the phase-locking value between the signals of each
channel. As a result, the dynamic phase information of different
frequency intervals in the LF band was extracted, followed by
the subsequent phase-coupled signal model for brain region
connection analysis.

The phase lock value is then defined as below:

PLV = |n−1
∑n

t=1
ei(ϕxt−ϕyt)

| (7)

where ϕxt and ϕyt are the phase angle of the signals x
and y in time t.

For the correlation matrix based on the phase lock value,
the threshold was set under the condition of ensuring the
connectivity of the brain network to remove weak connections.
For brain network analysis, channels were defined as nodes
and connections between channels were defined as edges
according to the requirements of graph theory. According to
the correlation matrix that constructed phase-value between
these channels, the brain network could provide information on
functional connectivity among the brain regions. For the brain
functional network, global and local metrics were computed
for each participant. Global metrics include global efficiency,
clustering coefficient, and small-world properties (Watts and
Strogatz, 1998; Latora and Marchiori, 2001; Onnela et al., 2005).
Local metrics cover node degree, node efficiency, and node-local
efficiency (Achard and Bullmore, 2007; Buckner et al., 2009;
Liang et al., 2013; Liao et al., 2013, 2017). These global and local
indicators were used to measure the ability of brain network
connectivity. We used the Gretna toolbox (Rubinov and Sporns,
2010) to calculate these values.

Statistical analysis

Two-way analysis of variance (ANOVA) served as assessing
between-group differences in handedness and orientation
in unilateral movements. Three-way analysis of variance
(ANOVA) served as assessing of handedness, orientation, and
condition (anti-phase and in-phase) in bilateral movements.
Independent t-tests were performed for each channel in
the brain region and the results were false discovery rate
(FDR) verified. Paired t-tests in 21 participants for small-
world properties, global efficiency, clustering coefficient, node
efficiency, and node-local efficiency in network analysis
were performed. Pearson correlation was applied to test
the correlation between network metrics and kinematic data
and the correlation between 1hbo and kinematic data. The
significance level was set at P < 0.05. The data analysis
was performed with the software of IBM SPSS statistics 26
(IBM Inc., WA, United States) and MATLAB R2021a (The
MathWorks, United States).
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Results

Unilateral movements

Figure 3 shows the error and standard deviation of angular
velocity, moving radius errors, and the standard deviation of
moving radius in unilateral motions. It can be found that
the average angular velocity along the clockwise direction
is significantly higher than that of counterclockwise for the
unilateral motion of single hands (p < 0.001, Figure 3A),
implying clockwise movement is easier than counterclockwise
movement. By contrast, there are no other differences found
between the two moving directions (Figure 3A). Also, the
moving radius errors (p = 0.002, Figure 3C) and the standard
deviation of the moving radius (p < 0.001, Figure 3D) are
significantly higher in the non-dominant hand. There are
significant differences among the channels under the four
unilateral movements (p < 0.05, Figure 4), suggesting the
contralateral brain area activation. There is a weak negative
correlation between radius error and cerebral cortical blood
flow concentration changes (Figure 5) in unilateral movements
(corr =−0.335, p = 0.002).

Bilateral movements

As shown in Figure 6, there are no statistical differences in
angular velocity between IP and AP movements. The moving
radius errors (Figure 6C) and the standard deviation of the
moving radius (Figure 6D) of the non-dominant hand are
significantly higher than the dominant hand in all bilateral
motions (p < 0.001), implying that the non-dominant hand
has worse performance. On the other hand, as illustrated in
Figure 7, we observed apparent activation in the dominant
hemisphere’s motor cortex (MC) when the subjects performed
IP bilateral clockwise movements. There is significant motor
cortex activation in the non-dominant hemisphere despite lower
activation intensity than in the dominant hemisphere. However,
brain activation in MC of non-dominant hemispheres is not
evident during counterclockwise IP movements. By contrast, we
found a similar significant activation distribution trend in the
MC of both hemispheres during all AP movements.

Brain network measurements

As illustrated in Figure 8, only significant differences in
clustering coefficient (p = 0.018), node efficiency (p = 0.019),
and node-local efficiency (p = 0.012) among the right prefrontal
cortex between AP and IP movements are observed, also
implying that more functional connectivity is required in the
right prefrontal cortex in in-phase movements. In addition,
there exist a weakly positive correlation between radius standard

deviation and network property from the right motor cortex,
while only node efficiency of the right prefrontal cortex is weakly
negatively correlated with radius error (Figure 9).

Discussion

This study found that there is a weak negative correlation
between the 1hbo and radius error in unilateral movement,
implying that the enhancement of brain activity may benefit
motor performance improvement and motion error reduction.
Moreover, the brain network connectivity indicator of the
anti-phase task is smaller than that of the in-phase task in
bilateral movement, which is consistent with the observation
of the worse kinematic performance in AP movements than
in IP movements. This finding suggests that coordination
performance might be correlated with brain activity, such
as the connections of various brain regions. These results
indicate the important meaning of the impact of neural
activity on the motor.

