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Summary
Background The presence of gross extrathyroidal extension (ETE) in thyroid cancer will affect the prognosis of pa-
tients, but imaging examination cannot provide a reliable diagnosis for it. This study was conducted to develop a deep
learning (DL) model for localization and evaluation of thyroid cancer nodules in ultrasound images before surgery for
the presence of gross ETE.

Methods From January 2016 to December 2021 grayscale ultrasound images of 806 thyroid cancer nodules (4451
images) from 4 medical centers were retrospectively analyzed, including 517 no gross ETE nodules and 289 gross
ETE nodules. 283 no gross ETE nodules and 158 gross ETE nodules were randomly selected from the internal dataset
to form a training set and validation set (2914 images), and a multitask DL model was constructed for diagnosing
gross ETE. In addition, the clinical model and the clinical and DL combined model were constructed. In the internal
test set [974 images (139 no gross ETE nodules and 83 gross ETE nodules)] and the external test set [563 images (95
no gross ETE nodules and 48 gross ETE nodules)], the diagnostic performance of DL model was verified based on the
pathological results. And then, compared the results with the diagnosis by 2 senior and 2 junior radiologists.

Findings In the internal test set, DL model demonstrated the highest AUC (0.91; 95% CI: 0.87, 0.96), which was
significantly higher than that of two senior radiologists [(AUC, 0.78; 95% CI: 0.71, 0.85; P < 0.001) and (AUC, 0.76;
95% CI: 0.70, 0.83; P < 0.001)] and two juniors radiologists [(AUC, 0.65; 95% CI: 0.58, 0.73; P < 0.001) and (AUC,
0.69; 95% CI: 0.62, 0.77; P < 0.001)]. DL model was significantly higher than clinical model [(AUC, 0.84; 95% CI: 0.79,
0.89; P = 0.019)], but there was no significant difference between DL model and clinical and DL combined model
[(AUC, 0.94; 95% CI: 0.91, 0.97; P = 0.143)]. In the external test set, DL model also demonstrated the highest AUC
(0.88, 95% CI: 0.81, 0.94), which was significantly higher than that of one of senior radiologists [(AUC, 0.75; 95% CI:
0.66, 0.84; P = 0.008) and (AUC, 0.81; 95% CI: 0.72, 0.89; P = 0.152)] and two junior radiologists [(AUC, 0.72; 95% CI:
0.62, 0.81; P = 0.002) and (AUC, 0.67; 95 CI: 0.57, 0.77; P < 0.001]. There was no significant difference between DL
model and clinical model [(AUC, 0.85; 95% CI: 0.79, 0.91; P = 0.516)] and clinical + DL model [(AUC, 0.92; 95% CI:
0.87, 0.96; P = 0.093)]. Using DL model, the diagnostic ability of two junior radiologists was significantly improved.

Interpretation The DL model based on ultrasound imaging is a simple and helpful tool for preoperative diagnosis of
gross ETE thyroid cancer, and its diagnostic performance is equivalent to or even better than that of senior radiologists.
Abbreviations: DL, deep learning; ETE, extrathyroidal extension; ROC, receiver operating characteristic; AUC, area under the receiver operating
characteristic curve; RLN, recurrent laryngeal nerve; US, ultrasound; ResNet, residual network; FPN, feature pyramid network; RPN, region proposal
network; ROI, region of interest; Grad-CAM, gradient-weighted class activation mapping; PPV, positive predictive value; NPV, negative predictive value
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Research in context

Evidence before this study
We searched PubMed and Web of Science with the terms
“(extrathyroidal extension thyroid cancer OR gross
extrathyroidal extension thyroid cancer) AND (radiomics OR
deep learning)” for papers published from database inception
to Nov 9, 2022, with no language restrictions. We find that
there is no research based on deep learning. Among the 6
studies based on radiology, they were mainly based on MRI or
CT images, and only 1 study was based on ultrasound (US)
images. The AUC of the model diagnosis of ETE was 0.824.
And all articles were single center research.

Added value of this study
As far as we know, no research has tested the feasibility of
diagnosing gross extrathyroidal extension (ETE) thyroid

cancer based on ultrasonic image deep learning. Our multitask
deep learning model can automatically segment and diagnose
whether there is gross ETE in the US image. We tested it in
internal test set and multi-center set and compared it with
senior radiologists and junior radiologists.

Implications of all the available evidence
Our research shows that our multitask deep learning model
has excellent ability to diagnose gross ETE, and its diagnostic
performance is equivalent to or even better than that of
senior radiologists. It provides potential tools to guide
individualized treatment strategies.
Introduction
The American Joint Committee on Cancer comprehen-
sively revised thyroid cancer staging in its eighth edition.1

One of the changes in the T-stage corresponds to the
range of extrathyroidal extension (ETE). ETE refers to the
invasion of primary tumors into adjacent tissues other
than the gland, which contributes to the poor prognosis
of patients with thyroid cancer.2 However, in the eighth
edition of staging, minimal ETE was removed from T3
because there was little evidence that it was an indepen-
dent predictor of persistence, recurrence, or impact on
survival in thyroid cancer.3 The new T3b is defined as a
tumor of any size demonstrating the gross ETE invading
only the strap muscle. The gross ETE invading major
tissue other than the thyroid is classified as T4a, such as
invading recurrent laryngeal nerve (RLN), larynx, trachea,
esophagus, or subcutaneous soft tissue. The gross ETE
invading prevertebral fascia or encasing carotid artery or
mediastinal vessels are classified as T4b. This change is
hopeful to reduce the overdiagnosis and treatment of low-
risk thyroid cancer. Many countries and regions sug-
gested that the observation waiting method should be
considered as the preferred choice for patients with low
risk thyroid cancer.4 It was discovered that patients with
gross ETE are more likely to have lymph node metasta-
ses, distant metastases, higher rates of tumor recurrence,
and the worst overall survival.5 Therefore, gross ETE
thyroid cancer is an indication for surgical operation. In
contrast, unilateral lobectomy or even dynamic surveil-
lance is an option for low or intermediate-risk thyroid
cancer. Accurate diagnosis of gross ETE can reduce the
over-treatment rate of thyroid cancer. In that case, the
doctors may be able to decide on an effective treatment
plan, which also helps in improving the prognosis of
patient.

