
790 Proteomics 2012, 12, 790–794DOI 10.1002/pmic.201100577

TECHNICAL BRIEF

jmzIdentML API: A Java interface to the mzIdentML

standard for peptide and protein identification data

Florian Reisinger1∗, Ritesh Krishna2∗, Fawaz Ghali2, Daniel Rı́os1, Henning Hermjakob1,
Juan Antonio Vizcaı́no1 and Andrew R. Jones2

1 EMBL-European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
2 Institute of Integrative Biology, University of Liverpool, Liverpool, UK

We present a Java application programming interface (API), jmzIdentML, for the Human Pro-
teome Organisation (HUPO) Proteomics Standards Initiative (PSI) mzIdentML standard for
peptide and protein identification data. The API combines the power of Java Architecture of
XML Binding (JAXB) and an XPath-based random-access indexer to allow a fast and efficient
mapping of extensible markup language (XML) elements to Java objects. The internal refer-
ences in the mzIdentML files are resolved in an on-demand manner, where the whole file
is accessed as a random-access swap file, and only the relevant piece of XML is selected for
mapping to its corresponding Java object. The API is highly efficient in its memory usage
and can handle files of arbitrary sizes. The API follows the official release of the mzIdentML
(version 1.1) specifications and is available in the public domain under a permissive licence at
http://www.code.google.com/p/jmzidentml/.

Keywords:

Bioinformatics / Java API / mzIdentML / Proteomics standards initiative (PSI) / XML

Received: November 4, 2011
Revised: December 14, 2011

Accepted: December 15, 2011

Proteomics search engines use peptide mass fingerprint
(MS1) or tandem mass spectrometry (MS/MS) data in con-
junction with sequence databases for peptide and protein
identification. The identification results and the relevant
statistics can be presented in a variety of output formats.
In an attempt to standardize a common output format across
different search engines, the Human Proteome Organisation-
Proteomics Standards Initiative (HUPO-PSI) has recently
proposed the mzIdentML standard for reporting pro-
tein identification data (http://www.psidev.info/mzidentml).
mzIdentML is an extensible markup language (XML)
based exchange standard developed in close collaboration

Correspondence: Dr. Andrew R. Jones, Biosciences building, In-
stitute of Integrative Biology, University of Liverpool, Liverpool,
L69 7ZB, UK
E-mail: andrew.jones@liv.ac.uk
Fax: +44 151 795 4408

Abbreviations: API, Application Programming Interface; (HUPO)

PSI, (Human Proteome Organisation) Proteomics Standards Ini-
tiative; JAXB, Java Architecture of XML Binding; PRIDE, PRo-
teomics IDEntifications (database); XML, Extensible Markup Lan-
guage

with instrument vendors and software developers from
the global proteomics community. This paper presents a
Java-based application programming interface (API), jmz-
IdentML, for the processing and creation of mzIdentML
documents.

The mzIdentML format reports a peptide-spectrum match
accompanied by a reference to a peptide sequence and an
identifier for the corresponding spectrum present in an ex-
ternal file. The peptide-spectrum identification is supported
by the statistical score, rank, confidence value (e.g. an e-value
or p-value), and the collection of all protein sequences that
contain the matched peptide. The mzIdentML file lists all the
protein sequences from the primary sequence database that
have been potentially identified, and the theoretically digested
peptide sequences used for the peptide-spectrum matches.
The peptide sequences are accompanied by their theoretical
and experimental masses and the potential sites of modifi-
cations. The parameters and methods used for performing
the search are specified in the relevant sections of the mzI-
dentML file to provide complete information about the search

∗These authors contributed equally to the manuscript.

Colour Online: See the article online to view Figs. 2 and 3 in colour.

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



Proteomics 2012, 12, 790–794 791

performed. A detailed description of the format can be found
at http://www.psidev.info/mzidentml. The XML schema de-
scribing the structure of the mzIdentML provides the basis
for the design of jmzIdentML. The API strictly follows the
mzIdentML specifications (version 1.1) proposed by HUPO-
PSI.