Unilateral movements

Figure 3 revealed the better performance of the dominant
hand than that of the non-dominant hand in radius error
(Figure 3C) and radius standard deviation (Figure 3D) when
performing the unilateral movement. This finding might
be attributed to the task difficulty relative to the non-
dominant hand and the routine usage in the dominant hand
(such as writing and eating). Jancke and Shih also found
that the dominant hand had better performance in radius
variability (Jancke et al., 1998; Shih et al., 2021). Moreover,
angular velocity error along clockwise is significantly higher
than that of counterclockwise for the unilateral motion of
a single hand (Figure 3A), owing to the possible faster
motion of the clockwise than the counterclockwise, despite
asking the participants to keep the same speed and following
the guide circle. Lalonde also finds that the higher the
walking speed, larger the walking error (Lalonde-Parsi and
Lamontagne, 2015). The inverse relationship between speed
and accuracy is the trade-off which is the aspect of skilled
motion performance (Dexheimer and Sainburg, 2021). It
existed in many situations such as baseball throwing (Freeston
et al., 2015) and dart throwing (Juras and Słomka, 2013).
Other results such as the angular velocity standard deviation,
radius error, and radius standard deviation show no difference
in motion direction. Similarly, there was no significant
difference between the young in radial variability in Shih’s
study (Shih et al., 2021). However, a significant difference in
kinematic indicators, including radius variability and inter-
limb synchronization in the elderly group existed in their
research which pointed out that the elderly and disease
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FIGURE 3

The (A) angular velocity error, (B) angular velocity standard deviation, (C) radius error, and (D) radius standard deviation of unilateral movement,
the significant difference between groups is represented by ∗∗(p < 0.01) and ∗∗∗ (p < 0.001).

people could be collected to get further finding. Furthermore,
Figure 4 shows the activation of the contralateral brain
regions, that is, the activation of the right brain region
for left-hand movement and the left brain region for right-
hand movement. Our results verified the results obtained
in previous studies (Nishiyori et al., 2016) and also points
out the location of the brain area for the calculation of
blood oxygen activation and motion error. In addition, the
finding in Figure 5 revealed that a weak negative correlation
between the 1hbo and radius error gives evidence of a
relationship between brain activity and motor control ability.
It meant that accurate action control requires enough blood
support in the brain, signifying that sufficient brain activation
contributes to kinematic performance and complex action
control. Moreover, Tan also found a negative correlation
between angular error and amplitude of the β (13–30 Hz) event-
related synchronization in an EEG study (Tan et al., 2014).
Similarly, the activity of the neurons increased a significant
reduction in the absolute error in dart-throwing (Khanjari et al.,
2022). This is an interesting finding since the comprehension
of the motor performance in neuron activity provides a
measurement method for designing recovery projects that
improve motion performance.

Bilateral movements

Figure 6 shows that the limb control ability of the non-
dominant hand was poor compared to the dominant hand
during AP and IP movements. Since previous literature reveals
that the asymmetric causal relationship from left M1 to right M1
might represent crosstalk at the cortical level, contributing to
the stability of symmetrical bimanual movements (Maki et al.,
2008), we conjecture that these control ability differences might
be due to differences in brain network connections. On the

FIGURE 4

The activation region (t = 0.05) under general linear model in
conditions of LHCW, LHCC, RHCW, and RHCC. LHCW, left hand
clockwise. LHCC, left hand counterclockwise. RHCW, right hand
clockwise. RHCC, right hand counterclockwise.
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FIGURE 5

Correlation of radius error and 1hbo (corr = –0.335, p = 0.002)
in unilateral movements.

other hand, Figure 7 shows that IP movements were more
dependent on the dominant left cortical control, with more
activation on the dominant hemisphere than the non-dominant

hemisphere, while there was the same activation in both
hemispheres during AP movements. Interestingly, where one
hemisphere was more dominant, coordination between limbs
in AP movements would be affected (Shih et al., 2021), which
also illustrates our finding (Figures 6C,D) that the significant
difference between non-dominant hand and dominant hand
in radius and standard deviation. These observations are also
consistent with the previous findings about the differences in
brain activation between IP and AP tasks (Chen et al., 2005).
However, the left hemisphere dominance implies that crosstalk
or signal gating occurred at the transcallosal level during AP
movement (Maki et al., 2008), which might also be one of
the possible reasons for the worse coordination performance
in AP movements. In addition, Maki and Wong also found a
significant increase in left motor cortex activity in AP movement
(Maki et al., 2008). Previous paired TMS studies have shown
that the motor cortex has coherent inter-hemispheric faciliatory
effects (Ugawa et al., 1993) and inhibitory effects (Ferbert et al.,
1992), which work via the corpus callosum (Di Lazzaro et al.,
1998). Moreover, previous structural equation modeling studies
showed that the coupling of the left primary motor cortex to the
right MI, the connections of two (left and right caudal dorsal
anterior motor areas) PM to two MIs (left and right primary

FIGURE 6

The (A) angular velocity error, (B) angular velocity standard deviation, (C) radius error and (D) radius standard deviation of bilateral movement,
the significant difference between groups was represented by ***p < 0.001.
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FIGURE 7

The activation region (t = 0.05) under general linear model in
conditions of LCRC, LWRW, LCRW, and LWRC. LCRC, left hand
clockwise and right hand clockwise. LWRW, left hand
counterclockwise and right hand counterclockwise. LCRW, left
hand clockwise and right hand counterclockwise. LWRC, left
hand counterclockwise and right hand clockwise.

