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Abstract

Objective

Pseudomonas aeruginosa has been suggested as a major determinant of poor pulmonary

outcomes in cystic fibrosis (CF), although other factors play a role. Our objective was to

investigate the association of early childhood Pseudomonas infection on differences in lung

function in adolescence with CF.

Methods

Two populations of subjects with CF were studied: from the Gene Modifier Study (GMS),

346 F508del homozygotes with severe vs. mild adolescent lung disease, and from the Colo-

rado Newborn Screen Study (NBS) 172 subjects diagnosed with CF by newborn screening.

Associations of Pseudomonas infection and lung function in early childhood with lung func-

tion in adolescence were investigated using multivariate linear regression analyses.

Results

Among GMS subjects, those with severe adolescent lung disease had worse lung function

in childhood (FEV1 25 percentage points lower) compared to subjects with mild adolescent

lung disease, regardless of early childhood Pseudomonas status. Among NBS subjects,

those with lowest adolescent lung function had significantly lower early childhood lung func-

tion and faster rate of decline in FEV1 than subjects with highest adolescent lung function;
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early Pseudomonas infection was not associated with rate of FEV1 decline. The strongest

predictor of adolescent lung function was early childhood lung function. Subjects with a

higher percentage of cultures positive for Pseudomonas before age 6 or a lower BMI at 2–4

years old also had lower adolescent lung function, though these associations were not as

strong as with early childhood lung function.

Conclusions

In separate analyses of two distinct populations of subjects with CF, we found a strong cor-

relation between lower lung function in early childhood and adolescence, regardless of early

childhood Pseudomonas status. Factors in addition to early Pseudomonas infection have a

strong impact on lung function in early childhood in CF. Further exploration may identify

novel underlying genetic or environmental factors that predispose children with CF to early

loss of lung function.

Introduction

Cystic Fibrosis (CF) is a chronic, life-limiting genetic illness in which dysfunction of the CF

transmembrane conductance regulator (CFTR) causes impaired mucociliary clearance, lead-

ing to chronic pulmonary disease, among other symptoms[1–4]. Lung disease in CF begins in

infancy and is characterized by a cycle of chronic inflammation, infection, and airway damage

causing progressive obstructive airways disease and loss of lung function[1–11]. Despite the

early onset of pathology, patients with CF show marked variability in phenotype, disease sever-

ity, and survival[12–16].

Previous studies have tried to explain this heterogeneity by investigating factors associated

with lower lung function in CF, including environmental (lower socioeconomic status,

tobacco exposure)[17–20], nutritional[15, 21, 22], infectious (bacterial, viral, and fungal)[15,

21–32], and genetic (CFTR genotype and effects of various modifier genes)[12, 33–35]. Pseudo-
monas aeruginosa infection, in particular, has been associated with more rapid decline in lung

function and more severe lung disease; earlier acquisition of Pa has been associated with

poorer lung function in adulthood and higher risk of death in childhood. This has led to wide-

spread adoption of Pa eradication protocols in children with CF[36, 37].

We have previously shown in a large, retrospective case-control study that earlier age of Pa
infection (before 5 years of age) was strongly associated with severe (vs. mild) CF lung disease

in adolescence and adulthood[29]. However, we hypothesized that multiple other factors are

involved in determining lung function in early childhood in CF, and that early Pa infection

alone would not account for differences in lung function in early childhood that persist into

adolescence, even in a cohort of children diagnosed by newborn screening with subsequent

aggressive early management of CF lung disease. Our primary objective was to investigate the

association between early childhood lung function, early Pa infection, and adolescent lung

function in subjects with CF. We also aimed to investigate other factors associated with early

lung function in children with CF. To accomplish this, we tested our hypothesis in two sepa-

rate datasets: the Gene Modifier Study (GMS), a retrospective, case-control study with annual-

ized data, used in our original publication[29], and the Colorado Newborn Screen (NBS)

Study, a prospectively collected, encounter-based study.
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Materials and methods

Populations & variables

Gene Modifier Study (GMS). A multicenter, retrospective case-control study of subjects

with CF, all F508del homozygotes, classified as having either severe or mild adolescent lung

function (defined as FEV1 in the highest or lowest quartiles for FEV1 percent predicted by

birth cohort, respectively–an extremes of phenotype design), using annualized data from the

CF Foundation Patient Registry (CFFPR)[29, 35]. Written informed consent was obtained for

all subjects. This study was approved by the Institutional Review Board at the University of

North Carolina, Chapel Hill. Analysis was restricted to subjects in our previous publication

(n = 629)[29] with a) spirometry (PFTs) at 6–8 years of age, b) respiratory culture data before

6 years of age, and c) classification of adolescent lung disease severity at age 12 or older (to

avoid overlap with early childhood FEV1 data).

Definitions of key variables:

• Pa status: ever/never recorded as having a culture positive for Pa before 6 years of age.

• Early childhood lung function: defined as the mean FEV1 percent predicted (FEV1) between

6–8 years of age (Wang)[38]. Best FEV1 between 6 and 8 years of age was also calculated.