There are several commercial and open-source tools that
currently support the mzIdentML standard. Most of the tools
work as converters to facilitate the conversion of native file for-
mats to mzIdentML format: for instance, the Mascot parser
(version 2.3 supports mzIdentML version 1.0 and is currently
being updated to version 1.1 - http://www.matrixscience.
com/msparser.html), ProCon (conversion of SEQUEST
files - http://www.medizinisches-proteom-center.de/ProCon),
and libraries for the conversion of OMSSA and X!Tandem
results [1]. OpenMS [2] and ProteoWizard [3] provide C++
libraries for reading and writing mzIdentML. The provision
of the mzIdentML standard and file format converters will
help experimentalists to compare or integrate results from
different search engines, which is currently very challenging.
It will also facilitate new software development by reducing
the number of file formats to support. To our knowledge,
jmzIdentML is the only API available written in Java that has
been developed for mzIdentML. The API is available free of
charge in the open-source domain.

jmzIdentML is developed in pure Java, thus making the API
compatible across all platforms. The construction of the API is
based on industry standard open-source development archi-
tectures such as Maven 2, Java Architecture of XML Binding
(JAXB), Log4j, and JUnit. A ready-to-use version of the API
is available for download at http://www.code.google.com/
p/jmzidentml/.

An important feature of the mzIdentML format is the
abundance of internal references in an XML file. The use of
references reduces the redundant repetition of information
in the file, while at the same time allowing similar elements to
be grouped together in a structured manner. Generally, such
reference resolving requires the entire file to be loaded into
memory for a quick lookup. However, if the file is large, it can
easily become a memory-intensive task and the processing be-
comes difficult on a standard computer. We have proposed
an on-demand lookup mechanism to resolve internal refer-
ences by using an innovative XPath-based indexer combined
with a user-defined caching mechanism. The XML schema
of the mzIdentML standard specifies a fixed XPath for each
element in an mzIdentML file. Each time a file is opened for
reading, a scanner runs through the whole file registering
the start and end byte locations of all the elements in the
file identified by their XPath. A memory-based data structure
called xxIndex keeps a record of the element found in the file,
their XPath, and their respective start and end byte locations
in the file. An index of this kind allows us to use the whole file
as a random-access file where each element can be accessed
either by its name, or its XPath. The knowledge of the start
and end byte locations of the relevant elements allows us to

retrieve the required chunk of XML in an on-demand basis,
without needing to load the complete file in memory.

Though the XPath-based random-access mechanism al-
lows us to quickly retrieve the relevant chunk of XML file
in memory, the data still need to be processed to retrieve
the particular element having the reference key. The element
lookup can be accelerated by applying a user-defined caching
mechanism provided with the API. There are manual and
automatic ways of resolving references in the data returned
by xxIndex. The reference resolving can be requested by a
Java class in two ways – (i) by specifying the string reference,
and (ii) by specifying the object reference.

The string references can be resolved either by manually
iterating through the data and looking for the matching el-
ement, or by automatically retrieving the required element
by looking into a memory-based hash-map. Switching on the
caching mechanism in the API can activate the hash-map
feature. The caching takes place at the same time as xxIndex
is making the indexes for the XPath entries while scanning
the whole file. Depending on our preference for the type of
elements we wish to cache, the xxIndex creates a hash-map
for the elements of the desired type by using their string
identifiers as keys, and their corresponding byte locations as
values. We use the terminology for these elements as indexed
and ID-mapped.

The object references requested by the Java class can be
resolved by simply activating the auto-resolve mechanism pro-
vided by the API. When the auto-resolve option is activated for
the parent element, the API automatically resolves the inter-
nal references encountered in the parent element and creates
a full object reference for each reference encountered. The
auto-resolve feature can seamlessly provide a complete Java
model for the XML without any need for explicit searching
and reference resolving, but can increase the resource re-
quirements depending on the number of elements we have
set for auto-resolve.

The caching and auto-resolve behavior of the API can be
configured using an XML configuration file provided with
the API. The values of indexed, ID-mapped, and auto-resolving
can be set in the configuration file for the desired elements
according to the programming requirements of a user (an ex-
ample configuration is provided at http://www.code.google.
com/p/jmzidentml/w/list).