FIGURE 8

Clustering coefficient (p = 0.018), node efficiency (p = 0.019),
and node-local efficiency (p = 0.012) in RPFC. ∗∗p < 0.05.

motor cortex) with negative interactions from left PM to right
PM, and the functional influence from the SMA (supplementary
motor cortex) to the right MI and right PM can contribute to
bilateral coordination (Zhuang et al., 2005). These findings in
brain connections might also explain the worse performance
of the non-dominant hand than the dominant hand in AP
movements, as shown in Figure 6.

Figure 8 shows a higher value in clustering coefficient,
node efficiency, and node-local efficiency of IP movement than
AP movement. Together with the typical increase in 1hbo
with IP tasks and more pronounced activation at M1 than in
other regions, these findings might answer the reason that AP
movements require higher force output than IP movements
(Tettamanti et al., 2013). These results infer that there are
differences in neural activity and motor performance between
the AP and IP movements. It could be used in the classification
of brain-computer interfaces or provide the target of the non-
invasive neuron stimulation treatment for stroke patients such
as TMS and so on.

Brain network analysis

We analyze the brain network activation and compare
the correlation between the network indicators and kinematic
parameters to further search the relationship between brain
connectivity and motor control ability. Correlation values
were used to construct brain networks in previous studies,
and global and local indicators were calculated on the
network (Mukli et al., 2021; Xu et al., 2022). However,
the network constructed by correlation values can only
focus on the linear relationship between the two channels,
while PLV can study the phase synchronization of non-
linear and non-stationary signals, thereby discovering more
inter-brain correlations. In this study, there is a weakly
positive correlation between network indicators and kinematic
indicators in RMC (Figures 9A–C), which might illustrate
motor performance inhabitation in non-dominant brain regions
and be related to the performance of competitive effects
of motor activities. Moreover, there was a weakly negative
correlation in the RPFC (Figures 9D–F), which might explain
that cognitive ability promotes kinematic performance. Previous
TMS study has also found that corticocortical paired associative
stimulation (cc-PAS) in the corpus callosum in the left
and right hemispheres induced associations in connectivity
between targeted cortical regions (Rizzo et al., 2009). These
findings suggested that bilateral coordinated movements can
evoke brain activation and contribute to motor cortex
reorganization (Li et al., 2013; Han and Kim, 2016; Wu
et al., 2020) and the movement becomes more stable as the
activation of the brain region becomes stronger. By contrast,
higher functional connectivity (including the higher average
degree of connectivity, connection strength, network density,
and efficiency) was associated with bilateral coordination,
independent of task difficulty (Heitger et al., 2013). TMS-
EEG studies have shown that cerebellar-induced prefrontal
synchronization promotes working memory, but bout motor
activity produces a competing effect (Du et al., 2018) that
possibly explains the worse motion performance with more
network connectivity in RMC. Fu and coworkers extracted brain
network features of stroke survivors for kinematic comparison
and they demonstrated that the connection between the brain
regions presents the feature of brain activity, and those
coordinated movements of lower limbs can help stroke patients
recover (Fu et al., 2021). Therefore, coordinated movement
is an important means to assess the level of rehabilitation.
While exercising the patient’s athletic ability, it can stimulate
the corresponding brain motor control areas to improve the
effectiveness of rehabilitation training. In addition, coordinated
movement-assisted rehabilitation protocols have proved that
active resistance tasks are more difficult than active assist
tasks, and they can provide strength training for bimanual
patterns (Li et al., 2014; Berger et al., 2018). And our findings
on the difference in brain activity in eight movements also
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FIGURE 9

(A) Correlation of radius standard deviation and clustering coefficient (corr = 0.321, p < 0.001) in RMC. (B) Correlation of radius standard
deviation and node efficiency (corr = 0.301, p < 0.001) in RMC. (C) Correlation of radius standard deviation and node local efficiency
(corr = 0.319, p < 0.001) in RMC. (D) Correlation of radius error and clustering coefficient (corr = –0.106, p = 0.171) in RPFC. (E) Correlation of
radius error and node efficiency (corr = –0.181, p = 0.019) in RPFC. (F) Correlation of radius error and node local efficiency (corr = –0.103,
p = 0.185) in RPFC.

give a choice to control the rehabilitation device or brain-
computer interface.

