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Current statistical inference methods for task-fMRI suffer from two fundamental limitations. First, the focus is 

solely on detection of non-zero signal or signal change, a problem that is exacerbated for large scale studies 

(e.g. UK Biobank, 𝑁 = 40 , 000+ ) where the ‘null hypothesis fallacy’ causes even trivial effects to be determined 

as significant. Second, for any sample size, widely used cluster inference methods only indicate regions where 

a null hypothesis can be rejected, without providing any notion of spatial uncertainty about the activation. In 

this work, we address these issues by developing spatial Confidence Sets (CSs) on clusters found in thresholded 

Cohen’s 𝑑 effect size images. We produce an upper and lower CS to make confidence statements about brain 

regions where Cohen’s 𝑑 effect sizes have exceeded and fallen short of a non-zero threshold, respectively. The 

CSs convey information about the magnitude and reliability of effect sizes that is usually given separately in a 

𝑡 -statistic and effect estimate map. We expand the theory developed in our previous work on CSs for %BOLD 

change effect maps ( Bowring et al., 2019 ) using recent results from the bootstrapping literature. By assessing 

the empirical coverage with 2D and 3D Monte Carlo simulations resembling fMRI data, we find our method is 

accurate in sample sizes as low as 𝑁 = 60 . We compute Cohen’s 𝑑 CSs for the Human Connectome Project working 

memory task-fMRI data, illustrating the brain regions with a reliable Cohen’s 𝑑 response for a given threshold. 

By comparing the CSs with results obtained from a traditional statistical voxelwise inference, we highlight the 

improvement in activation localization that can be gained with the Confidence Sets. 
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. Introduction 

Online dating has transformed the love-seeking game forever.

hereas romantic partners would historically first encounter each other

ace-to-face, brought together by a mutual friend or family member, in

ecent times these rituals of connection have been largely replaced by so-

ial networks and matchmaking websites ( Rosenfeld et al., 2019 ). While

t was perhaps inevitable that technologies of the Digital Age would take

 hold on our pursuit to find a partner, what may be more surprising

s the influence the internet has had on the final outcomes of a mar-

iage itself. In an investigation analyzing survey data from over 19,000

arried American respondents, it was reported that virtual dating av-

nues may have helped to improve the prospects of finding a long and

appy relationship ( Cacioppo et al., 2013 ). With overwhelming statisti-

al evidence, the results of this study found that spouses who had met

heir partner online were more likely to be satisfied with their marriage

 𝑝 < 0 . 001 ) and less likely to divorce ( 𝑝 < 0 . 002 ). 
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Under closer inspection, however, these results are not all that they

ay seem. After this research was published, it was pointed out that

he actual sizes of the observed effects were tiny ( Nuzzo, 2013; 2014 ).

pecifically, although the data had shown higher levels of marriage hap-

iness for couples who met online compared to offline, the difference

n means was from 5.5 to 5.6 on a 7-point scale; in terms of divorce

ates, the deviation between groups worked out as one more break-up

or every 100 marriages. 

In this case study, the outcomes of the experiment were misconstrued

ue to an infamous pitfall with statistical testing known as the ‘fallacy of

he null hypothesis’ ( Rozeboom, 1960 ). The problem stems from the fact

hat statistical models conventionally assume mean-zero noise and that,

nder the null hypothesis, no signal is present. In practice, these assump-

ions are never completely upheld: all sources of noise will never com-

letely cancel, and there will always be some (non-zero) signal every-

here. Consequentially, the smallest of effects will always become sta-

istically significant given a sufficiently large sample size ( Meehl, 1967 ),
ation and Discovery, Nuffield Department of Population Health, University of 
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ven if they have little practical value or are unlikely to be replicable

cross repeated analyses ( Button et al., 2013 ). 