The XML element to Java object mapping is achieved by
means of JAXB (http://www.jaxb.java.net/). The jmzIdentML
API provides the methods for marshalling Java objects to XML
fragments, and unmarshalling XML fragments to Java objects.
During the processing of an XML element, the required ele-
ment can be retrieved with the help of xxIndex. After unmar-
shalling the relevant XML fragment, internal references are
resolved according to the options mentioned above to provide
complete information to the user. The process of retrieving
Java objects by resolving internal references can be cascaded
to any depth, each time reading only the relevant sections of
XML in memory.

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



792 F. Reisinger et al. Proteomics 2012, 12, 790–794

Figure 1. mzIdentML code snippets for the
example discussed in Case Study–I. (A)
<SpectrumIdentificationItem> refers to the
corresponding <Peptide> by KDLYGNVVLSG-
GTTMYEGIGER_1@14; (B) the <Peptide>

element corresponding to KDLYGNVVLSG-
GTTMYEGIGER_1@14; (C) <PeptideEvidence>

referenced by PE1_2_0 in (A); (D) <DBSequence>

referenced by dbseq_psu|NC_LIV_020800 in (C).

Case study I: Information retrieval using the unmarshaller.
Here, we present an example demonstrating the basic func-
tionality of the API. Figure 1 presents snippets of an ex-
ample mzIdentML file that we will use for demonstration
purposes. The <SpectrumIdentificationResult> captures all
the peptide identifications made from a single spectrum – list-
ing a ranked set of peptide-spectrum matches reported by the
search engine. Each individual peptide-spectrum match is re-
ported as a child element in <SpectrumIdentificationItem>.
Each ranked result is associated with a peptide sequence, ref-
erenced by a key peptide_ref (Fig. 1A). The peptide_ref points
to a <Peptide> element in the document, which contains
more detailed information about the peptide, such as the
amino acid sequence, sites of potential post-translational
modifications, etc. (Fig. 1B). In order to obtain complete in-
formation about a peptide-spectrum match, one must read
the entries in <SpectrumIdentificationItem> and resolve
the peptide_ref key to get the corresponding peptide infor-
mation located in the <Peptide> element. Further, these
peptides are theoretically digested from the protein sequence
database used for identification. A peptide sequence can be
associated with many protein sequences in the database:
such references are maintained by <PeptideEvidenceRef>,
where each peptideEvidence_ref refers to <PeptideEvidence>
elements (Fig. 1C). A <PeptideEvidence> element
contains information about the possible relationship between
the peptide and the corresponding protein sequence such as

the start and end position of the peptide in the protein se-
quence, the amino acids before and after the cleavage sites
in the protein sequence, whether the protein sequence is a
decoy sequence or not, etc. The protein sequence is refer-
enced by the key DBSequence_ref. In order to retrieve the
information about the matching protein sequence, the DB-
Sequence_ref must be resolved from the <PeptideEvidence>
(Fig. 1D).

Figure 2 presents the class layout for the main Java classes
used in this example. Whenever a reference needs to be re-
placed by an actual Java object, the unmarshaller automati-
cally invokes the reference-resolving mechanism. The unmar-
shaller uses the xxIndex to find the byte location of the XML
snippet containing the relevant element. In this example, the
XML code containing the <Peptide> element with the ID
KDLYGNVVLSGGTTMYEGIGER_1@14 was looked up when
the reference peptide_ref was encountered while processing
<SpectrumIdentificationItem>. A similar mechanism was
adopted for resolving DBSequence_ref in <PeptideEvidence>.
After unmarshalling the retrieved XML portion into a Java
object, the API seamlessly provides a complete object model
to the end user. The arrows in Fig. 2 explain the reference-
resolving mechanism used for this example. Figure S1 in
the Supporting Information contains the example Java code
using the API to process an example file.

Case study II: Information presentation using the marshaller.
The API is not only useful for parsing an mzIdentML

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



Proteomics 2012, 12, 790–794 793

Figure 2. The reference resolving mechanism
of jmzIdentML for the Case Study–I. The string
references (PeptideRef in the left panel and
DBSequenceRef in the right panel) are re-
solved in two steps. First, the index created by
xxIndexer is looked up to find the relevant in-
formation about the referenced element, and
second, the referenced element is modeled as
a Java object and returned to the user. There
is also a mechanism for automatically resolv-
ing the object dependencies when the auto-
resolve option is switched on.

document for information retrieval, but can also be used to
produce new mzIdentML documents. The API provides a
marshaller interface to end-users to convert plain Java objects
into the corresponding mzIdentML elements in XML format,
without the user having to understand the XML schema for
the required elements. The marshaller interface is particu-
larly useful in writing converters, where it is desired to convert
a file from its native format to mzIdentML. We show the
usefulness of the marshaller by explaining two converters we
developed for the output files produced by the search engines
– OMSSA and X!Tandem (beta release). The Java source code
for the converters is available in the open-source domain at
http://www.code.google.com/p/mzidentml-parsers/.