Limitations

There were several limitations that need to be noted in
this study. First, only young healthy people were recruited
and the findings may not be applied to aging people and
neurological patients such as stroke directly (Xia et al., 2022).
Zhang and coworkers found that old and younger groups
showed a wide range of bilateral activation in the motor cortex
(Zhang et al., 2021). Future studies will consider recruiting
stroke survivors and age-gender-matched control subjects to
compare the motor control ability (e.g., the radius variability
or the phase synchronization) during coordinated movement.
Second, the kinetic data only have the finger trajectories, and
further study would include the EMG on the muscle when
performing the movement tasks which could provide more
information between the central and peripheral connectivity
(Zhang et al., 2022).

Conclusion

In summary, this study verified the activation of the
contralateral brain region of one hand, the activation of
the dominant brain region of the same movement, and
the activation of the bilateral brain region of the opposite
movement. Further network connection analysis found that
both the right prefrontal cortex and right motor cortex
influence accurate motion control, which verifies the control
function in the non-dominant brain area on the other
hand. This finding provided evidence for further exploration
of central nervous system activity and peripheral motor
capacity and could guide clinical rehabilitation of patients with
impaired motor function.

Data availability statement

The original contributions presented in this study are
included in the article/supplementary material, further inquiries
can be directed to the corresponding authors.

Frontiers in Human Neuroscience 11 frontiersin.org

https://doi.org/10.3389/fnhum.2022.957364
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-957364 August 12, 2022 Time: 18:1 # 12

Zhou et al. 10.3389/fnhum.2022.957364

Ethics statement

The studies involving human participants were reviewed
and approved by the Ethics Committee of Northwestern
Polytechnical University. The patients/participants provided
their written informed consent to participate in this study.

Author contributions

GZ, QH, and LL conceived and designed the study, made
contributions to experiments, and reviewed and edited the
manuscript. YC, XW, and HW performed the experiments and
collected data. GZ, YC, and LL analyzed the data. YC and
LL wrote the manuscript. All authors read and approved the
final manuscript.

Funding

This work was supported by the National Natural Science
Foundation of China (Nos. 32071316 and 32211530049),
The Social Development Program Fund of Jiangsu Province
(No. BE2020718) and the Fundamental Research Funds for
the Central Universities (Grant Nos. G2021KY05101 and
G2022WD01006), the Key Research and Development Project
of Shaanxi province (2022SF-117), the Innovation Capability

Support Program of Shaanxi (Program No. 2021TD-57), Science
and Technology Planning Project of Guangzhou (202002030251
and 201907010034), and the Non-profit Central Research
Institute Fund of Chinese Academy of Medical Sciences
(No. 2020-JKCS-005).

Acknowledgments

We would like to thank all the participants of this study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed
or endorsed by the publisher.

References

Achard, S., and Bullmore, E. (2007). Efficiency and cost of economical brain
functional networks. PLoS Comput. Biol. 3:e17. doi: 10.1371/journal.pcbi.0030017

Barahimi, S., Einalou, Z., and Dadgostar, M. (2021). Evaluation of hemodynamic
response function during mental arithmetic task in fNIRS data using GLM
method. Neurosci. Informat. 1:100004.

Berger, A., Pixa, N. H., Steinberg, F., and Doppelmayr, M. (2018). Brain
oscillatory and hemodynamic activity in a bimanual coordination task following
transcranial alternating current stimulation (tACS): a combined EEG-fNIRS
study. Front. Behav. Neurosci. 12:67. doi: 10.3389/fnbeh.2018.00067

Boas, D. A., Dale, A. M., and Franceschini, M. A. (2004). Diffuse optical imaging
of brain activation: approaches to optimizing image sensitivity, resolution, and
accuracy. Neuroimage 23(Suppl. 1), S275–S288. doi: 10.1016/j.neuroimage.2004.
07.011

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden,
T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity:
mapping, assessment of stability, and relation to Alzheimer’s disease. J. Neurosci.
29, 1860–1873. doi: 10.1523/JNEUROSCI.5062-08.2009

Bullmore, E., and Sporns, O. (2009). Complex brain networks: graph theoretical
analysis of structural and functional systems. Nature reviews. Neuroscience 10,
186–198. doi: 10.1038/nrn2575

Chen, J. T., Lin, Y. Y., Shan, D. E., Wu, Z. A., Hallett, M., and Liao, K. K.
(2005). Effect of transcranial magnetic stimulation on bimanual movements.
J. Neurophysiol. 93, 53–63. doi: 10.1152/jn.01063.2003

Cui, X., Bray, S., Bryant, D. M., Glover, G. H., and Reiss, A. L. (2011).
A quantitative comparison of NIRS and fMRI across multiple cognitive tasks.
Neuroimage 54, 2808–2821. doi: 10.1016/j.neuroimage.2010.10.069

Dexheimer, B., and Sainburg, R. (2021). When the non-dominant arm
dominates: the effects of visual information and task experience on speed-
accuracy advantages. Exp. Brain Res. 239, 655–665. doi: 10.1007/s00221-020-06
011-6

Di Lazzaro, V., Oliviero, A., Profice, P., Saturno, E., Pilato, F., Insola, A., et al.
(1998). Comparison of descending volleys evoked by transcranial magnetic and
electric stimulation in conscious humans. Electroencephalogr. Clin. Neurophysiol.
109, 397–401. doi: 10.1016/s0924-980x(98)00038-1