Ultrasound (US) is the most convenient and accurate
modality for the preoperative evaluation of superficial
organs such as the thyroid gland. In previous studies,6–9

corresponding US features have been proposed for the
invasion of strap muscle, trachea, and RLN, which pro-
vide a reference for the preoperative diagnosis of gross
ETE. These features had good specificity but low sensi-
tivity (45%–78%). Additionally, the low incidence of gross
ETE resulted in percentages of gross ETE in prior studies
that were less than 10%, and the diagnostic accuracy of
aforementioned indicators requires further validation. In
conclusion, there are no ideal US diagnostic criteria for
the preoperative diagnosis of gross ETE.

In recent years, various convolutional neural net-
works based on deep learning (DL) algorithms have
been developed for medical image analysis.10–12 Among
the DL networks used in previous studies, there are two
major types. The first type directly classifies the whole
picture. Commonly used networks include VGGNet,
Google Inception Net, ResNet, etc.13 Some DL models
for thyroid US images have used the above networks,
www.thelancet.com Vol 58 April, 2023
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and most of their functions focus on the differentiation
of benign and malignant thyroid nodules.14–16 The sec-
ond type of network can automatically detect and classify
objects, and it can extract information from the local
part of the image explicitly. The ideal DL model we
expect should be able to automatically identify and di-
agnose nodules in the US interface, and since nodules
always have different shapes, we use the target detection
model for experiments in the hope of obtaining more
accurate and visual diagnosis. Therefore, in this study,
we developed a US DL model with automatic localiza-
tion and identification of gross ETE based on an internal
dataset of 663 thyroid cancer nodules and external
datasets of 143 thyroid cancer nodules.
Methods
Study population
This study was a retrospective multicenter study using
US image sets obtained from four hospitals. Patients that
met the inclusion criteria were selected: 1) patients who
underwent total or hemisection of the thyroid gland for
thyroid cancer; 2) patients who underwent preoperative
US evaluation of the thyroid gland. The exclusion criteria
include 1) patients who underwent surgery for recurrent
thyroid cancer; 2) patients with incomplete operative or
pathology reports; 3) patients with low-quality US images
(e.g., severe artifacts or low image resolution); 4) patients
with evidence of distant metastases. This study followed
the Standards for Reporting of Diagnostic Accuracy
(STARD) guidelines for diagnostic studies.

We retrospectively reviewed gross ETE patients from
January 2016 to December 2021 and no gross ETE pa-
tients from January 2018 to December 2019 from the
First Affiliated Hospital of Nanchang University as in-
ternal datasets (training set, validation set and internal
test set) to account for the low prevalence of gross ETE
and to reduce the issue of an unbalanced number of
categories during training. For the external test set, we
retrospectively reviewed gross ETE patients from
September 2020 to March 2022 and no gross ETE pa-
tients from April 2021 to September 2021 at three
hospitals (the Second Affiliated Hospital of Nanchang
University, the First People’s Hospital of Jiujiang City,
and the Affiliated Hospital of Jiangxi University of
Traditional Chinese Medicine).

The initial population included 948 patients. We
excluded 47 patients who underwent surgery due to
recurrence of thyroid cancer, 19 patients with incom-
plete surgical or pathological reports, and 32 patients
with evidence of distant metastasis. After that, a radi-
ologist (XuP) with 9 years of ultrasound experience
initially screened the ultrasound images, and a total of
220 nodules in 186 patients were excluded. Finally, 806
nodules from 664 patients were included in this study.
In the internal data set, 441 thyroid cancer nodules were
randomly selected as the training set and validation set,
www.thelancet.com Vol 58 April, 2023
and the remaining 222 nodules formed the internal test
set. There were 143 nodules in the external test set. The
details of the screening process of each research queue
are shown in Fig. 1.

Ethics statement
The study was approved by the ethics committee of The
First Affiliated Hospital of Nanchang University (No.
202112014), the study title is “Study on the diagnosis of
benign and malignant thyroid nodules by computer-
assisted ultrasound image based on deep learning”.
An informed consent exemption from the Institutional
Review Board was obtained. The principles of the Hel-
sinki Declaration guided the treatment protocols.

Collection of clinical, ultrasound, and pathological
data
The medical record system was used to record the
clinical and pathological data of patients, including their
gender, age, whether they had multiple thyroid cancers,
their lymph node status, and the type of ETE. T-staging
was performed according to the extent of ETE and the
size of thyroid nodules. ETE was divided into gross ETE
and no gross ETE (included no ETE and minimal ETE).
Gross ETE was defined as gross tumor invasion identi-
fied at the time of surgery and confirmed by histo-
pathologic review.17 Retrospective retrieval of US images
from four medical center databases was performed. The
thyroid US images were acquired by eight different
devices (Appendix Table S1). The US features of all
nodules were assessed by two radiologists with 20 years
(Yuan X) and 13 years (Liu Z) of clinical experience in
thyroid US, respectively. The results served as the clin-
ical and US features for comparing the two types of
nodules. In cases of diagnostic disagreement, the two
radiologists reached consensus through discussion (The
agreement between the two radiologists’ assessments
was assessed by kappa values, which were 0.859 for
contact ratio between nodule and capsule, 0.812 for echo
between nodule and capsule, and 0.932 for angle be-
tween tumor and Trachea, 0.899 for contact of the
nodule with the TEG. This indicated a high agreement
between the evaluators.). In addition, none of the radi-
ologists was aware of the clinical history of patient,
preoperative US reports, operative records, or pathology
results. Table 1, Appendix S1, and Appendix Figure S1
provide more information on the examined ultrasonic
features.