Calculations utilized all available spirometric data from the CFFPR.

• Mild vs. severe adolescent lung disease: defined based on GMS enrollment criteria[35].

Colorado Newborn Screen database (NBS). The NBS database consists of prospectively

collected, encounter-based clinical data (supplemented by CFFPR data) for subjects diagnosed

with CF from 1982–2010 at the Children’s Hospital Colorado [39, 40]. Informed consent was

obtained for all subjects. This study was approved by the Colorado Multiple Institutional

Review Board, University of Colorado, Denver. For this study, analysis was restricted to sub-

jects who a) were pancreatic insufficient, b) had BMI data available at 2–4 years of age, c) had

respiratory culture data available before 6 years of age, d) had PFT data between 6 and 8 years

of age, and e) had PFT data available at age 10 or older.

Definitions of key variables:

• Early childhood lung function: defined as the mean FEV1 percent predicted (FEV1) at 6–8

years of age (Wang)[38]. Best FEV1 at 6 to 8 years of age was also calculated. Calculations uti-

lized all available spirometric data from the CFFPR.

• Adolescent lung function: defined as the mean FEV1 percent predicted (Hankinson)[41] for

the last 3 years of available PFT data beginning at 10 years of age or older. Subjects were

divided into even quartiles by adolescent lung function for bivariate analysis. This variable

was treated as continuous for regression analysis.

• Number of spirometric measures: counts defined separately for both early childhood and

adolescent lung function variables.

• Mean age at PFTs: defined separately for early childhood and adolescent variables.

• Early childhood infection status:

� Pa status: ever/never culture-positive for Pa before 6 years of age,

� Percentage of cultures positive for Pa prior to 6 years of age,

� S. aureus status: ever/never culture-positive for S. aureus before 6 years of age,
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� Percentage of cultures positive for S. aureus prior to 6 years of age,

� Number of respiratory cultures before 6 years of age.

• Early childhood nutritional status:

� Mean BMI Z-score from 2 to 4 years of age,

� Mean height Z-score from 2 to 4 years of age,

� Mean weight Z-score from 2 to 4 years of age[42].

• Absolute change in FEV1 percent predicted from early childhood to adolescence: defined as

mean early childhood FEV1 percent predicted minus the mean adolescent FEV1 percent

predicted;

• Rate of change in FEV1 (percent predicted/year): defined as the absolute change in FEV1 per-

cent predicted / (mean age at adolescent PFTs–mean age at early childhood PFTs)

Other variables included for both analyses were gender, race (Caucasian vs. non-Cauca-

sian), ethnicity (Hispanic vs. non-Hispanic), year of birth, age at diagnosis, means of diagnosis

(newborn screen, meconium ileus at presentation, and symptoms [respiratory, gastrointesti-

nal, or failure to thrive]), CFTR genotype, and age of first recorded respiratory culture.

Analyses (NBS, GMS)

Bivariate analyses used Student’s t-test and χ2 testing to compare means or proportions,

respectively. Multiple comparisons were accounted for in the NBS cohort using ANOVA test-

ing with Bonferroni correction. Comparisons consisted of:

1. Comparison of population characteristics by adolescent lung function group (GMS: severe

vs. mild adolescent lung function; NBS: adolescent FEV1 quartile).

2. GMS: Comparison of early FEV1 in subjects with severe vs. mild adolescent FEV1, by early

childhood Pa status.

3. GMS: Comparison of early FEV1 in subjects who were Pa positive vs. negative in early

childhood, by severe vs. mild adolescent lung function group.

4. NBS: Comparison of early FEV1 by adolescent FEV1 quartile and by early childhood Pa
status.

5. NBS: Comparison of early FEV1 in subjects Pa positive vs. negative in early childhood, by

adolescent FEV1 quartile.

6. NBS: Comparison of rate of change and absolute change in FEV1 percent predicted from

early childhood to adolescence by adolescent FEV1 quartile and early childhood Pa status.

7. NBS: Comparison of rate of change and absolute change in FEV1 percent predicted from

early childhood to adolescence in subjects Pa positive vs. negative in early childhood by

adolescent FEV1 quartile.

Multivariate linear regression with backwards elimination of covariates was used to define

the association of early childhood characteristics and adolescent lung function (as the primary

outcome) for the NBS dataset. A p value<0.05 was considered statistically significant for all

bivariate analyses. Variables initially included in multivariate regression model were based on

bivariate analyses and results from previous publications. Covariates included in the full

model were: early childhood FEV1, gender, year of birth, diagnosis by newborn screen (yes/
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no), age at CF diagnosis, genotype (F508del homozygous vs. other), number of discrete PFTs

included in early childhood FEV1 variable, number of discrete PFTs included in adolescent

FEV1 variable, number of discrete cultures prior to 6 years of age, percentage of cultures posi-

tive for Pa prior to 6 years of age, percentage of cultures positive for S. aureus prior to 6 years

of age, mean BMI percentile at 2 to 4 years of age, and number of discrete BMI values between

2 and 4 years of age. Variables were removed from the model based on evaluation of p values

(p<0.05) and partial F testing.

