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Abstract
Various methods are available for the measurement of proliferation
rates in tumours, including mitotic counts, estimation of the fraction
of cells in S-phase of the cell cycle and immunohistochemistry of
proliferation-associated antigens. The evidence, advantages and
disadvantages for each of these methods along with other novel
approaches is reviewed in relation to breast cancer. The potential
clinical applications of proliferative indices are discussed, including
their use as prognostic indicators and predictors of response to
systemic therapy.

Introduction
The development and continued growth of cancers involves
altered rates of cell proliferation. In early breast cancer,
measurement of proliferation can be used in conjunction with
tumour size, grade, nodal status and steroid receptor status as
a prognostic indicator [1,2]. Proliferation rates can provide
useful information on prognosis and aggressiveness of
individual cancers and can be used to guide treatment
protocols in clinical practice. Adjuvant chemotherapy has been
shown to improve survival in patients with breast cancer, but
has potentially serious side effects. The potential of prognostic
factors is to determine which patients are at higher risk of
recurrence such that patients who stand to benefit more from
adjuvant treatment can be identified. In the future, changes in
proliferation rates during or after systemic therapy may be
utilized as predictors of response and allow further tailoring of
therapy. Information on proliferation rates is also necessary for
the development of therapeutic agents, some of which may be
targeted directly at specific points in the cell division pathway.

Various techniques have been developed to evaluate and
quantify proliferation rates in the laboratory. Mitotic count

estimates are widely used as a simple measure of cellular
proliferation and are often incorporated into tumour grading
systems [3]. Other methods have been developed, such as
the detection of cells undergoing DNA synthesis using
assays for thymidine uptake [4], flow cytometry to estimate
the percentage of cells in S phase of the cell cycle or the
detection of antigens associated with proliferation. This
review will discuss current and developmental methods for
assessing proliferation and the potential applications of such
knowledge in the treatment of breast cancer. Table 1
summarises these methods and highlights their individual
advantages and limitations.

Mitotic index
Cellular proliferation involves several defined phases. Cells in
the resting (G0) phase are stimulated to enter the active
cycle at the first gap (G1) phase. During this period of time,
the cell prepares for DNA synthesis (the S phase), which is
followed by a second phase of relative inactivity (G2) and
preparation for the separation of the chromatids in the mitotic
(M) phase. Cells can then recycle by entering the G1 phase
or return to the resting G0 phase. Proliferation was first
measured by counting mitotic bodies on paraffin-embedded
tumour specimens stained using haematoxylin-eosin and
viewed by microscopy. The characteristic appearance of the
chromosome during M phase allows mitotic figures to be
distinguished. The standard way of expressing the mitotic
activity has been the number of mitotic bodies per high power
field of view (HPF). A high mitotic count has been shown to
be predictive of the risk of breast cancer death. Clayton [1]
reported a study of 378 node-negative breast cancers and
found that, on multivariate analysis, mitotic count was a
stronger predictor of survival than tumour size, lymphatic
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invasion or skin invasion. Patients with more than 4.5 mitotic
figures per 10 HPFs had a 2.8-fold increase in the risk of death.
Various measures of tumour grade (nuclear grade, Bloom-
Richardson grade, modified Scarff-Bloom-Richardson grade
and Fisher’s grade) were individually prognostic, but provided
no additional predictive value when adjusted for mitotic count.

Variations in reported values for mitotic counts stem from the
heterogeneity of tumour cellularity and from variations in the
size of microscope HPFs. This can be circumvented to some
extent by dividing the number of mitoses by the number of
cancer cells in the field of view, although this makes the
scoring process much more laborious. The scoring of mitotic
index does seem to be relatively consistent in routine
practice, as shown in a study by van Diest and colleagues
[5]; 14 pathology laboratories scored 2,469 breast cancer
specimens and the results were compared with those of a

central laboratory. A mean correlation coefficient of 0.91
(range 0.81 to 0.96) was obtained. A prognostically relevant
discrepancy was observed in 7.2% of cases (when the
mitotic index scores would have resulted in different
multivariate prognostic index estimates, based on mitotic
index, tumour size and lymph node status). The reasons for
the discrepancies were mainly due to poor tissue processing,
inaccurate counting or failure to follow the guidelines for
selection of the counting area [5].