This issue has become topical within the functional magnetic reso-

ance imaging (fMRI) community due to the arrival of population-scale

euroimaging datasets. While fMRI has traditionally been a ‘small 𝑁 ’ en-

erprise, with typical sample sizes of 20 to 30 subjects ( Poldrack et al.,

017 ), datasets such as the Human Connectome Project (HCP, 𝑁 =
200 ) and UK Biobank ( 𝑁 = 40 , 000+ ) are now giving researchers the

pportunity to analyze data acquired from tens of thousands of partic-

pants. These projects promise to transform our understanding of brain

unction, and are already yielding rich results ( Miller et al., 2016; Van

ssen and Glasser, 2016 ). However, in this setting the standard stas-

ical thresholding approach to functional brain data analysis has be-

ome obsolete: with ample power to detect all effects, statistical analysis

f high quality fMRI data has been shown to lead to almost universal

rain activation, even when stringent thresholding methods are applied

 Gonzalez-Castillo et al., 2012 ). 

In a more general analysis context, there are still a number of limi-

ations with traditional fMRI inference techniques. Currently, the most

opular method for overcoming the multiple comparisons problem is to

hreshold the statistical results with cluster-extent based thresholding

 Carp, 2012 ), involving a two-step procedure: first a primary voxelwise

hreshold is applied to the statistic map, usually in correspondence with

n uncorrected significance level (e.g. 𝛼 = 0 . 001 ), creating clusters of

oxels whose statistic values have all surpassed the threshold. Then,

n order to control the family-wise error (FWE) rate, a cluster-extent

hreshold 𝑘 is determined based on the distribution of cluster sizes ob-

ained under the null-hypothesis of no activation, and the final results

re computed as all suprathreshold clusters with a spatial extent larger

han 𝑘 . 

As the FWE-corrected 𝑝 -value is determined by cluster size, one of

he main drawbacks of this procedure is that the significance of specific

oxels can not be determined, and the most we can assert is that acti-

ation has occured somewhere inside a given cluster ( Woo et al., 2014 ).

t is therefore impossible to pinpoint the precise source of the activa-

ion when a cluster covers multiple anatomical regions, and the spatial

pecificity of the inference diminishes the larger a cluster becomes. An-

ther problem with this approach is that no information is provided in

egards to the spatial variation of significant clusters. For instance, if

 single fMRI study was repeated many times using different groups of

articipants, there would be variation in the sizes and shapes of the final

ctivation clusters, yet current statistical results have no way to convey

his variability. 

In our previous work ( Bowring et al., 2019 , ( BTSN )), we helped

o address these issues by developing Confidence Sets (CSs) for infer-

nce on %BOLD change effect size maps. Unlike traditional hypothe-

is testing methods, where inference is only provided in terms of the

resence of an effect, the CSs made simultaneous confidence statements

bout the precise brain regions where raw effect sizes had exceeded, and

allen short of, a non-zero %BOLD threshold. Here, we set out to adapt

he CSs for application to standardized Cohen’s 𝑑 maps (i.e. %BOLD

hange divided by population standard deviation) that are more com-

only used to provide effect size estimates complementing the statis-

ical results obtained from an fMRI one-sample 𝑡 -test. For a cluster-

orming threshold c and a predetermined confidence level 1 − 𝛼, the

ohen’s 𝑑 CSs comprise of two sets: the upper CS (denoted ̂ 

+ 
𝑐 
), con-

aining all voxels declared to have a true Cohen’s 𝑑 effect size greater

han 𝑐; and the lower CS ( ̂ 

− 
𝑐 
), for which all voxels outside this set are

eclared to have a true Cohen’s 𝑑 effect size less than 𝑐. The upper CS

s smaller and nested inside the lower CS, and the assertion is made

ith (1 − 𝛼)100 % confidence holding simultaneously for both regions.

ig. 1 provides a visual schematic of the CSs, with the upper and lower

Ss presented in red and blue respectively. Note that 𝑡 -tests, or any test

tatistics, are not suitable for building CSs, as they do not estimate a

opulation quantity and become arbitrarily large for increasing sample

izes. 
s
The statistical characteristics of Cohen’s 𝑑 effect size maps are fun-

amentally different to the raw %BOLD images that motivated the CSs

n our previous work. Our main contributions with this effort are modi-

cations to the methods used in BTSN to create procedures for obtaining

ohen’s 𝑑 CSs on fMRI data with desirable finite-sample performance.