Results

Table 1 presents population characteristics for the GMS and NBS datasets (datasets available as

supporting information files 1 & 2). NBS subjects were, on average, born later, diagnosed at a

younger age (median 0.07 years vs. 0.35 years), and had respiratory culture data earlier than

GMS subjects. Approximately 50% of NBS subjects were F508del homozygous, vs. 100% of

GMS subjects. Approximately 17% (27/172) of the NBS cohort were diagnosed by meconium

ileus and 4/172 were missed on the newborn screen and diagnosed later. The mean age at

Table 1. Population characteristics of GMS and NBS subjects.

GMS group NBS group

n = 346 n = 172

Female 49% (n = 169) 49% (n = 85)

F508del homozygous 100% 52% (n = 90)

Year of birth (median, range) 1985 (1979–1993) 1991 (1982–2000)

Age (years) at diagnosis (median) 0.35 0.07

Diagnosed by newborn screening 3% (n = 12) 81% (n = 140)*

Diagnosed with meconium ileus 25% (n = 88) 16% (n = 27)

Culture data

Age (years) at first culture 2.5 (±1.9) 0.4 (±0.7)

Number of cultures prior to age 6 † 12.1 (±6.6)

Pseudomonas aeruginosa before age 6 63% (n = 218) 53% (n = 91)

Non-mucoid Pa † 52% (n = 89)

Mucoid Pa † 14% (n = 24)

Percentage of cultures Pa positive before age 6 † 11% (±17)

Age (years) first Pa under age 6 (of those Pa pos.) 3.5 (±1.8) 2.5 (±1.8)

Staphylococcus aureus before age 6 64% (n = 223) 84% (n = 144)

Methicillin-sensitive S. aureus † 84% (n = 144)

Methicillin-resistant S. aureus † 3% (n = 6)

Percentage of cultures Staph positive before age 6 † 32% (±25)

Age (years) first Staph under age 6 3.4 (±1.9) 1.7 (±1.6)

Anthropometric data

Mean BMI Z-score at 2–4 years of age † -0.4 (±1.3)

Lung function data

Mean FEV1 percent predicted age 6–8 years 86.8% (±20.4) 94.2% (±14.5)

Mean FEV1 percent predicted in adolescence ** 84.9% (±18.8)

Mean age of adolescent PFTs (or definition of GMS severity) 17.4 (±2.9) 15.5 (±3.6)

* Additional 5 subjects w/ false-negative newborn screening, remainder diagnosed with meconium ileus

† Limited data available (annualized CF Registry data)

** Adolescent lung function defined as severe vs. mild in GMS study by birth cohort

https://doi.org/10.1371/journal.pone.0177215.t001
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definition of adolescent lung function was 15.5 and 17.4 years for NBS and GMS subjects,

respectively.

GMS population

Of the 629 F508del homozygous subjects initially enrolled and described elsewhere[29], 346

met inclusion criteria (Fig 1). Over 60% of subjects had at least one culture positive for Pa
prior to 6 years of age.

GMS subjects were stratified into four subgroups by Pa infection status at age 6 (ever vs.

never Pa positive prior to 6 years of age) and adolescent lung disease group (severe vs. mild).

Subjects in the four sub-groups did not differ significantly by gender distribution, age at diag-

nosis, age of definition of adolescent lung function, or presence of other respiratory pathogens

in early childhood (data not shown). Age of first culture was younger in subjects who were Pa
positive in early childhood whether they had mild or severe lung function in adolescence

(Mean age (years) at first culture in the mild adolescent lung disease group was 2.22 vs. 3.51

for Pa positive and negative subjects, respectively, p<0.05. Mean age at first culture in the

severe adolescent lung disease groups were—2.18 vs. 3.51 for Pa positive and negative subjects,

respectively, p<0.05). Similarly, Pa positive subjects had a higher mean number of respiratory

cultures before age 6 regardless of lung function in adolescence (number of cultures among

subjects with mild adolescent lung disease—4.56 vs. 3.11 for Pa positive and negative subjects,

respectively, p<0.05. Number of cultures among subjects with severe adolescent lung disease

—4.86 vs. 2.57 for Pa positive and negative subjects, p<0.05).

Fig 2 illustrates differences in early lung function among the four GMS subgroups. Among

subjects who were Pa positive in early childhood, mean FEV1 at 6–8 years of age was lower in

those with severe vs. mild adolescent lung disease (72.4% ± 15.8 and 99.4% ±13.1, respectively)

(p<0.0001). Among Pa-negative subjects, there was a similar difference in early childhood

FEV1 between those with severe vs. mild adolescent lung disease (79.1% ± 16.7 and 103.2% ±
14, respectively) (p<0.0001). In comparing subjects with severe lung disease later in life, mean

early childhood FEV1 was ~8 percentage points lower in those subjects who were Pa-positive

before age 6 (p = 0.01); however, there was no significant difference in early FEV1 between Pa
positive and negative subjects with mild adolescent lung disease.