Du, X., Rowland, L. M., Summerfelt, A., Choa, F.-S., Wittenberg, G. F., Wisner,
K., et al. (2018). Cerebellar-stimulation evoked prefrontal electrical synchrony is
modulated by GABA. Cerebellum 17, 550–563. doi: 10.1007/s12311-018-0945-2

Ferbert, A., Priori, A., Rothwell, J. C., Day, B. L., Colebatch, J. G., and Marsden,
C. D. (1992). Interhemispheric inhibition of the human motor cortex. J. Physiol.
453, 525–546. doi: 10.1113/jphysiol.1992.sp019243

Ferrari, M., and Quaresima, V. (2012). A brief review on the history of
human functional near-infrared spectroscopy (fNIRS) development and fields of
application. Neuroimage 63, 921–935. doi: 10.1016/j.neuroimage.2012.03.049

Freeston, J., Ferdinands, R. E., and Rooney, K. (2015). The launch window
hypothesis and the speed-accuracy trade-off in baseball throwing. Percept. Mot
Skills 121, 135–148. doi: 10.2466/25.30.PMS.121c13x4

Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., and Dolan, R. J. (1997).
Psychophysiological and modulatory interactions in neuroimaging. Neuroimage 6,
218–229. doi: 10.1006/nimg.1997.0291

Fu, Y., Zhou, Z., Gong, A., Qian, Q., Su, L., and Zhao, L. (2021). Decoding of
motor coordination imagery involving the lower limbs by the EEG-based brain
network. Comput. Intell. Neurosci. 2021:5565824. doi: 10.1155/2021/5565824

Frontiers in Human Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnhum.2022.957364
https://doi.org/10.1371/journal.pcbi.0030017
https://doi.org/10.3389/fnbeh.2018.00067
https://doi.org/10.1016/j.neuroimage.2004.07.011
https://doi.org/10.1016/j.neuroimage.2004.07.011
https://doi.org/10.1523/JNEUROSCI.5062-08.2009
https://doi.org/10.1038/nrn2575
https://doi.org/10.1152/jn.01063.2003
https://doi.org/10.1016/j.neuroimage.2010.10.069
https://doi.org/10.1007/s00221-020-06011-6
https://doi.org/10.1007/s00221-020-06011-6
https://doi.org/10.1016/s0924-980x(98)00038-1
https://doi.org/10.1007/s12311-018-0945-2
https://doi.org/10.1113/jphysiol.1992.sp019243
https://doi.org/10.1016/j.neuroimage.2012.03.049
https://doi.org/10.2466/25.30.PMS.121c13x4
https://doi.org/10.1006/nimg.1997.0291
https://doi.org/10.1155/2021/5565824
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-957364 August 12, 2022 Time: 18:1 # 13

Zhou et al. 10.3389/fnhum.2022.957364

Ge, S., Yang, Q., Wang, R., Lin, P., Gao, J., Leng, Y., et al. (2017). A brain-
computer interface based on a few-channel EEG-fNIRS bimodal system. IEEE
Access 5, 208–218.

Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). Application of the cross
wavelet transform and wavelet coherence to geophysical time series. Nonlin.
Proces. Geophys. 11, 561–566.

Han, K. J., and Kim, J. Y. (2016). The effects of bilateral movement training on
upper limb function in chronic stroke patients. J. Phys. Ther. Sci. 28, 2299–2302.
doi: 10.1589/jpts.28.2299

Heitger, M. H., Goble, D. J., Dhollander, T., Dupont, P., Caeyenberghs,
K., Leemans, A., et al. (2013). Bimanual motor coordination in older adults
is associated with increased functional brain connectivity–a graph-theoretical
analysis. PLoS One 8:e62133. doi: 10.1371/journal.pone.0062133

Heuninckx, S., Wenderoth, N., and Swinnen, S. P. (2008). Systems
neuroplasticity in the aging brain: recruiting additional neural resources for
successful motor performance in elderly persons. J. Neurosci. 28, 91–99. doi:
10.1523/JNEUROSCI.3300-07.2008

Jancke, L., Peters, M., Schlaug, G., Posse, S., Steinmetz, H., and Muller-Gartner,
H. (1998). Differential magnetic resonance signal change in human sensorimotor
cortex to finger movements of different rate of the dominant and subdominant
hand. Brain Res. Cogn. Brain Res. 6, 279–284. doi: 10.1016/s0926-6410(98)00
003-2

Juras, G., and Słomka, K. (2013). Anticipatory postural adjustments in dart
throwing. J. Hum. Kinet. 37, 39–45.