n particular, we apply recent results from the bootstrapping literature

nd a variance-stabilizing transformation method to ultimately propose

hree separate algorithms for computing Cohen’s 𝑑 CSs. The first algo-

ithm is motivated by asymptotic properties of the Cohen’s 𝑑 sampling

istribution, and provides a framework for the two remaining methods

hich employ further adjustments to optimize the finite-sample per-

ormance of the CSs. We assess the performance of all three methods

n a range of simulated synthetic 2D and 3D signals representative of

MRI clusters, and find that the two latter procedures are effective even

hen the sample size is modest ( 𝑁 = 60 ). Finally, we apply the three

rocedures to Human Connectome Project working memory task data,

perating on Cohen’s 𝑑 effect maps, where we obtain CSs for a variety

f cluster forming thresholds. By comparing the CSs with results ob-

ained from a traditional statistical voxelwise inference, we highlight

he improvement in activation localization that can be provided with

he Confidence Sets. 

The remainder of this manuscript is organized as follows: first, we

escribe the problem of obtaining Confidence Sets for Cohen’s 𝑑 images,

xemplifying the key differences which distinguish Cohen’s 𝑑 from the

BOLD effect size. We then derive properties of the Cohen’s 𝑑 estima-

or, before adapting the methods developed in BTSN to propose three

eparate algorithms to compute Cohen’s 𝑑 CSs. We assess the empirical

overage performance of each of these methods on 2D and 3D Monte

arlo simulations, and finally, present the CSs obtained from applying

ach algorithm to Human Connectome Project working memory task-

MRI dataset. 

. Theory 

.1. From % BOLD to Cohen’s d 

For a compact domain 𝑆 ⊂ ℝ 

𝐷 , e.g. 𝐷 = 3 , for 𝑖 = 1 , … , 𝑁 consider

he one-sample model at location 𝒔 ∈ 𝑆, 

 𝑖 ( 𝒔 ) = 𝜇( 𝒔 ) + 𝜖𝑖 ( 𝒔 ) , (1)

here 𝑌 1 ( 𝒔 ) , … , 𝑌 𝑁 

( 𝒔 ) are the observations at 𝒔 , 𝜇( 𝒔 ) is the true underly-

ng mean intensity across the observations, and 𝜖1 ( 𝒔 ) , … , 𝜖𝑁 

( 𝒔 ) are i.i.d.

ean-zero errors with common variance 𝜎2 ( 𝒔 ) and some unspecified

patial correlation. We are motivated by the setting of a group-level

ask-fMRI analysis, where 𝜇( 𝒔 ) represents the true mean %BOLD change

cross the group, and each observation 𝑌 𝑖 ( 𝒔 ) is the %BOLD response esti-

ate map obtained by applying a first-level model to the 𝑖 th participant’s

unctional data. (Note, while we focus on the one-sample model here,

he method may also generalize for application to the general linear

odel 𝒀 ( 𝒔 ) = 𝑿 𝜷( 𝒔 ) + 𝝐( 𝒔 ) . See the end of Section 5.1 for more details.)

We wish to make inference on the Cohen’s 𝑑 effect size, defined as the

rue mean %BOLD change divided by the population standard deviation,

( 𝒔 ) = 

𝜇( 𝒔 ) 
𝜎( 𝒔 ) 

. (2)

pecifically, we are interested in the brain regions where 𝑑( 𝒔 ) has ex-

eeded, and fallen short of, a fixed threshold 𝑐, indicated by the noise-

ree, population cluster defined as: 

 𝑐 = { 𝒔 ∈ 𝑆 ∶ 𝑑( 𝒔 ) ≥ 𝑐} . (3)