One problem with this method is that it can be difficult to
identify mitotic cells due to confusion with apoptosis or
nuclear pyknosis. A further criticism of mitotic index as a
measure of proliferation is that the duration of the mitotic
phase of the cell cycle is variable, and hence the correlation
of number of mitoses and proliferation rate is not necessarily
linear [6].

Table 1

Methods of measuring proliferation

Method Description Advantages Limitations

Mitotic index Number of mitotic bodies Cheap and simple staining method Variability in counting
on light microscopy Can be used on paraffin-embedded Appearance of apoptosis/nuclear pyknosis can 

specimens be confused with mitosis
Relationship with proliferative rate might not 
be linear

S-phase fraction Thymidine labelling index Accurate even in slowly proliferating Requires handling of radioisotope
tumours Requires time-consuming autoradiography 
Reproducible Needs fresh tissue

Flow cytometry Can use on wide variety of tissue Requires a relatively large tumour sample
preparations Poor reproducibility due to variability in tissue 
Quick way of analysing many cells preparation and analysis between laboratories

BrdU monoclonal antibodies/ Better resolution and reproducibility Requires fresh tissue and careful preparation
immunohistochemistry than tritiated thymidine labelling Scoring can be time consuming

No need for autoradiography

Nuclear antigen Ki67/MIB-1 monoclonal Only need a small amount of tissue Scoring can be time consuming
immunohistochemistry antibody staining Sensitive Variability in fixation can affect staining

Newer antibodies can be used on 
archival tissue

PCNA monoclonal antibody Only need a small amount of tissue Poor correlations with other methods, 
staining Sensitive prognostic factors and clinical outcome 

Scoring can be time consuming
Variability in fixation can affect staining

Cyclins Proteins that vary in Different cyclins associated with Relatively new technique - not widely available 
expression during the cell different cell cycle phases so can for routine use
cycle target cells committed to proliferation

Can be performed on small, archival 
tissue samples
Not influenced by stromal proliferation

PET Radiolabelled fluorothymidine Non-invasive Patient exposure to radiation
incorporation detected by Enables monitoring of proliferative Yet to be verified as an accurate measure of 
PET scans changes during treatment proliferation

Gives a global image of tumour, Expensive and supply of radio-tracer is limited
avoiding sampling errors due to 
heterogeneity

BrdU, 5-bromodeoxyuridine; PCNA, proliferating cell nuclear antigen; PET, positron emission tomography.
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S-phase
The measurement of the fraction of cells engaged in
chromosomal DNA synthesis (the S-phase fraction (SPF))
has become one of the standard methods of assessing
proliferation. The initial method of measuring SPF was by
measuring the tritiated thymidine (3HTdR) labelling index (LI)
[7]. This method required the use of fresh material that was
incubated with the DNA precursor, usually under high pres-
sure oxygen conditions (to improve penetration to the tissue
fragments) in an in vitro culture system. Autoradiography was
then performed on the slides, usually several weeks after
incorporation, and cells with overlying grains caused by the
isotopic emission of 3H were scored. The 3HTdR LI tends to
be much higher than the mitotic count because cells spend
longer in S-phase than M-phase (approximately 7 to 24 hours
as opposed to less than half an hour) [8]. This method allows
accurate determination of proliferation rates even if
proliferation is very slow, and does not have the problem of
difficulty in identifying mitotic cells that is often encountered
in mitotic index measurements. Meyer and colleagues [9]
found the method to be reproducible with different observers
scoring the radiographs and also found good correlation
between primary tumours and their axillary metastases or
recurrences. Correlation within and between laboratories is
good, with coefficients of 0.96 and 0.93, respectively [10].

Tubiana and colleagues [2] measured the 3HTdR LI in 128
breast cancer patients and compared this with survival after
10 years. Both relapse-free and overall survival were
significantly higher in patients whose tumours had a low LI.
As with the aforementioned work of Clayton using mitotic
counts, the proliferation measure was more predictive of
survival than other established prognostic factors such as
tumour size, histological grade and number of involved lymph
nodes. Similar results were confirmed by Meyer and
colleagues, with 3HTdR LI being predictive of overall survival
on multivariate analysis along with nodal status, oestrogen
receptor (ER) status and tumour size [11]. Measurement of
3HTdR LI does, however, have limitations; it requires fresh
tissue, it needs autoradiography, which is time consuming,
and it requires the handling of a radioisotope.