Keles, H. O., Barbour, R. L., and Omurtag, A. (2016). Hemodynamic correlates
of spontaneous neural activity measured by human whole-head resting state
EEG+fNIRS. Neuroimage 138, 76–87. doi: 10.1016/j.neuroimage.2016.05.058

Khanjari, Y., Arabameri, E., Shahbazi, M., Tahmasebi, S., Bahrami, F., and
Mobaien, A. (2022). The simultaneous changes in motor performance and EEG
patterns in beta band during learning dart throwing skill in dominant and non-
dominant hand. Comput. Methods Biomech. Biomed. Eng. 9, 1–11. doi: 10.1080/
10255842.2022.2048375

Lalonde-Parsi, M. J., and Lamontagne, A. (2015). Perception of self-motion
and regulation of walking speed in young-old adults. Motor Control 19, 191–206.
doi: 10.1123/mc.2014-0010

Latora, V., and Marchiori, M. (2001). Efficient behavior of small-world
networks. Phys. Rev. Lett. 87:198701. doi: 10.1103/PhysRevLett.87.198701

Lee, L., Harrison, L. M., and Mechelli, A. (2003). A report of the functional
connectivity workshop, Dusseldorf 2002. Neuroimage 19(2 Pt 1), 457–465. doi:
10.1016/s1053-8119(03)00062-4

Li, C., Inoue, Y., Liu, T., and Sun, L. (2013). Validation of bimanual-coordinated
training supported by a new upper-limb rehabilitation robot: a near-infrared
spectroscopy study. Disabil. Rehabil. Assist. Technol. 8, 38–48. doi: 10.3109/
17483107.2012.671439

Li, C., Li, J., Inoue, Y., and Liu, T. (2014). Verification of additional merits
of a bimanual-coordinated rehabilitation robot using near-infrared spectroscopic
technology. Adv. Robot. 28, 955–965.

Liang, X., Zou, Q., He, Y., and Yang, Y. (2013). Coupling of functional
connectivity and regional cerebral blood flow reveals a physiological basis for
network hubs of the human brain. Proc. Natl. Acad. Sci. U. S. A. 110, 1929–1934.
doi: 10.1073/pnas.1214900110

Liao, X., Cao, M., Xia, M., and He, Y. (2017). Individual differences and time-
varying features of modular brain architecture. Neuroimage 152, 94–107. doi:
10.1016/j.neuroimage.2017.02.066

Liao, X.-H., Xia, M.-R., Xu, T., Dai, Z.-J., Cao, X.-Y., Niu, H.-J., et al. (2013).
Functional brain hubs and their test–retest reliability: a multiband resting-state
functional MRI study. Neuroimage 83, 969–982.

Liu, X., Cheng, F., Hu, S., Wang, B., Hu, C., Zhu, Z., et al. (2022).
Cortical activation and functional connectivity during the verbal fluency task for
adolescent-onset depression: a multi-channel NIRS study. J. Psychiatr. Res. 147,
254–261. doi: 10.1016/j.jpsychires.2022.01.040

Liuzzi, G., Horniss, V., Zimerman, M., Gerloff, C., and Hummel, F. C.
(2011). Coordination of uncoupled bimanual movements by strictly timed
interhemispheric connectivity. J. Neurosci. 31, 9111–9117. doi: 10.1523/
JNEUROSCI.0046-11.2011

Maki, Y., Wong, K. F., Sugiura, M., Ozaki, T., and Sadato, N. (2008).
Asymmetric control mechanisms of bimanual coordination: an application of
directed connectivity analysis to kinematic and functional MRI data. Neuroimage
42, 1295–1304. doi: 10.1016/j.neuroimage.2008.06.045

Mukli, P., Csipo, T., Lipecz, A., Stylianou, O., Racz, F. S., Owens, C. D., et al.
(2021). Sleep deprivation alters task-related changes in functional connectivity of

the frontal cortex: a near-infrared spectroscopy study. Brain Behav. 11:e02135.
doi: 10.1002/brb3.2135

Mutlu, A. Y., Bernat, E., and Aviyente, S. (2012). A signal-processing-based
approach to time-varying graph analysis for dynamic brain network identification.
Comput. Math. Methods Med. 2012:451516. doi: 10.1155/2012/451516

Nishiyori, R., Bisconti, S., and Ulrich, B. (2016). Motor cortex activity during
functional motor skills: an fNIRS study. Brain Topogr. 29, 42–55. doi: 10.1007/
s10548-015-0443-5

Onnela, J. P., Saramaki, J., Kertesz, J., and Kaski, K. (2005). Intensity and
coherence of motifs in weighted complex networks. Phys. Rev. 71(6 Pt 2):065103.
doi: 10.1103/PhysRevE.71.065103

Rizzo, V., Siebner, H. S., Morgante, F., Mastroeni, C., Girlanda, P., and
Quartarone, A. (2009). Paired associative stimulation of left and right human
motor cortex shapes interhemispheric motor inhibition based on a Hebbian
mechanism. Cereb. Cortex 19, 907–915. doi: 10.1093/cercor/bhn144

Rubinov, M., and Sporns, O. (2010). Complex network measures of brain
connectivity: uses and interpretations. Neuroimage 52, 1059–1069. doi: 10.1016/
j.neuroimage.2009.10.003

Sauseng, P., and Klimesch, W. (2008). What does phase information of
oscillatory brain activity tell us about cognitive processes? Neurosci. Biobehav. Rev.
32, 1001–1013. doi: 10.1016/j.neubiorev.2008.03.014