Since  𝑐 is unknown, we pursue a method for constructing pairs of

patial CSs: an upper set ̂ 

+ 
𝑐 

and a lower set ̂ 

− 
𝑐 
, that we are confident

urround the true excursion set  𝑐 (i.e. ̂ 

+ 
𝑐 

⊂  𝑐 ⊂ ̂ 

− 
𝑐 
) for a desired

onfidence level of, for example, 1 − 𝛼 = 95% . Such a method lets us as-

ert with 95% confidence that all voxels contained in the upper CS ̂ 

+ 

𝑐 
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Fig. 1. Schematic of the color-coded regions we will 

use to visually represent the Confidence Sets (CSs) and 

point estimate set. The upper and lower CSs are pre- 

sented in red and blue (overlapped by yellow and red) 

respectively. The yellow set (overlapped by red), ̂ 𝑐 , 

is the point estimate set, the best guess from the data 

of voxels that have a Cohen’s 𝑑 effect size greater than 

the threshold 𝑐 = 0 . 5 . 
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ave a Cohen’s 𝑑 effect size greater than, for example, 𝑐 = 0 . 8 , and si-

ultaneously, we are 95% confident all voxels outside the lower CS ̂ 

− 
𝑐 

ave a Cohen’s 𝑑 effect size less than 0.8. Here, we emphasize the classic

requentist connotation of the term ‘confidence’; letting 𝜕 𝑐 denote the

oundary of  𝑐 , then precisely, there is a probability of 1 − 𝛼 that the

egion ̂ 

− 
𝑐 

∩ ( ̂ 

+ 
𝑐 
) 𝑐 computed from a future experiment fully encom-

asses the true set boundary 𝜕 𝑐 . In this sense, the set difference of the

pper and lower CS, ̂ 

− 
𝑐 

∩ ( ̂ 

+ 
𝑐 
) 𝑐 , is similar to a standard confidence

nterval. 

In BTSN , we adapted the mathematical theory first proposed in

ommerfeld et al. (2018) ( SSS ) to obtain CSs for inference on the mean

BOLD change effect 𝜇( 𝒔 ) . Let 𝑌 ( 𝒔 ) = 

1 
𝑁 

∑𝑁 

𝑖 =1 𝑌 𝑖 ( 𝒔 ) , the sample mean

BOLD change. Then subject to continuity of the relevant fields and

ome basic conditions on the error terms 𝜖𝑖 ( 𝒔 ) , for the excursion set  𝑐,𝜇

f voxels with a true %BOLD effect size greater than 𝑐, 

 𝑐,𝜇 = { 𝒔 ∈ 𝑆 ∶ 𝜇( 𝒔 ) ≥ 𝑐} , (4)

e showed that for a critical constant 𝑘, the upper and lower CSs con-

tructed as 

̂
 

+ 
𝑐,𝜇

∶= 

{ 

𝐬 ∶ 𝑌 ( 𝐬 ) ≥ 𝑐 + 

𝑘 √
𝑁 

𝜎̂( 𝐬 ) 
} 

, ̂ 

− 
𝑐,𝜇

∶= 

{ 

𝐬 ∶ 𝑌 ( 𝐬 ) ≥ 𝑐 − 

𝑘 √
𝑁 

𝜎̂( 𝐬 ) 
} 

(5)

ive asymptotic nominal coverage for enveloping the true  𝑐,𝜇 in terms

f the mean %BOLD change effect size. Further to this, we proposed

 Wild 𝑡 -Bootstrap method for determining the critical value 𝑘, and

emonstrated that on applying this method the CSs were also valid for

ata with smaller sample sizes. 

We now seek to develop a similar methodology for the Cohen’s 𝑑

ffect size. However, the statistical properties of the Cohen’s 𝑑 estima-

or 𝑑 ( 𝒔 ) = 

𝑌 ( 𝒔 ) 
𝜎̂( 𝒔 ) are considerably different to the sample mean 𝑌 ( 𝒔 ) . To

rovide a visual intuition of this in the case of Gaussian data, in Fig. 2

e display images of both of these fields from a 2D simulation over a

quare region 𝑆 = 100 × 100 . For 𝑁 = 60 subjects, we simulated a toy

un of the signal-plus-noise model in (1) where the true underlying sig-

al 𝜇( 𝒔 ) was a linear ramp effect increasing from a magnitude of 0 to 10

n the 𝑥 -direction while remaining constant in the 𝑦 -direction ( Fig. 2 (a)).