NBS population

Of 434 subjects included in the Colorado NBS database, 172 were included in final analysis;

the majority excluded were not old enough to have “adolescent” lung function data available at

10 years of age or older (Fig 3).

Comparison by adolescent lung function quartile. NBS subjects were first divided into

even quartiles by adolescent lung function (n = 43 in each quartile), then further divided by Pa
status in early childhood. When comparing NBS subjects by lung function quartile in adoles-

cence, subjects with lower adolescent lung function were born earlier and had a higher per-

centage of cultures positive for Pa prior to age 6 than adolescents with higher lung function

(Table 2). There were no significant differences in nutritional status, age of first culture, num-

ber of cultures before age 6, percentage of subjects Pa-positive before age 6, or age at first Pa-

positive culture between the adolescent lung function quartile groups. Subjects with lower ado-

lescent lung function had significantly lower FEV1 at 6 to 8 years of age than those in the

higher adolescent lung function quartiles (Table 2).

Comparison by adolescent lung function quartile and early Pa status. Fig 4 illustrates

differences in early childhood lung function by adolescent lung function quartile and early

childhood Pa status. Early childhood FEV1 was significantly lower in subjects with poorer
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adolescent lung function who were Pa positive before age 6 (mean early childhood FEV1 78%

(±13), 89% (±7), 94% (±11), and 107% (±12) for lowest to highest adolescent lung function

groups, p<0.0001). Though a similar pattern was seen in the Pa negative group, differences

did not reach statistical significance (mean early childhood FEV1 93% (±7), 95% (±16), 97%

(±11), and 103% (±13) for lowest to highest adolescent lung function group, p = 0.065). When

comparing Pa positive and negative subjects by adolescent lung function quartile, Pa positive

subjects in the lowest adolescent lung function quartile had significantly lower early childhood

lung function than Pa negative (78% (±13) vs. 93% (±6), p< 0.001); differences in early child-

hood FEV1 between Pa positive and negative subjects in the other quartiles were not statisti-

cally significant (p = 0.09, 0.18, 0.86 for 2nd lowest, 3rd, and highest quartiles, respectively).

There was a significant decline in FEV1 percent predicted from early childhood to adoles-

cence in the two lowest adolescent lung function quartiles, with a decrease of 25 percentage

Fig 1. GMS population: Inclusion/Exclusion of subjects. Subjects from the parent GMS study included in

current analysis were limited to those who a) had lung function data between age 6 and 8, b) were enrolled in

the GMS study at 12 years of age or greater, and c) had respiratory culture data available prior to age 6.

Definition of adolescent lung function occurred at time of GMS enrollment; age cutoff was created to separate

time of definition of adolescent lung function from early childhood lung function.

https://doi.org/10.1371/journal.pone.0177215.g001

Fig 2. GMS population: Early childhood lung function by Pa status before age 6 and severe vs. mild lung disease in adolescence.

Mean FEV1 percent predicted at 6 to 8 years of age is plotted by classification of lung disease in adolescence (severe vs. mild) and Pa

infectious status up to age 6 (ever vs. never culture positive for Pa).

https://doi.org/10.1371/journal.pone.0177215.g002
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points and 10 percentage points in lowest and 2nd lowest quartiles, respectively (p<0.0001 for

both). There was no significant change in mean FEV1 from early childhood to adolescence in

the higher two adolescent lung function quartiles (Table 3). Similarly, rate of decline in FEV1

from childhood to adolescence (percent predicted per year) was significantly higher in subjects

in the two lowest adolescent lung function quartiles (Table 3).

Table 4 shows annual rate of decline (percent predicted per year) in FEV1 from early child-

hood to adolescence by adolescent lung function quartile and early childhood Pa status. Sub-

jects with the lowest adolescent lung function had significantly faster annual rates decline

in FEV1 than all other subjects; mean FEV1 percent predicted in the two highest quartiles

appeared nearly stable from childhood to adolescence (by both percent predicted and rate of

Fig 3. Colorado NBS population–Inclusion/Exclusion of subjects. Subjects in Colorado NBS analysis

were limited to those 10 years of age or older at the time of analysis in order to have “adolescent” lung function

data available. Subjects included in analysis were required to have data on respiratory cultures before age 6,

BMI at age 2 to 4, lung function at age 6 to 8, and lung function over age 10.

https://doi.org/10.1371/journal.pone.0177215.g003
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decline). Importantly, rate of decline did not differ significantly within adolescent lung func-

tion quartiles when comparing subjects by early childhood Pa status (Table 4).

For all comparisons discussed above, similar patterns were seen when comparing best early

childhood FEV1 as opposed to mean (data not shown).