Image pre-processing
All thyroid US images were converted to JPEG format.
The images in this study had a range of sizes because
different US devices were used to gather the images. So
we first uniformly adjusted all US images to 1024 × 1024
pixels by clipping or black bar filling. To control the
quality of US images, a radiologist (Wu Y) with 3 years
of US experience screened all images to remove low-
3
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Fig. 1: Inclusion criteria flowchart for the initial population and exclusion. ETE, extrathyroidal extension.
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quality images with severe artifacts or low image reso-
lution. This process excluded 238 images (156 in
training set and validation set, 57 in internal test set and
25 in external test set).

Next, the open-source common label tool LabelMe
(http://labelme.csail.mit.edu/Release3.0) was used to
outline all nodules. According to the pathological re-
sults, gross ETE nodules were labeled as "advanced", no
gross ETE nodules were labeled as "inside", and JSON
format files for model training were generated. The
work of labeling and sketching ROI in the above pic-
tures was completed by a radiologist (Qi Q) with 6 years
of experience in US, which was then reviewed and
modified by a radiologist (Xu P) with 9 years of US
experience (Fig. 2). [Before formally sketching ROI, we
used 200 images (100 no gross ETE, 100 gross ETE) to
evaluate the consistency of ROI sketched by two radi-
ologists. The mean dice score between the two radiolo-
gists was 0.919 (the mean dice score of no gross ETE
was 0.912, and the mean dice score of gross ETE was
0.926).] We further reviewed the image quality during
the sketching process. This process excluded 119 im-
ages (80 in training set and validation set, 28 in internal
test set, and 11 in external test set).

Finally, a total of 4451 images meet the criteria.
2914 images (441 nodules) in the training and
validation set that met the criteria were selected. 585
images of 89 nodules (20%) were randomly selected
as the validation set, and the rest 2329 images of
352 nodules (80%) were used as the training set. In
the internal test set, 974 images of 222 nodules that
met the criteria were selected. Additionally, 563
images of 143 nodules that met the criteria were
selected in the external test set.
Model architecture
In this study, we used the Mask-RCNN18 network model
based on deep learning to train US images. This model
integrates the semantic segmentation task and target
detection task. It can locate thyroid nodules from US
images, draw the shape of nodules and diagnose them.
We first combined the residual network (ResNet) and
the feature pyramid network (FPN) as the backbone
network to extract features from the input image. Then,
the region proposal network (RPN)19 was used to
perform two classifications (foreground or background)
and bounding box (BB) regression on the extracted
features to generate the region of interest (ROI). Then,
the ROI was sent to the ROIAlign layer to reset the
feature map size to 7 × 7 pixels and 14 × 14 pixels.
Finally, a suggestion frame with classification and
probability and a mask for segmenting nodules were
generated (Fig. 3). The detailed network structure is
displayed in the Appendix Methods. The DL model code
is available at https://github.com/mubik77/DL-Model-to-
Assist-in-DiagnosingGrossETE.

Model training
We tried different combinations of ResNet with FPN as
a backbone for training and finally selected ResNet50 +
FPN. To reduce overfitting and increase the number and
diversity of training sets, we performed image
augmentation by random flipping, cropping (cropping
1/5 of image width and height), and adding noise
(Gaussian noise processing). The network was fine-
tuned to obtain better results and convergence using
weights learned in advance on the coco dataset. The
training was done in 70 epochs using the Adam opti-
mizer (initialized learning rate was set to 0.0001). The
www.thelancet.com Vol 58 April, 2023
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Characteristic Levels Training and validation set Internal test set External test set

Patient 349 199 116

Age, mean ± SD 44 ± 12 46 ± 12 45 ± 12

Gender (%) Female 275 (79) 149 (75) 80 (69)

Male 74 (21) 50 (25) 36 (31)

Multifocality (%) No 217 (62) 129 (65) 76 (66)

Yes 132 (38) 70 (35) 40 (34)

Bilaterality (%) No 258 (74) 141 (71) 91 (78)

Yes 91 (27) 58 (29) 25 (22)

Lymph node status (%) N0/Nx 190 (54) 101 (51) 62 (53)

N1 159 (46) 98 (49) 54 (47)

Thyroid nodule 441 222 143

Tumor size, mean ± SD, cm 1.39 ± 0.97 1.46 ± 0.92 1.44 ± 0.79

ETE (%) Absent 248 (56) 121 (55) 71 (50)

minimal 35 (8) 18 (8) 24 (17)

Gross 158 (36) 83 (37) 48 (34)

T status (%) T1 244 (55) 120 (54) 87 (61)

T2 33 (7) 18 (8) 8 (6)

T3a 6 (1) 1 (0) 0 (0.00)

T3b 102 (23) 50 (23) 37 (26)

T4 56 (13) 33 (15) 11 (8)

Contact of the nodule with the thyroid capsule (%) No contact 104 (24) 37 (17) 24 (17)

˂25% 31 (7) 17 (8) 19 (13)

≥25 to <50% 145 (33) 82 (37) 64 (45)

≥50% 162 (37) 86 (39) 36 (25)

Capsular disruption 168 (38) 100 (45) 29 (20)

Contour bulging 76 (17) 50 (23) 22 (15)

Replacement of strap muscle 76 (17) 50 (23) 29 (20)

Angle between tumor and trachea (%) No contact 306 (69) 144 (65) 93 (65)

Acute angle 89 (20) 51 (23) 33 (23)

Right angle 37 (8) 23 (10) 14 (10)

Obtuse angle 9 (2) 4 (2) 3 (2)

Contact of the nodule with the TEG (%) No contact 349 (79) 169 (76) 115 (80)

Abutting TEG 74 (17) 32 (14) 23 (16)

Protrusion into TEG 18 (4) 21 (9) 5 (4)

Abbreviations: ETE, Extra thyroidal extension; TEG, tracheoesophageal groove. Note: Contour bulging, Nodules with contour bulging with or without capsular disruption.