Flow cytometry measurement of the SPF is perhaps the most
clinically validated method for measuring proliferation. Its
advantage is that it can be used on a wide variety of tissue
preparations, including fresh surgical samples, frozen biopsy
specimens and archival paraffin blocks [12]. However, there
have been concerns over the standardization of both tissue
preparation and analysis variability between laboratories.
Cells are mechanically dispersed, stained with propidium
iodide and passed through a flow cytometer, which produces
a DNA histogram with distributions corresponding to phases
in the cell cycle. The major peak corresponds to G1/G0
phase. DNA content (ploidy) and proliferation can be
assessed. If there is a second major peak, the tumour is
considered aneuploid, otherwise it is considered diploid. The

SPF can be calculated using a simple algorithm. Flow
cytometry measurements of SPF have been shown to
correlate with mitotic counts, histological grades and 3HTdR
LIs [13,14]. Clark and colleagues [15] have demonstrated
that measurements of ploidy and SPF using flow cytometry
can predict disease-free and overall survival. A limitation of
this technique is that samples contain varying contributions
from normal stromal tissue and so the DNA histograms do
not solely reflect the malignant component.

In 1982 Gratzner [16] described the use of monoclonal
antibodies specific for 5-bromodeoxyuridine (BrdU) in the
detection of DNA replication. This immunohistochemical
method allows measurement of the SPF without the need for
autoradiography or radioisotopes and has been shown to
give similar results to 3HTdR labelling [17]. Further work by
Meyer and colleagues found BrdU labelling of breast cancer
specimens to correlate with S-phase measured by 3HTdR
[18] and flow cytometry [14]. BrdU labelling has better
resolution than 3HTdR labelling, with less distortion of the
nucleus or spill into the cytoplasm. Waldman and colleagues
[19] found inter-observer reliability to be better for BrdU
(r = 0.94) than 3HTdR (r = 0.87) counting. Comparisons of
BrdU counting and mitotic index have shown good
correlations provided the mitotic figures are very carefully
counted [20]. For successful labelling of S-phase cells in
vitro, the tissue must be metabolically viable (that is, fresh)
and adequately prepared (sliced less than 1 mm thick to allow
the labelling agent to penetrate sufficiently). Also, thymidylate
synthase should be blocked to enhance incorporation of the
label rather than endogenous thymidylate.

Nuclear antigens
Rather than identifying cells engaged in particular phases of
the growth cycle, an alternative method of assessing
proliferation is to detect antigens that are closely associated
with proliferation using immunohistochemistry. In theory these
methods are quicker, cheaper and easier to use than flow
cytometry and autoradiography and more reliable and
reproducible than mitotic figure counting. They also have the
advantage of being applicable to cytological material from
breast aspirates and need less tissue than some other
methods [21].

The Ki67 labelling index is now widely used as the measure
of proliferation. Ki67 is a protein expressed in the nucleus
during the cell cycle [22]. Cells express the antigen during
G1, S, G2 and M phases, but not during G0. The original
antibodies raised against Ki67 required fresh or frozen
tumour specimens. Cells that showed specific nuclear
staining were scored as positive and the Ki67 labelling index
was expressed as the percentage of the total number of
tumour cells that stain positive; this equates to the growth
fraction of the tumour. Higher grade cancers have higher
Ki67 indices - one study found mean scores of 9% in grade I
tumours, 14% in grade II and 26% in grade III [23]. The Ki67
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index correlates significantly with estimates of the mitotic
index [24] and SPF by flow cytometry [13,25,26], although
some of the published correlation coefficients are modest
(r = 0.42 [13], r = 0.22 [26]). Various studies have shown
correlations between Ki67 and disease-free and overall
survival, with an increased risk of recurrence in tumours with
a high Ki67 [27-33]. Pierga and colleagues [34] performed a
multivariate analysis and showed the Ki67-determined growth
fraction to be an independent prognostic factor (p = 0.03)
along with nodal status, age and adjuvant treatment received.