Linear regression. Variables included in the final linear regression model (after back-

wards elimination of covariates) were: adolescent FEV1, early childhood FEV1, BMI Z-score

at 2–4 years of age, percentage of cultures positive for Pa before age 6, number of cultures

obtained before age 6, number of PFTs included in the early childhood lung function variable,

number of PFTs included in the adolescent lung function variable, gender, year of birth, and

age at diagnosis. We found a strong association between lower early childhood FEV1 and

lower adolescent FEV1 (p<0.001, Table 5). Higher percentage of cultures positive for Pa prior

to age 6 was also significantly associated with lower adolescent FEV1 (p = 0.02), though the

effect appeared markedly less than that of early childhood FEV1. Contribution to the explained

Table 2. Colorado NBS population characteristics by adolescent lung function quartile.

Lowest quartile 2nd quartile 3rd quartile Highest quartile

n = 43 n = 43 n = 43 n = 43 p (ANOVA or chi2)

Female 58% 42% 42% 56% 0.3

F508del homozygous 58% 44% 47% 60% 0.3

Year of birth 1989.6 (±5) 1991.8 (±4.6) 1992.2 (±3.8) 1993.5 (±5) 0.002

Age (years) at diagnosis 0.1 (±0.4) 0.1 (±0.1) 0.07 (±0.07) 0.1 (±0.2) 0.6

Diagnosed by newborn screening* 81% 72% 84% 88% 0.3

Diagnosed with meconium ileus 16% 21% 16% 9% 0.5

Culture data

Age (years) at first culture 0.5 (±1) 0.3 (±0.3) 0.4 (±0.8) 0.2 (±0.3) 0.3

Number of cultures prior to age 6 11.3 (±7.6) 11.7 (±6.1) 11.3 (±5.7) 14.2 (±6.7) 0.1

Pseudomonas aeruginosa before age 6 67% 47% 49% 49% 0.2

non-mucoid Pa 65% 47% 47% 49% 0.2

mucoid Pa 19% 16% 14% 7% 0.4

Percentage of cultures Pa positive before age 6 31% (±26) 16% (±7) 18% (±12) 16% (±9) 0.0002

Age (years) first Pa under age 6 2.2 (±1.6) 2.7 (±2) 2.8 (±1.7) 2.3 (±2) 0.6

Staphylococcus aureus (all w MSSA) before age 6 79% 74% 88% 93% 0.08

MRSA 2% 2% 2% 7% 0.6

Percentage of cultures Staph positive before age 6 28% (±25) 32% (±27) 35% (±27) 33% (±21) 0.5

Age (years) first Staph under age 6 2 (±1.5) 1.7 (±1.5) 1.7 (±1.7) 1.5 (±1.6) 0.7

Nutritional data

Mean BMI Z-score at 2–4 years of age -0.8 (±2) -0.3 (±0.9) -0.3 (±1) -0.1 (±0.8) 0.08

Mean BMI percentile at 2–4 years of age 36% (±28) 42% (±24) 40% (±27) 46% (±24) 0.37

number anthropomorphic measures age 2–4 5 (±3.8) 7 (±5) 6.9 (±3.4) 7.2 (±3.6) 0.049

Lung function data

Mean FEV1 percent predicted age 6–8 years 84% (±13) 92.2% (±12.5) 95.5% (±11.2) 105.3% (±12.7) <0.0001

Best FEV1 percent predicted age 6–8 years 96.2% (±15.3) 104.2% (±11.7) 106.1% (±11.8) 116.4% (±12.6) <0.0001

Number of PFTs included age 6–8 years 7.5 (±5.7) 7.5 (±6.3) 6.6 (±3.3) 7.8 (±3.9) 0.7

Mean FEV1 percent predicted in adolescence 58.9% (±11.7) 82.1% (±3.9) 92.3% (±3) 106.4% (±7.2) -

Best FEV1 percent predicted in adolescence 73.9% (±14.5) 95.6% (±8.6) 101.8% (±6.3) 113.7 (±8.5) -

Number of PFTs included in adolescent data 21.9 (±18.8) 17.4 (±12.1) 11.7 (±11.6) 12.3 (±13.2) 0.003

Mean age of adolescent PFTs 16.9 (±3.6) 15.8 (±3.4) 15.2 (±2.4) 14.2 (±4.2) 0.004

* Additional 5 subjects w/ false-negative newborn screening, remainder diagnosed with meconium ileus

https://doi.org/10.1371/journal.pone.0177215.t002
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variance of the full model was 0.1957 for mean early childhood FEV1 vs. 0.0157 for percentage

of cultures positive for Pa before age 6. In this model, predicted mean adolescent FEV1 in-

creased by 19.7 percent predicted when early childhood FEV1 was increased from the 25th per-

centile (85.5% predicted) to the 95th percentile (117.4%), while it decreased by only 5.8% when

percentage of cultures positive for Pa was increased from the 25th percentile (0%) to the 95th

percentile (36.8% positive) (see Fig 5). Lower BMI in early childhood also showed a significant

association with lower adolescent lung function (p = 0.005). Neither the simple presence of Pa
prior to age 6 (yes/no dichotomous variable for at least one positive culture) nor the presence

or percentage of cultures positive for S. aureus prior to age 6 were significantly associated with

adolescent FEV1.