Table 1: Patient demographics and US features in the training and testing sets.
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specific training and filtering process of DL model is in
Appendix S4, Appendix Table S3 and Appendix
Figures S3 and S4.

Comparison of diagnostic performance between
model and radiologists
The predicted value for a nodule in the DL model was
calculated as the average of its predicted probabilities for
all images of that nodule. The diagnostic performance of
DL model was compared with that of the radiologists,
which included two senior radiologists [with profes-
sional experience of 25 years (Zhang C) and 20 years
(Zhu W), respectively] and two junior radiologists [(with
professional experience of six years (Zhang Y) and five
years (Huang X), respectively)]. The clinical history of
patient, preoperative US examination report, surgical
records, and pathological results were unannounced to
these radiologists. The radiologists were tasked to
www.thelancet.com Vol 58 April, 2023
diagnose nodules as gross ETE or no gross ETE ac-
cording to ultrasonic features and diagnostic experience.
The diagnosis of internal and external test sets was
carried out for two days. The diagnostic performance
between the DL model and radiologists was compared
by the area under the receiver operating characteristic
(ROC) curve (AUC), accuracy, sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), positive likelihood ratio, negative likelihood ra-
tio, and diagnostic odds ratio (Calculation formulas and
definitions are presented in Appendix S5.).

Construction of clinical model, clinical and DL
combined model, and compare them with DL
model
Based on the available information of clinical features,
univariate logistic regression was used to screen out
statistically significant features in the training and
5

www.thelancet.com/digital-health


Fig. 3: Illustration shows the deep learning (DL) neural network architecture. The data are fed into the backbone network consisting of
ResNet and FPN for feature extraction, and the extracted feature maps are fed into the regional proposal network (RPN) to generate regions of
interest (ROI). Then all the ROIs are reset by RoIAlign network, and finally the ROI are classified and regressed by the classification branch, and
the mask of the object is generated by the mask branch.

Fig. 2: Image processing and distribution. ROI, region of interest.
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validation set. Multivariable logistic regression analysis
was used to build a clinical model to diagnose the
presence of gross ETE in thyroid cancer. After that, the
clinical model and DL model were used to generate a
combined model by multivariable logistic regression
analysis. The internal test set and external test set were
used to compare the diagnostic performance of the
clinical model, the DL model, and the clinical + DL
combined model.

Visualization and auxiliary diagnosis function of DL
model
To make the model useful for assisting radiologists in
diagnosis, the diagnostic results of model were visual-
ized. Our DL model can locate the nodule automatically
in the US image and depict the extent of nodule with a
mask, allowing us to observe the location and shape of
nodule. To further interpret the DL model in a human-
readable form, we used the Gradient-weighted Class
Activation Mapping (Grad-CAM) technique to clarify the
focus of model.

Two weeks after the initial diagnosis, four radiolo-
gists used the DL model to make another diagnosis on
the internal and external test sets while remaining blind
to the clinical and pathological information of patients to
examine the potential benefits of DL model for treating
medical conditions.

Statistical analysis
In this study, the Shapiro–Wilk test was used to assess
the normality of data distribution. Measurements con-
forming to normal distribution were expressed as
mean ± standard deviation for comparison by indepen-
dent samples t-test, and those unconforming were
www.thelancet.com Vol 58 April, 2023
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expressed as median (quartiles) for comparison by
Mann–Whitney U test. Count data were expressed as
frequency (frequencies) for comparison by chi-square
test or Fisher exact test. AUC comparisons were car-
ried out via the Delong test. In contrast, the McNemar
test was used to compare the differences in sensitivity,
specificity, and accuracy between the diagnosis by the
DL model and the radiologists. Statistical significance
was set at P < 0.05. All analyses were performed using R
statistical software (version 3.6.3) and IBM SPSS Sta-
tistics (version 26). R software packages used in this
study included pROC, epiR, STAT.