Newer antibodies such as MIB-1 identify peptides from
recombinant fragments of the gene for the Ki67 antigen, and
have the advantage of being effective in fixed, archival
specimens following microwave irradiation. Staining with the
MIB-1 monoclonal antibody has been shown to correlate well
with histological grade, mitotic index, relapse-free interval and
overall survival [35,36]. Attempts have been made to define
cut-off values to classify tumours as having high or low
proliferative activity. Spyratos and colleagues [35] performed
multivariate analysis on 185 breast tumours using 5 different
cut-off values of MIB-1 staining. A MIB-1 cut-off of 25% was
best for correctly identifying highly proliferative tumours
(although to confidently identify tumours with low proliferative
potential, a cut-off of less than 10% was required).

Other nuclear antigens, such as proliferating cell nuclear
antigen (PCNA), have been investigated, but appear to
correlate poorly with Ki67 and mitotic count so may be of
more limited use in assessing proliferation [23]. Unlike Ki67,
PCNA is also involved in DNA repair processes, which may
be a confounding factor in cancer. Clark and colleagues [37]
reported on a pilot study using a monoclonal antibody against
mitosin (a recently described 350 kDa nuclear phospho-
protein that is expressed in the late G1, S, G2, and M phases
of the cell cycle but not in G0), finding its expression to
correlate strongly with SPF in a series of 386 formalin-fixed
archival breast cancers. Although there was no relation with
overall survival in this study, they did observe that a high mitosin
level significantly correlated with recurrence in multivariate
analysis (SPF did not correlate with recurrence) [37].

Cyclins and cyclin-dependent kinases
Progression through various stages of the cell cycle is
dependent on the presence of complexes formed between
cyclins and cyclin-dependent kinases (CDKs). Cyclins are
proteins that vary in expression during different phases of the
cell cycle. Cyclin D1 is expressed during G1 phase, cyclin E
during G1 and early S phase, cyclin A during S and G2
phase and cyclin B during late G2 phase [38-41]. They are,
therefore, useful markers of the proportion of cells in given
phases of the cell cycle at any one time. Moreover, various
cyclins, such as cyclins D1 and E, have been shown to be
elevated in malignancy [42-44]. High expression of cyclins A
[45,46] and E [47-50] is associated with a poor prognosis in
breast cancer. The evidence for a prognostic role of cyclin D1

is less convincing but overexpression appears to be linked to
hormone receptor-positivity and there is some evidence of a
relationship between high levels of expression and a good
prognosis [51-53].

As with Ki67, staining for cyclins is achieved using immuno-
histochemistry with specific monoclonal antibodies. It can
thus be performed on paraffin-embedded material and
tumour-specific expression is discriminated from stromal
staining by morphology. Correlations between expression of
various cyclins and Ki67 measurements of proliferation have
been demonstrated [43,45-47]. However, cyclins have an
advantage in that they can selectively detect for cells that are
in the late G1 phase and beyond and thus committed to cell
division. This property might have a clinical benefit when
considering using cytotoxic agents that target specific points
in the cell cycle [54].

Inhibitors of the CDKs can also be studied using immuno-
histochemical techniques. p27 is one such inhibitory protein; it
binds to and prevents the activation of cyclin E-CDK2 or cyclin
D-CDK4 complexes, and thus controls the cell cycle
progression at G1. Low nuclear p27 levels (and sequestration
of p27 in the cytoplasm) are associated with high proliferative
activity and have been shown to relate to a high tumour grade
and poor prognosis [55-59]. Interestingly, there appears to be
a significant correlation between low p27 expression and
overexpression of HER2/neu in breast tumours, and it has
been suggested that the HER2/neu product might have a role
in down-regulating p27 expression [60,61].

Another protein to interact with CDK complexes is p21
(WAF1/CIP1). p21 binds to and inhibits the activity of cyclin-
CDK2 or -CDK4 complexes, and thus also functions as a
regulator of cell cycle progression at G1. p21 expression is
tightly controlled by the tumour suppressor protein p53,
through which it mediates the p53-dependent cell cycle G1
phase arrest in response to a variety of stress stimuli. p21
also interacts with PCNA and is involved in the regulation of
S phase DNA replication and DNA damage repair. The
prognostic value of p21 is under debate, with some studies
showing low expression to be a favourable marker in node
negative patients, and others showing no prognostic value
[62-65].