Discussion

We have shown in two separate, distinct cohorts of CF subjects that lower FEV1 in early child-

hood (6 to 8 years of age) is strongly associated with lower FEV1 in adolescence, and that this

association is only partially explained by infection with Pa before age 6; thus, other genetic

and/or environmental factors, likely in early childhood, must be playing a major role. Impor-

tantly, we have also shown a striking divergence in loss of lung function among CF patients, as

Fig 4. Colorado NBS Population: Early childhood lung function by adolescent lung function quartile and early childhood Pa

status. Early childhood lung function (mean FEV1 at 6–8 years of age) by adolescent lung function quartile and early childhood Pa status

(ever/never Pa positive before age 6). Subjects were first divided into even quartiles by adolescent lung function (n = 43 in each quartile),

then further divided by Pa status in early childhood. Among Pa positive subjects, those in the lowest adolescent lung function quartile had

significantly lower early childhood lung function compared to all other quartiles; differences in early childhood lung function among Pa

negative subjects did not reach statistical significance. When comparing subjects within individual adolescent lung function quartiles, Pa

positive subjects in the lowest adolescent lung function quartile had significantly lower early childhood lung function than Pa negative

(p<0.001); otherwise there were no significant differences in early childhood lung function by Pa status within adolescent lung function

quartiles.

https://doi.org/10.1371/journal.pone.0177215.g004

Early lung function predicts adolescent disease in CF

PLOS ONE | https://doi.org/10.1371/journal.pone.0177215 May 15, 2017 11 / 19

https://doi.org/10.1371/journal.pone.0177215.g004
https://doi.org/10.1371/journal.pone.0177215


subjects with worse lung function in early childhood had a significantly faster rate of FEV1

decline from childhood to adolescence compared to those with better early childhood lung

function. This finding holds even for those diagnosed in infancy, was the majority of NBS sub-

jects presented for management and treatment prior to the development of respiratory symp-

toms, and those with worse lung function early still had a faster rate of decline. Our findings

suggest that predisposing genetic and/or environmental factors and events in infancy and pre-

school in children with CF may have a strong impact on lung function from early childhood

through adolescence and adulthood, even in children diagnosed by newborn screening.

Our results are consistent with Burns’ finding that 97% of infants with CF in their clinic

population had serologic or microbiologic evidence of Pa exposure before age three[43],

which would suggest that growth of Pa on respiratory culture cannot be the driving force in

Table 3. Colorado NBS Population: Absolute change and annual rate of change (percent predicted per year) in FEV1 percent predicted from early

childhood to adolescence by adolescent lung function quartile. Absolute change in FEV1 was defined as mean FEV1 percent predictedage 6–8 minus

mean FEV1 percent predictedadolescent. Annual rate of change was defined as absolute change in FEV/ (mean age adolescent PFTs–mean age early child-

hood PFTs).

Mean FEV1 Best FEV1

mean p mean p

LOWEST QUARTILE

change in % predicted (child—adolescent) -25.1 <0.0001 -22.3 <0.0001

annual rate of change -2.8 (±2.1) *† -1.1 (±1.6) *†

2nd QUARTILE

change in % predicted (child—adolescent) -10.1 <0.0001 -8.6 <0.0001

annual rate of change -2.4 (±3.3) ‡ -1 (±1.5)

3rd QUARTILE

change in % predicted (child—adolescent) -3.2 0.06 -4.4 0.03

annual rate of change -1.7 (±2.1) -0.5 (±2.1)

HIGHEST QUARTILE

change in % predicted (child—adolescent) 1.1 0.5 -2.7 0.09

annual rate of change -1.1 (±2.7) -0.5 (±1.8)

* p value for difference among any of the 4 quartiles (ANOVA) < 0.001

† p value comparing lowest quartile to all other quartiles <0.001

‡ p value comparing 2nd quartile to highest quartile <0.003

https://doi.org/10.1371/journal.pone.0177215.t003

Table 4. Colorado NBS Population: Annual rate of change in FEV1 percent predicted from childhood to adolescence by adolescent lung function

quartile and Pa status before 6 years of age.

Adolescent Lung Function Quartile

Lowest quartile

n = 43

2nd quartile

n = 43

3rd quartile

n = 43

Highest quartile

n = 43

Mean (SD) Pa negative

n = 14

Pa positive

n = 29

Pa negative

n = 23

Pa positive

n = 20

Pa negative

n = 22

Pa positive

n = 21

Pa negative

n = 22

Pa positive

n = 21

FEV1 age 6–8 92.9 (±6.8)* 79.7

(±13.2)

94.6 (±15.6) 89.5

(±7.1)†
97.1 (±11.5) 93.9

(±11)†**
103.2 (±13) 107.4

(±12.4)†**

Annual rate of change in FEV1%

predicted

-2.6 (±0.9) -2.8 (±2.5) -1.2 (±1.9) -0.9 (±1.1) -0.4 (±1.6)† -0.1 (±1.4)† 0.6 (±1.5)† -0.1 (±1.7)†