Role of the funding source
The funders had no role in the design and conduct of
the study; collection, management, analysis, and inter-
pretation of the data; preparation, review, or approval of
the manuscript; and decision to submit the manuscript
for publication. Q. Qi, X. Huang, P. Xu, C. Zhang have
accessed the data, and had final responsibility for the
decision to submit it for publication.
Results
Demography of the participants
The internal data set was composed of 663 thyroid
nodules in 548 patients, of which 422 nodules in 335
patients (268 females and 67 males) were categorized
as the no gross ETE group. The average age of patients
in this group was 43 ± 11 years, and the average size
of nodules was 1.17 ± 0.84 cm. The remaining 241
nodules in 213 patients (156 females and 57 males)
were categorized as the gross ETE group. The average
age of patients in this group was 48 ± 13 years, and the
average size of nodules was 1.87 ± 0.97 cm. Addi-
tionally, the external data set was composed of 143
thyroid nodules in 116 patients, of which 95 nodules in
76 patients (50 females and 26 males) were categorized
as the no gross ETE group. The average age of patients
in this group was 43 ± 14 years, and the average size
of nodules was 1.15 ± 0.57. The remaining 48 nodules
in 40 patients (30 females and 10 males) were cate-
gorized as the gross ETE group. The average age of
patients in this group was 49 ± 9 years, and the
average size of nodules was 2.03 ± 0.86 cm (Appendix
Table S2). According to statistics, the age of patients,
whether there were multiple or bilateral thyroid cancer
nodules, the status of lymph nodes and the size of
nodules were significantly different between the no
gross ETE group and the gross ETE group (all
P < 0.05). The US features used in this investigation,
such as the contact between the nodule and the thyroid
capsule, the angle between the tumor and the trace,
and the contact between the nodule and the TEG, were
likewise significantly different between the no gross
ETE group and the gross ETE group (all P < 0.05)
(Appendix Table S2, Appendix Figure S2).
www.thelancet.com Vol 58 April, 2023
A total of 441 nodules’ US images (283 no gross ETE
nodules and 158 gross ETE nodules) were randomly
selected from the internal data set to be used as the
training and validation set. The remaining nodules in
the internal data set constitute the internal test set, with
222 nodules (including 139 of no gross ETE nodules and
83 of gross ETE nodules). There were 143 nodules in the
external test set (including 95 no gross ETE nodules and
48 gross ETE nodules). Comprehensive data are pre-
sented in Table 1.

Comparison of diagnostic performance between DL
model and radiologists
In the internal test set (Table 2), the DL model
demonstrated an accuracy of 0.87, a sensitivity of 0.80,
specificity of 0.92, PPV of 0.86, NPV of 0.88. The AUC
was 0.91 (95% CI: 0.87, 0.96) which was the highest in
comparison to that of the four radiologists involved in
this study (all P < 0.05). The AUC of senior radiologist 1
and senior radiologist 2 [0.78 (95% CI: 0.71, 0.85) vs.
0.76 (95% CI: 0.70, 0.83), P = 0.59] were significantly
higher (P < 0.05) than that of junior radiologist 1 and
junior radiologist 2 [(0.65 (95% CI: 0.58, 0.73) vs. (0.69
(95% CI: 0.62, 0.77), P = 0.044] (Fig. 4). The sensitivity
of DL model (0.80) was non-significantly different from
that of two seniors radiologists (0.65 and 0.65, respec-
tively) (P > 0.05), but significantly higher than that of
two junior radiologists (0.46 and 0.45, respectively)
(P < 0.05). Additionally, the specificity of DL model
(0.92) was non-significantly different from that of two
seniors radiologists (0.91 and 0.86, respectively) and two
junior radiologists (0.85 and 0.94, respectively)
(P > 0.05). Appendix Tables S4–S7 show the contrast P-
value of AUC, accuracy, sensitivity, and specificity.

In the external test set (Table 2), the DL model ob-
tained the highest AUC [0.88 (95% CI: 0.81, 0.94)] in the
external test set (Table 2), with an accuracy of 0.85,
sensitivity of 0.92, specificity of 0.81, PPV of 0.71, and
NPV of 0.95. While there was a non-significant differ-
ence between the AUC of DL model and that of senior
radiologists 1 [0.81 (95% CI: 0.72, 0.89); P = 0.152], a
significant difference in the AUC between the DL model
and senior radiologist 2 [0.75 (95% CI: 0.66, 0.84),
P = 0.008)] and two junior radiologists [0.72 (95% CI:
0.62, 0.81), P = 0.002; 0.67 (95 CI: 0.57, 0.77), P < 0.001]
(Fig. 4). Appendix Tables S8–S11 show the contrast P-
value of AUC, accuracy, sensitivity, and specificity.

Since the sensitivity of each radiologist to the DL
model was more variable than the specificity, we
compared the sensitivity of DL model with that of four
radiologists to diagnose the no ETE, minimal ETE,
T3B, and T4A nodules. Two test sets were combined to
create the data set (Table 3). The contrast demonstrated
that in non-ETE nodules, the sensitivity of DL model
was highest (0.95), and significantly higher than that of
senior radiologist 2 (0.89, P = 0.042) and junior radi-
ologist 1 (0.87, P = 0013). In minimal ETE nodules, the
7
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AUC (95% CI)† P value ACC† P value SEN† P value SPE† P value PPV NPV PL ratio NL ratio DOR

Internal testing set

DL Model 0.91 (0.87–0.96) 0.87 0.80 0.92 0.86 0.88 10.05 0.22 45.68

Senior radiologist 1 0.78 (0.71–0.85)* ˂0.001 0.82 0.116 0.65 0.06 0.91 1.000 0.82 0.81 7.54 0.38 19.84

Senior radiologist 2 0.76 (0.70–0.83)* ˂0.001 0.78* 0.019 0.65 0.071 0.86 0.176 0.74 0.81 4.76 0.40 11.90

Junior radiologist 1 0.65 (0.58–0.73)* ˂0.001 0.70* ˂0.001 0.46* ˂0.001 0.85 0.091 0.64 0.72 3.03 0.64 4.73

Junior radiologist 2 0.69 (0.62–0.77)* ˂0.001 0.76* 0.002 0.45* ˂0.001 0.94 0.634 0.82 0.74 7.75 0.59 13.14

Senior radiologist 1 + DL 0.82 (0.76–0.89)* 0.001 0.85 0.494 0.73 0.464 0.91 1.000 0.84 0.85 8.51 0.29 29.34

Senior radiologist 2 + DL 0.83 (0.77–0.89)* 0.001 0.84 0.344 0.78 1.000 0.87 0.239 0.78 0.87 6.05 0.25 24.20

Junior radiologist 1 + DL 0.83 (0.76–0.89)* ˂0.001 0.84 0.414 0.76 0.709 0.89 0.537 0.81 0.86 7.03 0.27 26.04