Shih, P. C., Steele, C. J., Nikulin, V. V., Gundlach, C., Kruse, J., Villringer, A.,
et al. (2021). Alpha and beta neural oscillations differentially reflect age-related
differences in bilateral coordination. Neurobiol. Aging 104, 82–91. doi: 10.1016/j.
neurobiolaging.2021.03.016

Shiogai, Y., Stefanovska, A., and McClintock, P. V. (2010). Nonlinear dynamics
of cardiovascular ageing. Phys. Rep. 488, 51–110. doi: 10.1016/j.physrep.2009.12.
003

Strangman, G., Culver, J. P., Thompson, J. H., and Boas, D. A. (2002). A
quantitative comparison of simultaneous BOLD fMRI and NIRS recordings
during functional brain activation. Neuroimage 17, 719–731.

Sukal-Moulton, T., de Campos, A. C., Alter, K. E., Huppert, T. J., and Damiano,
D. L. (2018). Relationship between sensorimotor cortical activation as assessed by
functional near infrared spectroscopy and lower extremity motor coordination in
bilateral cerebral palsy. Neuroimage 20, 275–285. doi: 10.1016/j.nicl.2018.07.023

Swinnen, S. P. (2002). Intermanual coordination: from behavioural principles to
neural-network interactions. Nat. Rev. Neurosci. 3, 348–359. doi: 10.1038/nrn807

Tan, H., Jenkinson, N., and Brown, P. (2014). Dynamic neural correlates of
motor error monitoring and adaptation during trial-to-trial learning. J. Neurosci.
34, 5678–5688. doi: 10.1523/JNEUROSCI.4739-13.2014

Tettamanti, A., Giordano, M., and Gatti, R. (2013). Effects of coupled upper
limbs movements on postural stabilisation. J. Electromyogr. Kinesiol. 23, 1222–
1228. doi: 10.1016/j.jelekin.2013.04.018

Toronov, V., Franceschini, M. A., Filiaci, M., Fantini, S., Wolf, M., Michalos, A.,
et al. (2000). Near-infrared study of fluctuations in cerebral hemodynamics during
rest and motor stimulation: temporal analysis and spatial mapping. Med. Phys. 27,
801–815. doi: 10.1118/1.598943

Ugawa, Y., Hanajima, R., and Kanazawa, I. (1993). Interhemispheric facilitation
of the hand area of the human motor cortex. Neurosci. Lett. 160, 153–155. doi:
10.1016/0304-3940(93)90401-6

Walhain, F., van Gorp, M., Lamur, K. S., Veeger, D. H., and Ledebt, A. (2016).
Health-related fitness, motor coordination, and physical and sedentary activities
of urban and rural children in suriname. J. Phys. Act. Health 13, 1035–1041.
doi: 10.1123/jpah.2015-0445

Wanniarachchi, H., Lang, Y., Wang, X., Nerur, S., Chen, K.-Y., and Liu, H.
(2020). Neural correlates of newsvendor-based decision making in the human
brain: an exploratory study to link neuroeconomics with neuroimaging using
fNIRS. bioRxiv[Preprint] Available online at: https://doi.org/10.1101/2020.02.08.
940197 (accessed February 9, 2020).

Watts, D. J., and Strogatz, S. H. (1998). Collective dynamics of ’small-world’
networks. Nature 393, 440–442. doi: 10.1038/30918

Wu, C., Sun, J., Wang, T., Zhao, C., Zheng, S., Lei, C., et al. (2020). An
application of affective computing on mental disorders: a resting state fNIRS study.
IFAC PapersOnLine 53, 464–469. doi: 10.1186/s12868-016-0283-6

Wu, J., Zhang, J., Liu, C., Liu, D., Ding, X., and Zhou, C. (2012). Graph
theoretical analysis of EEG functional connectivity during music perception. Brain
Res. 1483, 71–81. doi: 10.1016/j.brainres.2012.09.014

Xia, W., Dai, R., Xu, X., Huai, B., Bai, Z., Zhang, J., et al. (2022). Cortical
mapping of active and passive upper limb training in stroke patients and healthy
people: a functional near-infrared spectroscopy study. Brain Res. 1788:147935.
doi: 10.1016/j.brainres.2022.147935