* p<0.05 comparing Pa positive and negative groups within adolescent lung function quartile

† p<0.05 compared to lowest adolescent lung function quartile group with same Pa status

** p<0.05 compared to 2nd adolescent lung function quartile group with same Pa status

https://doi.org/10.1371/journal.pone.0177215.t004
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Table 5. Colorado NBS population: Linear regression, association with mean adolescent FEV1 percent predicted. Results of linear regression inves-

tigating association of early childhood events/exposures with mean adolescent FEV1 percent predicted. All variables with p<0.05 are shown; the model was

also adjusted for gender, age at diagnosis, number of respiratory cultures prior to age 6, and number of PFTs used to calculate early childhood FEV1. Vari-

ables eliminated from the model included genotype (F508del homozygous yes/no), diagnosis by newborn screening, percentage of cultures positive for S.

aureus prior to age 6, and number of measures included in BMI value.

95% CI

VARIABLE ß coeff SE Lower 95% Upper 95% p value

Mean FEV1%predicted age 6 to 8 0.616 0.077 0.465 0.768 <0.001

Percent of cultures Pa positive before age 6 -0.159 0.070 -0.297 -0.021 0.024

Year of birth 1.03 0.319 0.397 1.66 0.002

BMI z-score age 2 to 4 2.37 0.826 0.743 4.01 0.005

Number of PFTs used to calculate mean adolescent FEV1 -0.324 0.078 -0.478 -0.17 <0.001

Also adjusted for gender, age at diagnosis, number of cultures age 0–6, number of PFTs age 6–8 (these variables were also included in regression analysis,

but without significant p value).

https://doi.org/10.1371/journal.pone.0177215.t005

Fig 5. NBS linear regression: Predicted adolescent lung function is more strongly associated with early childhood FEV1 than with percentage of

cultures positive for Pa in early childhood. Subject values for mean early childhood and adolescent FEV1 are shown in scatterplot, with subjects Pa

positive in early childhood represented by gray triangles, Pa negative by black circles. Superimposed lines represent NBS linear regression results showing

predicted adolescent FEV1 (with 95% confidence intervals—dashed lines) by early childhood FEV1. The black line shows predicted adolescent FEV1 by

early childhood FEV1 when percentage of cultures positive for Pa prior to age 6 is held at 0% (25th percentile); the grey line represents the predicted

adolescent FEV1 when percentage of cultures positive for Pa prior to age 6 is held at 30% (approximately the 90th percentile for our cohort). These values

were all adjusted for gender, year of birth, age at diagnosis, number of cultures before age 6, BMI Z score at 2 to 4 years of age, and number of PFT tests

included in early childhood and adolescent values (all held at mean). Predicted mean adolescent FEV1 increased by 19.7 percent predicted when early

childhood FEV1 was increased from the 25th percentile (85.5% predicted) to the 95th percentile (117.4%), while it decreased by only 4.8% when percentage

of cultures positive for Pa was increased from the 25th percentile (0%) to the 92nd percentile (30% positive), or 5.8% when increased to 36.8% positive (95th

percentile). Contribution to the explained variance of the full model was 0.1957 for mean early childhood FEV1 vs. 0.0157 for percentage of cultures positive

for Pa before age 6.

https://doi.org/10.1371/journal.pone.0177215.g005
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differences in early lung function. In the GMS dataset, subjects with severe adolescent lung dis-

ease had mean early childhood FEV1 approximately 25 percentage points lower than adoles-

cent subjects with mild disease, regardless of early childhood Pa status. In the NBS dataset,

early lung function was lower in subjects with lower adolescent lung function. We acknowl-

edge that there is an association between early Pa infection, early childhood lung function, and

adolescent lung function, as subjects with lower adolescent lung function and early Pa infec-

tion appeared to have worse early childhood lung function in both study populations. This

confirms that infection with Pa is one of many factors associated with lower lung function in

adolescence, but our findings emphasize that, even when adjusting for chronicity or prevalence

of positive cultures, Pa is not the major cause of lower lung function in children that persists

into adolescence.

Previous studies have shown that lung function in healthy subjects remains relatively stable

when comparing percent-predicted values from childhood to adolescence[44, 45]. Studies in

children with CF have noted an association with higher baseline FEV1 and more rapid rate of

decline over the next 3–6 years[27, 46]. However, we found that subjects with CF with lower

adolescent lung function showed significantly greater rate of decline in FEV1 percent predicted

and annual rate of decline in FEV1 percent predicted from early childhood to adolescence,

while those subjects with higher adolescent lung function showed no significant decline from

early childhood to adolescence. This suggests that children with CF and lower FEV1 are not

simply tracking along a given lung function trajectory, but have active progression and wors-

ening of their lung disease in comparison to their healthier counterparts with CF. Our findings

may differ from previous studies in follow-up time from early childhood to adolescence was

relatively longer–perhaps uniformly bridging adolescence in our population resulted in differ-

ent patterns of lung function decline. The NBS population was also limited to a single state

population, and thus our study population was smaller and possibly more homogenous.