Other methods
Argyrophilic nucleolar organiser regions (AgNORs) are non-
histone proteins associated with loops of DNA actively
transcribing to ribosomal RNA. The number and size of
AgNORs can be assessed following staining of the tumour
tissue with silver stains. During the mitotic cycle there is
aggregation and segregation of NORs. Immediately after
mitosis the NORs are dispersed through the nucleus and the
nucleolus is not readily apparent. AgNOR staining would
reveal a large number of dots. The NORs then cluster to form
one or more nucleoli and AgNOR staining then reveals fewer
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dots because the NORs have coalesced. In late G2, the
NORs tend to disperse with dissolution of the nucleolus. The
most extreme segregation of NORs is seen during mitosis
when the chromosomes separate. Thus, the AgNOR count
may be higher in cells in late G2 or early G1 when the NORs
are segregated and they are more easily discernable.

The number of AgNORs is increased in malignancy, but is not
diagnostic due to overlap with benign proliferation [66]. It
seems that, although the number of AgNORs per cell is not
discriminatory enough on its own to determine malignancy,
the addition of size or area measurements using image
analysis gives improved diagnostic and prognostic specificity
[67,68]. AgNOR counts can be obtained successfully from
fine-needle aspiration smears [69]. The AgNOR score has
shown a positive correlation with DNA ploidy, tumour grade
and the SPF on flow cytometry [70-72], with Ki67 staining
[73-76] and with PCNA [77] and has, therefore, been
proposed as an alternative measure of tumour proliferation.
As with the aforementioned immunohistochemical tech-
niques, the scoring can be time consuming and there may be
problems with reproducibility [74].

The enzyme thymidine kinase (TK)1 is involved in the
phosphorylation of deoxythymidine during DNA synthesis. It is
present in the cytoplasm and activated at the late G1 phase
of the cell cycle. TK1 activity is high in proliferating and
malignant cells, but is low or absent in quiescent cells. Wang
and colleagues [78] have developed a polyclonal anti-TK1
antibody and demonstrated cell cycle-dependent expression
of the enzyme. There is a good correlation with MIB-1
antibody staining [35] and the antibody can be used on
archival tissue. Romain and colleagues [79] studied 154
node-positive breast cancers treated with chemotherapy and
found that patients whose tumours had higher levels of TK1
activity had an increased risk of relapse or death.

The nuclear enzyme topoisomerase II (topoII) breaks and
rejoins strands of DNA. The isoform topoIIα is a marker of
cell proliferation and is also the molecular target for the
anthracycline class of chemotherapy drugs commonly used
in the treatment of breast cancer. Various studies have
shown that tumours with higher baseline levels of topoIIα
tend to be more responsive to anthracycline chemotherapy
[80-82] whilst others have found that high baseline levels
are a poor prognostic factor, predicting for poor five-year
disease-free survival [83]. Jarvinen and colleagues [84]
evaluated topoIIα expression immunohistochemically in 230
breast cancer specimens and found a highly significant
correlation with tumour proliferation rate measured by SPF
(p < 0.0001). This association with proliferation has been
confirmed by other investigators using MIB-1/Ki67 expres-
sion [85-87], and the general consensus is that increased
topoIIα expression gives information on the number of
cycling tumour cells and is linked with an aggressive tumour
phenotype.

Recently, Misell [88] and colleagues reported on a new
method of measuring proliferation in vivo using heavy water
labelling followed by mass spectrometry analysis. Women
were given daily doses of heavy water for one to four weeks
prior to mastectomy (or biopsy in healthy volunteers) and
significantly higher proliferation rates were seen in pre-
menopausal than in post-menopausal women, with different
proliferative patterns in tumour cells. The authors claim that
this method might be more reproducible than the
immunohistochemical scoring methods, particularly in cases
with relatively low proliferation rates.