Junior radiologist 2 + DL 0.85 (0.79–0.91)* 0.003 0.86 0.888 0.78 1.000 0.91 1.000 0.84 0.88 9.07 0.24 37.79

External testing set

DL model 0.88 (0.81–0.94) 0.85 0.92 0.81 0.71 0.95 4.84 0.11 44.00

Senior radiologist 1 0.81 (0.72–0.89) 0.152 0.84 1.000 0.71* 0.019 0.91 0.097 0.79 0.86 7.48 0.32 23.38

Senior radiologist 2 0.75 (0.66–0.84)* 0.008 0.78 0.223 0.65* 0.003 0.85 0.561 0.69 0.83 4.38 0.42 10.43

Junior radiologist 1 0.72 (0.62–0.81)* 0.002 0.76 0.101 0.58* ˂0.001 0.85 0.561 0.67 0.80 3.96 0.49 8.08

Junior radiologist 2 0.67 (0.57–0.77)* ˂0.001 0.72* 0.015 0.52* ˂0.001 0.82 1.000 0.60 0.77 2.91 0.58 5.02

Senior radiologist 1 + DL 0.86 (0.79–0.93) 0.682 0.87 0.736 0.83 0.354 0.88 0.226 0.78 0.91 7.20 0.19 37.89

Senior radiologist 2 + DL 0.82 (0.74–0.90) 0.163 0.85 1.000 0.75 0.055 0.89 0.152 0.78 0.88 7.12 0.28 25.43

Junior radiologist 1 + DL 0.81 (0.73–0.89) 0.076 0.83 0.872 0.75 0.055 0.87 0.320 0.75 0.87 5.94 0.29 20.48

Junior radiologist 2 + DL 0.83 (0.75–0.91) 0.125 0.85 1.000 0.77 0.092 0.88 0.226 0.77 0.88 6.66 0.26 25.62

Abbreviations: DL, deep learning; AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; PL Ratio, Positive Likelihood Ratio;
NL Ratio, Negative Likelihood Ratio; DOR, diagnostic odds ratio. Note: † The differences between radiologists and DL model, and the differences among radiologists were compared, P values were
calculated. Detailed results are presented in Appendix Tables S4–S11; *P < 0.05, Significant difference with DL model.

Table 2: Performance comparison among DL model and radiologists.
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sensitivity of DL model was 0.60, which was non-
significantly different from that of the four radiolo-
gists (all P > 0.05). In T3B nodules, the sensitivity of DL
model was highest (0.89), significantly higher than that
Fig. 4: Diagnostic performance comparison among DL models and ra
model assistant senior radiologist; JR + DL, DL model assistant junior rad
of senior radiologist 2 (0.67, P = 0.001) and two junior
radiologists (0.52 and 0.52, respectively, with P < 0.05).
In T4 nodules, the sensitivity of DL model was highest
(0.75), which was significantly higher than that of two
diologists. SR, senior radiologist; JR, junior radiologist; SR + DL, DL
iologist.
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DL model Senior radiologist 1 Senior radiologist 2 Junior radiologist 1 Junior radiologist 2

No ETE 0.95 (182/192) 0.93 (179/192) 0.89 (170/192)* 0.87 (167/192)* 0.92 (176/192)

Min ETE 0.60 (25/42) 0.81 (34/42) 0.71 (/30/42) 0.76 (32/42) 0.79 (33/42)

T3b 0.89 (77/87) 0.70 (61/87) 0.67 (58/87)* 0.52 (45/87)* 0.52 (45/87)*

T4 0.75 (33/44) 0.61 (27/44) 0.61 (27/44) 0.48 (21/44)* 0.39 (17/44)*

Abbreviations: DL, deep learning. Note: *P < 0.05, significant difference with DL model. Detailed P values were presented in Appendix Table S12.

Table 3: Sensitivities of DL models and radiologists in diagnosis of thyroid carcinoma at different sites of invasion.

Articles
juniors radiologists (0.48 and 0.39, respectively, with
P < 0.05). (Detailed P values were presented in
Appendix Table S12).

In order to verify the performance of DL model in
various subgroups of clinical characteristics, we calcu-
lated various diagnostic indicators of DL model in
different age, sex, multiple, bilateral, tumor size and
lymph node status groups (Appendix Table S13). The
results showed that the AUCs of DL model in each
group had no statistical difference (all P > 0.05).

Comparison of diagnostic performance between DL
model and clinical model and clinical + DL
combined model
Univariate analysis showed that gender, age, lymph
node status, tumor size, multiple, bilateral, capsule
contact ratio, capsule echo state, angle between tumor
and trachea, contact of the node with the TEG were
significantly correlated with gross ETE (P < 0.05). In
multivariable logistic regression analysis, age, capsule
contact ratio, capsule echo state, angle between tumor
and trachea, and lymph node status were considered as
independent predictors of gross ETE. The results of
multivariable logistic regression analysis are shown in
Table 4.

In the internal test set, the AUC [0.84 (95% CI: 0.79,
0.89), P = 0.019], accuracy (0.76, P = 0.002) and speci-
ficity (0.68, P < 0.001) of the clinical model (Fig. 5) were
lower than those of the DL model, and the sensitivity
(0.89, P = 0.135) was not statistically different from the
DL model. In the external test set, the AUC [0.85 (95%
Risk factors OR (95% CI) P value

Age 1.055 (1.025–1.086) ＜0.001

Envelope contact ratio 1 (reference) 0.013

25%–50% 1.673 (0.361–7.754) 0.510

>50% 3.712 (1.654–8.332) 0.001

Envelope echo state 1 (reference) ＜0.001

Capsular disruption 0.102 (0.037–0.280) ＜0.001

Replacement of strap muscle 0.672 (0.255–1.772) 0.422

Contour bulging 1.826 (0.716–4.658) 0.208

Angle between tumor and trachea 2.581 (1.558–4.277) ＜0.001

Lymph node status 0.439 (0.237–0.811) 0.009

Table 4: Clinical risk factors for gross ETE.
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CI: 0.79, 0.91), P = 0.516], accuracy (0.75, P = 0.055),
sensitivity (0.92, P = 1) of the clinical model were not
significantly different from the DL model, and the
specificity (0.66, P = 0.032) was significantly lower than
the DL model (Table 5).