Finally, our analysis approaches may have differed.

The strongest predictor of low lung function in adolescence was low lung function in early

childhood. Importantly, there were no significant differences in rate of decline when compar-

ing Pa positive and negative subjects within adolescent lung function quartiles. Instead, sub-

jects with lower adolescent lung function (in both Pa positive and negative groups) both

started with lower early childhood lung function and showed a faster rate of decline in lung

function than their counterparts with higher adolescent lung function. Those subjects with a

higher percentage of respiratory cultures positive for Pa prior to age 6 also had lower lung

function in adolescence, though that association was not as strong as that with early childhood

lung function, and the dichotomous presence/absence of Pa prior to age 6 was not associated

with adolescent lung function. This suggests that infectious burden, and possibly inflammatory

response, plays a role in outcomes, though compliance with prescribed preventative treatments

such as chest physiotherapy could also explain persistent decline in some children. Our find-

ings are consistent with previous studies implicating chronic Pa infection in poorer pulmonary

outcomes in patients with CF[15, 27, 29, 47], and implicating inflammation as a strong predic-

tor of lung function decline[48].

The importance of S. aureus in CF lung disease has been a source of recent debate[28, 30,

31, 49, 50]; we found no significant association between S. aureus infection in early childhood

and adolescent lung function, though we were unable to investigate the association with methi-

cillin-resistant S. aureus due to low prevalence in our NBS population and lack of consistent

reporting in our GMS population.

Poor nutritional status in early childhood was also associated with lower lung function in

adolescence, which is consistent with previous studies[21, 22]. Earlier year of birth was also

associated with poorer adolescent lung function, which may reflect our study design, as these
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subjects would have been older when adolescent lung function was recorded, but could also

reflect advances in management and treatment. Our findings suggest early childhood lung

function, early nutritional status, and density or persistence of early Pa infection were most

strongly associated with adolescent lung function in subjects with CF.

Our two distinct datasets show consistent results, even though they represent different

birth cohorts (straddling initiation of widespread use of inhaled tobramycin for treatment of

Pa infection), had different genetic makeups and geographic origins, and likely reflected dif-

ferent treatment regimens (based on clinical advances from GMS to NBS birth cohorts).

Both datasets had distinct advantages and complement the other well. The GMS dataset was

large, representing CF centers across the U.S., and genetically homogenous (all F508del

homozygotes), but was limited by use of annualized data, relatively scant data in infancy and

preschool, and the extremes of phenotype design. The NBS dataset was smaller regional, but

contained the full spectrum of CF lung disease (not extremes of phenotype), a representative

distribution of CF genotypes, and used encounter-based, non-annualized data. Initiation

of CF-directed care such as chest physiotherapy at diagnosis, and prior to development of

respiratory symptoms, is another advantage in the NBS dataset and eliminates a potential

confounder.

Our study had several limitations. Both GMS and NBS datasets are comprised of clinically

collected data; there was not uniformity in data collection frequency or variables collected.

PFT data at 6–8 years of age was the earliest age at which we could determine “early” childhood

lung function. Because of the annualized data in the GMS study and the extremes of phenotype

design, we were not able to explore associations between early childhood events, early child-

hood lung function, and adolescent lung function in great detail in this population. The NBS

study population had more extensive early childhood data; however, there was still substantial

variability as to how much data was available on individual subjects. We were unable to in-

clude mucoid Pa or methicillin-resistant S. aureus in either analysis due to low prevalence in

the NBS population, and limited data available from the CFFPR for the majority of GMS sub-

jects. Similarly, we had limited data on other organisms such as Haemophilus influenza, Asper-
gillus fumigatus, or Stenotrophomonas maltophilia, and were not able to include these in our

analyses, nor were we able to include differences in therapies and treatments. Finally, socio-

economic status was not reliably collected and was therefore not included in our regression

model, yet socioeconomic status has been shown to be associated with worse outcomes in CF

[18]. Despite these limitations, we believe the consistency of our results in two distinct popula-

tions of subjects lend support to our findings.

In summary, we have shown in two distinct populations of subjects with CF that lung func-

tion in early childhood is more strongly associated with lung function in adolescence in CF

than infection with Pseudomonas aeruginosa before age 6. Most strikingly, we found that sub-

jects with lower lung function in adolescence had lower lung function in early childhood and a

more rapid rate of decline of FEV1 from childhood to adolescence than those subjects with

higher lung function in adolescence. Annual rate of decline was not different between Pa posi-

tive and Pa negative subjects in early childhood (within adolescent lung function quartile),

suggesting that long-term pulmonary outcomes and disease trajectory may be largely deter-

mined prior to lung function measures at 6 years of age. Perhaps equally important, these

differences were present in a cohort of children diagnosed with CF in infancy and prior to

development of respiratory symptoms. Our findings suggest genetic influences and multiple

factors in infancy and preschool have a substantial impact on lung function from early child-

hood onwards in subjects with CF. It will be critical to further study events in early childhood

in patients with CF to define these key factors for future intervention.
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