Recent developments in tissue microarray technology have
enabled the analysis of multiple targets at the DNA, RNA or
protein level on sections containing hundreds of tumour
samples. High-throughput tissue microarrays can be used to
screen for genes with differential expression between cancer
cells and normal tissue [89,90] and gene expression
signatures have been developed that can predict survival in
breast cancer [91,92]. Dai and colleagues [93] found that the
occurrence of metastases in breast cancer could be pre-
dicted by a homogeneous gene expression pattern consisting
almost entirely of cell cycle genes. Overexpression of this set
of genes is related to an extremely poor outcome in a subset
of patients with strong ER expression. Overexpression of cell
cycle genes is indicative of cell proliferation, so microarray
technology provides an alternative to proliferation assays.
However, before microarrays are used routinely in assessing
proliferative activity of individual tumours, there needs to be
improvements in both cost and logistics.

Positron emission tomography
Thymidine has shown some potential as a tracer for use in
positron emission tomography (PET) scanning and early
studies in humans have shown correlation of 2-[11C]-
thymidine uptake with tumour activity [94]. However, the short
half-life (20 minutes) of [11C] and the catabolism of thymidine
made the tracer impractical for routine clinical use. 3′-Deoxy-
3′-fluorothymidine (FLT) is an analogue of thymidine that was
initially developed for the treatment of HIV, but was found to
cause myelosuppression, peripheral neuropathy and nausea
at therapeutic doses. However, when used in tracer doses
with an [18F] label it is both non-toxic and has the advantage
of a longer half-life (110 minutes) than 2-[11C]-thymidine. The
use of FLT in PET scanning was introduced by Shields and
colleagues [95]. Thymidine is rapidly transported into the cell
from the extracellular fluid using non-energy-dependent
nucleoside transporters and active, Na+-dependent carriers.
After entering the cell, FLT is converted to a monophosphate
by the enzyme TK1. The monophosphate lacks a hydroxyl
group, thus preventing its incorporation into DNA and
trapping it within the cell. As mentioned above, the activity of
the TK1 enzyme increases dramatically during DNA synthe-
sis. The uptake of FLT is related to TK1 activity, and so is
linked to proliferation. The development of a non-invasive
measure of proliferation that does not require biopsy
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specimens may allow the future monitoring of changes in
proliferation of tumours in patients undergoing treatment.

A good correlation between standardised uptake value
measures of FLT uptake and Ki67 proliferation marker scores
has been demonstrated in a variety of human cancers,
including non-small cell lung cancer, lymphoma, colorectal
cancer, soft tissue sarcoma and breast cancer [96]. Ten
patients with suspected or proven non-small cell lung cancer
underwent FLT-PET and Ki67 staining was performed on
tissue specimens. Strong correlations were seen between
Ki67 scores and four different definitions of FLT uptake
(average, partial-volume-corrected and maximum standard-
ised uptake values and average FLT flux). In breast cancer, a
pilot study showed a highly significant correlation
(r = 0.76-0.94) between Ki-67 LI and a variety of different
kinetic parameters of [18F]FLT retention in 12 evaluable
patients with breast cancer [97]. Comparisons with the
standard PET tracer, [18F]-fluoro-2-deoxy-D-glucose (FDG), a
measure of metabolism rather than proliferation, have shown
FLT to be more specific for tumour activity [98,99]. However,
FLT is not a substitute for FDG for tumour staging due to its
lower uptake (approximately 50% of FDG levels). FLT has
other limitations, including a high background uptake in the
liver [100], which precludes the imaging of liver tumours, and
there are concerns about radiation exposure if patients are to
undergo multiple scans, particularly in women receiving
curative treatment. However, studies are underway to assess
the usefulness of FLT in predicting the response of breast
cancer to chemotherapy [101,102].

Discussion
There are two important potential applications of proliferation
measurement in clinical practice. Firstly, there might be a
role in predicting prognosis, thus improving the physician’s
ability to identify the patients most likely to benefit from
systemic adjuvant therapy. As previously discussed, each of
the major methods of measuring proliferation has revealed
evidence of correlations of proliferative rate with recurrence
and overall survival [1,2,11,15,27-29]. This information could
be particularly important in patients in whom adjuvant
therapies might not be recommended on the basis of staging
information alone, such as those with small, node negative
tumours. Some studies show the prognostic value of prolifer-
ation index to be more significant in patients with T1 and/or
node negative tumours [34,36]. In these patients, if the
proliferative rate is high, adjuvant treatment might be
considered where it might not be otherwise. Tumour grade is
already used in clinical practice when determining recom-
mendations for adjuvant therapy, and this is partly dependent
upon mitotic count and hence proliferation. The more
specific measures of proliferation discussed above are not
routinely used to influence this decision, but as their use
becomes more widespread it would seem reasonable to add
them into future protocols for study alongside other
established prognostic factors. Table 2 summarizes the

evidence for using measures of proliferation when
determining prognosis.