In the internal test set, the AUC [0.94 (95% CI: 0.91,
0.97), P = 0.143] and accuracy (0.84, P = 0.414) of the
clinical + DL model (Fig. 5) were not significantly
different from the DL model. The sensitivity (0.94,
P = 0.012) was higher than DL model, and the specificity
(0.78, P = 0.002) was lower than DL model. In the
external test set, the AUC [0.92 (95% CI: 0.87, 0.96),
P = 0.093], accuracy (0.87, P = 0.736), sensitivity (0.92,
P = 1), specificity (0.84, P = 0.702) of the clinical + DL
model were not significantly different from the DL
model (Table 5, Appendix Figure S6).

Visualization and auxiliary diagnosis function of DL
model
We have selected four representative cases to demon-
strate the visualization capabilities of DL model (Fig. 6).
The DL model can automatically locate the nodule in the
US image and depict the extent of nodule with a mask.
With the heat map drawn by Grad-CAM, we can observe
that the DL model focuses on the area where the nodule
is in contact with the adjacent structures of thyroid
gland.

The detailed changes in each diagnostic index of four
radiologists with the aid of DL model are shown in
Table 2. In the internal test set, except for senior radi-
ologist 1 (P = 0.061), the AUCs of remaining three ra-
diologists were significantly higher than the
corresponding previous values (P < 0.05). Additionally,
the AUC of all four radiologists in the external test set
improved significantly (P < 0.05). The senior radiolo-
gists improved by 0.06 on average and junior radiolo-
gists by 0.15 on average. The findings demonstrate that
the DL model helps radiologists positively increase their
capacity for diagnosis.

Discussion
In this study, a DL model was constructed. The DL
model was used to diagnose the presence of gross ETE
by mining and learning the ultrasonic features of thy-
roid cancer from ultrasonic images. The AUC of DL
model in the internal test set was 0.91, while the AUC in
9
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Fig. 5: Clinical model nomogram and clinical deep learning combined nomogram. Lymph, lymph node status; Angle, angle between tumor
and trachea; Capsule echo, capsule echo state; Ratio, capsule contact ratio; Age, patient’s age; DL, deep learning.
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the external test set was 0.88, indicating that the model
had an excellent ability to identify gross ETE. Further-
more, the mAP of this model was 0.78, indicating that it
had a strong capacity to locate and segment thyroid
cancer nodules automatically. In addition to diagnosis,
the model can depict the location and range of nodules,
thereby improving clinical interpretability. Our study is
the first to report on the deep-learning study to identify
the gross ETE in thyroid cancer based on US images
following the 8th edition of AJCC staging system.

Thyroid cancer has a cancer-related mortality rate of
less than 10%,20 with most thyroid cancer patients hav-
ing a good prognosis. Consequently, treatment recom-
mendations frequently promote individualized
treatment. Questions such as “should active surveillance
or surgery be performed?” or “how is the extent of
surgery determined?” need to be evaluated specifically
in the context of preoperative imaging, clinical
information, and intraoperative conditions. One of the
key factors to evaluate is the ETE range. Several studies
have shown that age, tumor size, multifocality, lymph
node metastasis, distant metastasis, recurrence rate, and
recurrence-free survival are non-significantly differ be-
tween patients with minimal ETE and no ETE, but differ
significantly between patients with T3b and T4 and
those with no ETE.3,20–24 Similar findings could be made
from the baseline patient information in this investiga-
tion. These findings imply that thyroid cancer with and
without gross ETE may have different clinical implica-
tions for patients.

The commonly used target detection frameworks
include two methods. The first type is single-stage de-
tector such as U-NET, SSD.25 The second type is two-
stage detector such as Fast R–CNN26 and FPN. Among
them, FPN can take into account both deep and shallow
features by using top-down paths and horizontal
www.thelancet.com Vol 58 April, 2023
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AUC (95%CI) P value ACC P value SEN P value SPE P value PPV NPV PL ratio NL ratio DOR

Internal testing set

DL model 0.91 (0.87–0.96) 0.87 0.80 0.92 0.86 0.88 10.05 0.22 45.68

Clinical model 0.84 (0.79–0.89)* 0.019 0.76* 0.002 0.89 0.135 0.68* ˂0.001 0.37 0.62 2.75 0.16 17.19

Clinical + DL model 0.94 (0.91–0.97) 0.143 0.84 0.414 0.94* 0.012 0.78* 0.002 0.72 0.96 4.35 0.08 54.38

External testing set

DL model 0.88 (0.81–0.94) 0.85 0.92 0.81 0.71 0.95 4.84 0.11 44.00

Clinical model 0.85 (0.79–0.91) 0.516 0.75 0.055 0.92 1 0.66* 0.032 0.58 0.94 2.72 0.13 20.92

Clinical + DL model 0.92 (0.87–0.96) 0.093 0.87 0.736 0.92 1 0.84 0.702 0.75 0.95 5.81 0.10 58.1

Abbreviations: DL, deep learning; AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity; PPV, positive predictive value; NPV, negative predictive value; PL Ratio, Positive Likelihood Ratio;
NL Ratio, Negative Likelihood Ratio; DOR, diagnostic odds ratio. Note: *P < 0.05, significant difference with DL model.