Frontiers in Human Neuroscience 13 frontiersin.org

https://doi.org/10.3389/fnhum.2022.957364
https://doi.org/10.1589/jpts.28.2299
https://doi.org/10.1371/journal.pone.0062133
https://doi.org/10.1523/JNEUROSCI.3300-07.2008
https://doi.org/10.1523/JNEUROSCI.3300-07.2008
https://doi.org/10.1016/s0926-6410(98)00003-2
https://doi.org/10.1016/s0926-6410(98)00003-2
https://doi.org/10.1016/j.neuroimage.2016.05.058
https://doi.org/10.1080/10255842.2022.2048375
https://doi.org/10.1080/10255842.2022.2048375
https://doi.org/10.1123/mc.2014-0010
https://doi.org/10.1103/PhysRevLett.87.198701
https://doi.org/10.1016/s1053-8119(03)00062-4
https://doi.org/10.1016/s1053-8119(03)00062-4
https://doi.org/10.3109/17483107.2012.671439
https://doi.org/10.3109/17483107.2012.671439
https://doi.org/10.1073/pnas.1214900110
https://doi.org/10.1016/j.neuroimage.2017.02.066
https://doi.org/10.1016/j.neuroimage.2017.02.066
https://doi.org/10.1016/j.jpsychires.2022.01.040
https://doi.org/10.1523/JNEUROSCI.0046-11.2011
https://doi.org/10.1523/JNEUROSCI.0046-11.2011
https://doi.org/10.1016/j.neuroimage.2008.06.045
https://doi.org/10.1002/brb3.2135
https://doi.org/10.1155/2012/451516
https://doi.org/10.1007/s10548-015-0443-5
https://doi.org/10.1007/s10548-015-0443-5
https://doi.org/10.1103/PhysRevE.71.065103
https://doi.org/10.1093/cercor/bhn144
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neuroimage.2009.10.003
https://doi.org/10.1016/j.neubiorev.2008.03.014
https://doi.org/10.1016/j.neurobiolaging.2021.03.016
https://doi.org/10.1016/j.neurobiolaging.2021.03.016
https://doi.org/10.1016/j.physrep.2009.12.003
https://doi.org/10.1016/j.physrep.2009.12.003
https://doi.org/10.1016/j.nicl.2018.07.023
https://doi.org/10.1038/nrn807
https://doi.org/10.1523/JNEUROSCI.4739-13.2014
https://doi.org/10.1016/j.jelekin.2013.04.018
https://doi.org/10.1118/1.598943
https://doi.org/10.1016/0304-3940(93)90401-6
https://doi.org/10.1016/0304-3940(93)90401-6
https://doi.org/10.1123/jpah.2015-0445
https://doi.org/10.1101/2020.02.08.940197
https://doi.org/10.1101/2020.02.08.940197
https://doi.org/10.1038/30918
https://doi.org/10.1186/s12868-016-0283-6
https://doi.org/10.1016/j.brainres.2012.09.014
https://doi.org/10.1016/j.brainres.2022.147935
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-957364 August 12, 2022 Time: 18:1 # 14

Zhou et al. 10.3389/fnhum.2022.957364

Xu, G., Huo, C., Yin, J., Li, W., Xie, H., Li, X., et al. (2022). Effective brain
network analysis in unilateral and bilateral upper limb exercise training in subjects
with stroke. Med. Phys. 49, 3333–3346. doi: 10.1002/mp.15570

Yu, Q., Chan, C. C. H., Chau, B., and Fu, A. S. N. (2017). Motor skill experience
modulates executive control for task switching. Acta Psychol. 180, 88–97. doi:
10.1016/j.actpsy.2017.08.013

Zhang, M., Sun, C., Liu, Y., and Wu, X. (2022). A robotic system to deliver
multiple physically bimanual tasks via varying force fields. IEEE Trans. Neural Syst.
Rehabil. Eng. 30, 688–698. doi: 10.1109/TNSRE.2022.3158339

Zhang, N., Yuan, X., Li, Q., Wang, Z., Gu, X., Zang, J., et al. (2021). The
effects of age on brain cortical activation and functional connectivity during video
game-based finger-to-thumb opposition movement: a functional near-infrared
spectroscopy study. Neurosci. Lett. 746:135668. doi: 10.1016/j.neulet.2021.13
5668

Zhuang, J., LaConte, S., Peltier, S., Zhang, K., and Hu, X. (2005). Connectivity
exploration with structural equation modeling: an fMRI study of bimanual
motor coordination. Neuroimage 25, 462–470. doi: 10.1016/j.neuroimage.2004.11.
007

Frontiers in Human Neuroscience 14 frontiersin.org

https://doi.org/10.3389/fnhum.2022.957364
https://doi.org/10.1002/mp.15570
https://doi.org/10.1016/j.actpsy.2017.08.013
https://doi.org/10.1016/j.actpsy.2017.08.013
https://doi.org/10.1109/TNSRE.2022.3158339
https://doi.org/10.1016/j.neulet.2021.135668
https://doi.org/10.1016/j.neulet.2021.135668
https://doi.org/10.1016/j.neuroimage.2004.11.007
https://doi.org/10.1016/j.neuroimage.2004.11.007
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/

	The correlations between kinematic profiles and cerebral hemodynamics suggest changes of motor coordination in single and bilateral finger movement
	Introduction
	Materials and methods
	Participants
	Experimental procedures
	Circle drawing task
	Data acquisition

	Data analysis
	Data preprocess
	Kinematic data analysis
	FNIRS data analysis
	Brain activation analysis
	Brain network analysis
	Statistical analysis



	Results
	Unilateral movements
	Bilateral movements
	Brain network measurements

	Discussion
	Unilateral movements
	Bilateral movements
	Brain network analysis
	Limitations

	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