The second potential application of proliferation measure-
ment in clinical practice is in predicting response to
treatment. The use of primary systemic therapy for the
treatment of tumours that have not yet been resected allows
the opportunity to assess the response during a course of
therapy. Attempts have been made to identify baseline
markers that can predict for a subsequent response and thus
allow tailoring of treatment to best suit an individual [103].
Perhaps what is of more interest is the ability to observe
changes in these markers over a course of treatment. Of the
various parameters tested (including ER, progesterone and
HER-2 receptors, bcl-2, ploidy, p53, Ki67 and SPF), changes
in proliferation appear to be most promising. Makris, Chang
and colleagues [104] have shown that changes in Ki67 index,
two to three weeks after commencing tamoxifen and chemo-
therapy (mitoxantrone, methotrexate with or without mito-
mycin), are predictive of response. These studies examined a
variety of cytological markers before treatment and repeated
ten days to three weeks after commencing treatment and
compared these with clinical response after four cycles of
chemotherapy. A decrease in Ki67 score at three weeks
significantly predicted for subsequent good clinical response.
More recently, Burcombe, Makris and colleagues [105]
studied 118 breast cancer patients treated with 6 cycles of
neoadjuvant anthracycline-based chemotherapy. Diagnostic
biopsies and post-chemotherapy surgical specimens were
stained for ER, progesterone receptor, HER-2 and Ki67. No
single pre-treatment parameter predicted for response, but
tumours displaying larger reductions in Ki67 after treatment
were more likely to have achieved a pathological response.
Similar results have been confirmed with the aromatase
inhibitor anastrozole. The IMPACT study compared 12 weeks
of neoadjuvant treatment with anastrozole, tamoxifen or the
combination of both drugs in 330 post-menopausal women
[106]. Although clinical response measurements and final
surgical outcomes were no different between the groups,
neoadjuvant anastrozole resulted in a greater reduction in
Ki67 scoring after two weeks than either tamoxifen or the
combination [107]. It is suggested that this might parallel the
emerging evidence that adjuvant aromatase inhibitors achieve
a greater reduction in relapse rates of breast cancer when
compared with tamoxifen or the combination [108].

It is important to note that, although a decrease in Ki67 score
may predict well for patients who will subsequently respond
to treatment, it appears that the absence of a significant
change in Ki67 does not mean that the patient will not
respond. Assersohn and colleagues [109] looked at changes
in Ki67 values in patients treated with chemotherapy and
hormone therapy and compared these changes with response
to treatment. Positive predictive values for response were
85%, but negative predictive values were poor at 59%. It
would, therefore, be hard to justify a change in treatment of
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an individual patient on the basis of lack of Ki67 reduction
alone.

Two randomised phase III studies have addressed the role of
adjuvant chemotherapy on the basis of tumour proliferation
measurements. Paradiso and colleagues [110] used 3H-
thymidine autoradiography to determine proliferative activity in
the tumours of women with node negative breast cancer.
Those with a high LI (> 2.3%) were randomised to receive
adjuvant anthracycline-based chemotherapy versus no
adjuvant therapy. Five-year disease-free survival was 81% in
the chemotherapy group versus 69% in the control arm
(p < 0.02), suggesting that proliferation measurement might
help identify patients who would benefit from chemotherapy.
Similarly, in the peri-operative setting, Pronzato and
colleagues [111] found a significant improvement in survival
in node-negative patients with a high thymidine LI who
underwent chemotherapy.