Table 5: Performance comparison among DL model, clinical model, clinical + DL model.

Fig. 6: Visualization and focus of the DL model and the guidance to radiologists. ETE, extrathyroidal extension; DL, deep learning model; SR,
senior radiologist; JR, junior radiologist. Inside, no gross ETE nodule; in advance, gross ETE nodule. In four sets of representative cases, the first
picture of each set is the US picture of thyroid nodule (TN), the second is the diagnostic effect picture of DL model, and the third is the heat map of
the nodule and peri-tumor. A: the heat map highlights the area where the TN is in contact with the surrounding capsule; B: the heat map highlights
the area where the TN is in contact with the anterior capsule; C: the heat map highlights the area where the TN is in contact with the trachea and
nerve; D: the heat map highlights the area where the TN is in contact with the trachea and tracheoesophageal groove.

Articles
connections, and generate a feature pyramid with strong
semantic information at all scales. In the detection task,
it is very important to use the multi-scale features to
improve the performance. Mask R–CNN is a successful
instance segmentation framework based on FPN. Since
nodule areas always have different shapes, we use Mask
R–CNN to visualize them to obtain more accurate and
visual diagnosis. Through comparison, we finally chose
ResNet50 combined with FPN as the backbone of Mask
R–CNN. As a classic and excellent deep learning
network, ResNet50 has been applied to many medical
image analysis scenarios. For example, in the studies of
Peng et al.14 and Wang et al.,9 ResNet50 was used to
design excellent models to identify benign and malig-
nant thyroid nodules. In addition to enhancing the
diagnostic performance of model for the internal testing
www.thelancet.com Vol 58 April, 2023
set, ResNet50 enables the model to continue to function
consistently in the external testing set.

All four radiologists in this study demonstrated high
specificity and low sensitivity in their diagnosis of gross
ETE. When sensitivity was compared between the four
radiologists and the DL Model, we discovered that the
DL Model was more sensitive than most radiologists in
no ETE, T3b, and T4a, particularly in T3b, and T4. Gross
ETE occurs most often in the strap muscles and RLN,
which is difficult for image-based diagnosis.27–29 In the
study by Chung et al.,5 the sensitivity of radiologists to
T3b was 0.45, while in the study by Newman et al.,30

imaging made correct cues in only a quarter of the pa-
tients who invaded the RLN. In the internal dataset of
this study, 71.8% of the gross ETE had an invasion of
the strap muscle, of which only 46.8% of the nodules
11
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had an US presentation typical of the replacement of
strap muscle. Additionally, 34.4% of the gross ETE
invaded the RLN, but only 40.9% of the nodules had an
US image akin to protrusion into tracheoesophageal
groove. The differences between the two are particularly
challenging to distinguish because of the proximity of
the strap muscles to the soft tissues of thyroid gland.
Similarly, the proximity of thyroid to the trache-
oesophageal groove and trachea makes it difficult for the
doctor to determine whether the nodule has broken
through the thyroid envelope and invaded the nerve or
trachea. Moreover, cases of variation in the location of
recurrent laryngeal nerve are common. In a study by
Newman et al.,30 3.3% of nodules that invaded the
recurrent laryngeal nerve were located in areas far from
the trachea.

In the internal test set of this study, the diagnostic
performance of DL model (AUC of 0.91) was signifi-
cantly higher than that of the two senior radiologists
(AUC of 0.78 and 0.76, respectively). In the external test
set, the diagnostic performance of DL model (AUC of
0.88) was also higher than that of the two senior radi-
ologists (AUC of 0.81 and 0.75). However, there was no
significant difference compared with senior radiologist
1. The DL model outperformed the two junior radiolo-
gists in both test sets, and their diagnostic performance
significantly improved to as good as that of the senior
radiologists when they applied the DL model. The AUC
of the clinical + DL model in the internal test set was
0.94, and that in the external test set was 0.92. Although
its diagnostic performance was improved compared
with DL model, the improvement was not significant (all
P > 0.05). Therefore, on the premise that the diagnosis
performance is equivalent, only using DL model can
simplify the diagnosis process. In terms of visualization
capacity, the DL model proposed in this study can
automatically locate the nodules and outline the
boundaries of nodules, allowing for visualization of the
nodule size. Additionally, Grad-CAM further reveals the
visualized response area for the model decision. The
visualized examples demonstrate that our DL model not
only focuses on the thyroid nodule but also on the
contact site between the nodule and the surrounding
thyroid tissues. The demonstration also indicates that
the model is powerful for the flexible recognition of
image features, suggesting the potential application of
DL model proposed in this study as a tool for junior
training radiologists.

However, this study still has several shortcomings
that will need to be addressed in the future. First,
although we captured several photos from different US
sections for each node, missing image features could
still occur as this study employed static US images and
was conducted retrospectively. At the same time, due to
the low incidence rate of gross ETE, we extended the
recruitment time of gross ETE patients in consideration
of the need for data balance during model training,
which may cause selection bias. Secondly, although this
study includes external test sets from three centers, they
are from one province. Therefore, the popularization of
DL model needs to be tested in more centers and large
data sets and further improved. In this study, the
number of radiologists participating in the comparison
is small, which will also lead to selection bias and cannot
represent the average level of radiologists. So we also
anticipate applying our model to actual clinical circum-
stances to validate our approach clinically. However, this
approach requires special approval from the relevant
authorities, which is difficult to obtain in a short period.
We will actively pursue this in our future work.

In conclusion, we constructed an US image-based
DL model that can determine the presence of gross
ETE in thyroid cancer with a diagnostic performance
equal or even exceeding that of senior radiologists. The
model offers an efficient method for the preoperative
diagnosis of gross ETE thyroid cancer.
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