There are two Java classes Omssa2mzid and Tandem2mzid
in mzindentml-parsers for producing mzIdentML compati-
ble outputs. Omssa2mzid takes an OMSSA xml file (.omx)
as input; whereas, Tandem2mzid converts the X!Tandem
specific .xml output file. To implement these converters,
we have used jmzIdentML API along with two other Java-
based open-source libraries, OMSSA parser [4] and XTan-
dem parser [5]. While on the one hand, the OMSSA parser
and XTandem parser facilitate the reading and parsing of
the native input files, jmzIdentML on the other hand allows
the parsed snippets to be automatically converted into rel-
evant mzIdentML elements. The information in the native
files is parsed and read as plain Java objects by the OMSSA
parser and XTandem parser; the Java objects in turn are ac-
cessed to retrieve information relevant for constructing rele-
vant Java objects provided by jmzIdentML interface. Finally,
the marshaller is called to convert the newly constructed
Java objects into mzIdentML snippets. Figure 3 shows the
schematic of the workflow. A description of the methods used
in Omssa2mzid can be found in Fig. S2 in the Supporting
Information.

We have presented an open-source Java API, jmzIdentML,
for the recently released mzIdentML standard. The two case

Figure 3. The flow of data in the format converters. (1) Parse the
input OMSSA (.omx) or X!Tandem (.xml) file using appropriate
parser; (2) Create internal data structures to store the parsed infor-
mation; (3) Create jmzIdentML supported Java objects from the
internal data structures; (4) Marshal the Java objects into XML
snippets and produce an output mzIdentML document.

studies show the utility of the API for parsing as well as
producing mzIdentML documents. Additionally, the API has
also been adopted in a new version of the tool PRIDE Con-
verter [6] to facilitate the upload of mzIdentML data into the
PRIDE database. The source code and binaries for the API
are freely available on Google code.

We gratefully acknowledge funding that has supported
this work, including BBSRC grants (BB/H024654/1) and
(BB/G010781/1) to A.R.J. F.R. and D.R. were supported by
the Wellcome Trust (grant number WT085949MA). J.A.V. is
supported by the EU FP7 grants LipidomicNet (grant number
202272) and ProteomeXchange (grant number 260558).

The authors have declared no conflict of interest.

References

[1] Wedge, D. C., Krishna, R., Blackhurst, P., Siepen, J. A.
et al., FDRAnalysis: a tool for the integrated analysis of

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com



794 F. Reisinger et al. Proteomics 2012, 12, 790–794

tandem mass spectrometry identification results from mul-
tiple search engines. J. Proteome. Res. 2011, 10, 2088–
2094.

[2] Sturm, M., Bertsch, A., Gropl, C., Hildebrandt, A. et al.,
OpenMS - an open-source software framework for mass
spectrometry. BMC Bioinformatics 2008, 9, 163.

[3] Kessner, D., Chambers, M., Burke, R., Agus, D., et al., Pro-
teoWizard: open source software for rapid proteomics tools
development. Bioinformatics 2008, 24, 2534–2536.

[4] Barsnes, H., Huber, S., Sickmann, A., Eidhammer, I., et al.,

OMSSA Parser: an open-source library to parse and extract
data from OMSSA MS/MS search results. Proteomics 2009,
9, 3772–3774.

[5] Muth, T., Vaudel, M., Barsnes, H., Martens, L., et al., XTan-
dem Parser: an open-source library to parse and anal-
yse X!Tandem MS/MS search results. Proteomics 2010, 10,
1522–1524.

[6] Barsnes, H., Vizcaino, J. A., Eidhammer, I., Martens, L.,
PRIDE Converter: making proteomics data-sharing easy. Nat.
Biotechnol. 2009, 27, 598–599.

C© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com