It has been suggested that it is simplistic to view cells in the
context of either cycling or non-cycling. The non-cycling
compartment is heterogeneous, containing non-reproductive
end-stage cells and reproductive cells that are dormant.
Baker and colleagues [112] describe an in vitro analysis that
can differentiate between these components. They define a
new parameter, the cycling reproductive fraction, which is the
fraction of all cells with reproductive capacity that are
currently active in the cell cycle. In some tumours the cycling
reproductive fraction can approach 100%, but in others can
be much lower. Perhaps by taking this into account in future
studies, the prognostic and predictive value of proliferation
can be improved.

It is somewhat impractical for a patient to have an additional
biopsy two to three weeks into their treatment and studies
are now ongoing into the utility of FLT-PET imaging in the
prediction of response to chemotherapy. There has been
some early promise shown in studies using FDG-PET (a
measure of metabolism rather than proliferation). Patients
were imaged with FDG-PET prior to neoadjuvant chemo-
therapy and again after one or two cycles. Changes in FDG
uptake between the two scans were correlated with eventual
pathological response determined at surgery on completion
of the course of chemotherapy. Tumours that went on to
pathological response were found to have a sharp decrease
in FDG uptake (often down to background level), whilst non-
responding lesions showed little change in tracer uptake.
After the first course of chemotherapy, all responders could
be identified by a decrease in standardised uptake values
below 55% of the baseline (sensitivity 100%, specificity
85%). This resulted in an accuracy of 88% in predicting
histological response after one cycle of therapy (91% after
two cycles) [113]. It remains to be seen whether similar
results can be achieved using the more specific marker of
proliferation, FLT. Pio and colleagues [101] have demon-
strated that changes in FLT uptake during treatment for
breast cancer correlate with changes in serum tumour markers
and the tumour size on imaging.

Conclusion
Various methods have been validated as measures of
proliferation, including mitotic body counting, immunohisto-
chemical staining of antigens associated with proliferation or
the estimation of the fraction of cells in S-phase by flow
cytometry or the incorporation of thymidine or BrdU. Each of
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Table 2

Clinical applications of measures of proliferation in breast cancer

Application Evidence Reference

Prognostic indicator High mitotic count predictive of risk of breast cancer death (relative risk = 2.8) [1]

High thymidine labelling index correlates with worse relapse-free and overall survival (significance [2,11]
differs by subgroups, p = 0.16 to 0.0002)

Measures of S-phase fraction and DNA ploidy by flow cytometry can predict for disease-free and overall [12]
survival (p = 0.007)

On multivariate analysis Ki67 score is independently predictive of disease-free survival (p = 0.038) and [29,34]
relapse free survival (p = 0.03)

High expression of cyclins A and E associated with poor prognosis [45-50]

Planning adjuvant In some studies the prognostic value of proliferation index is particularly significant in patients with T1 [34,36]
treatment and/or node negative tumours (in whom chemotherapy might not otherwise be advised)

Prediction of Changes in Ki67 after one cycle of chemotherapy predict eventual clinical response (p = 0.05) [104]
response

Changes in FLT-PET uptake after one cycle of chemotherapy predict eventual response on CT-imaging [101]
(r = 0.79)

FLT, 3′-deoxy-3′-fluorothymidine; PET, positron emission tomography.



these methods has been shown to have prognostic value in
breast cancer, but all require biopsy or surgical samples of
tumour tissue. This does lead to several limitations: biopsies
are invasive and involve a degree of patient discomfort; deep-
seated tumours may not be amenable to biopsy; the biopsy
may not be representative of the whole tumour, as tumour
heterogeneity is well described; and the scoring methods are
partly subjective and, therefore, variable.

For these reasons the development of non-invasive, repro-
ducible and validated methods of proliferation measurement
will be a major advance for the evaluation of anti-neoplastic
agents and for identifying non-responders early in their
treatment so that they can be offered alternative and possibly
more efficacious therapies.

The use of functional imaging techniques such as FLT-PET
may overcome some of these barriers. Future studies should
correlate immunohistochemistry and functional imaging
estimates of proliferative activity at baseline and repeated
early in the course of treatment, and compare both with
response outcomes. In the meantime, if proliferation is to be
used as a prognostic or predictive factor, it is important for
pathology reports to use a standardized technique. Until the
reliability of these new methods is confirmed, the current
standard proliferation assay should be Ki67 immunohisto-
chemistry, given its relative simplicity and wide availability.
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