o the signal we added subject-specific Gaussian noise 𝜖𝑖 ( 𝒔 ) , smoothed

ith a 3 voxel FWHM Gaussian kernel and then re-normalized to have a

patially constant standard deviation of 𝜎( 𝒔 ) = 1. Notably, in this setup

he true Cohen’s 𝑑 field 𝑑( 𝒔 ) was identical to 𝜇( 𝒔 ) . 
In Fig. 2 (b) and (c) we show the sample mean and sample Cohen’s 𝑑

elds from this simulation. While the sample mean image is uniformly

mooth across the space, the Cohen’s 𝑑 field becomes more speckled,

.e. more variable, for increasing true 𝑑( 𝒔 ) . In the following sections we

ill show that the sample Cohen’s 𝑑 is a biased estimator of the true

nderlying effect size, and that the sample variance of Cohen’s 𝑑 changes

ystematically with 𝑑( 𝒔 ) , before proposing our theoretical adjustments

o the methods presented in BTSN to obtain CSs for Cohen’s 𝑑 effect size

mages. 
.2. Limiting properties of the Cohen’s d estimator 

Motivated by the example in Fig. 2 , we now consider the one-

ample model given in (1) with the additional assumption that the er-

or fields are Gaussian. In this case, the data are i.i.d. 𝑌 1 ( 𝒔 ) , … , 𝑌 𝑁 

( 𝒔 ) ∼
 ( 𝜇( 𝒔 ) , 𝜎2 ( 𝒔 )) and the error terms 𝜖1 ( 𝒔 ) , … , 𝜖𝑁 

( 𝒔 ) are i.i.d. from a mean

ero Gaussian random field 𝜖( 𝒔 ) such that for all 𝒔 , 𝒕 ∈ 𝑆, 

ov [ 𝜖( 𝒔 ) , 𝜖( 𝒕 )] = 𝜎( 𝒔 ) 𝜎( 𝒕 ) 𝜌( 𝒔 , 𝒕 ) , (6)

here 𝜌( 𝒔 , 𝒕 ) denotes the population correlation coefficient between

oints 𝒔 and 𝒕 in the error field. The sample mean and sample variance

or this model are defined as 

̄
 ( 𝒔 ) = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑌 𝑖 ( 𝒔 ) , 𝜎̂2 ( 𝒔 ) = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

(
𝑌 𝑖 ( 𝒔 ) − 𝑌 ( 𝒔 ) 

)
2 , (7)

espectively. 

We wish to understand the limiting structure of the Cohen’s 𝑑 es-

imator 𝑑 ( 𝒔 ) = 

𝑌 ( 𝒔 ) 
𝜎̂( 𝒔 ) . Applying the multivariate central limit theorem to

he sample moments at 𝒔 and 𝒕 yields the asymptotic joint distribution:

𝑁 

((
𝑌 ( 𝒔 ) , ̂𝜎2 ( 𝒔 ) , 𝑌 ( 𝒕 ) , ̂𝜎2 ( 𝒕 ) 

)
− 

(
𝜇( 𝒔 ) , 𝜎2 ( 𝒔 ) , 𝜇( 𝒕 ) , 𝜎2 ( 𝒕 ) 

))  
→  

(
0 , Σ( 𝒔 , 𝒕 ) 

)
.

(8) 

here the covariance matrix Σ( 𝒔 , 𝒕 ) is given by 

( 𝒔 , 𝒕 ) = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
𝜎2 ( 𝒔 ) 0 𝜎( 𝒔 ) 𝜎( 𝒕 ) 𝜌( 𝒔 , 𝒕 ) 0 
0 2 𝜎4 ( 𝒔 ) 0 2 𝜎2 ( 𝒔 ) 𝜎( 𝒕 ) 2 𝜌2 ( 𝒔 , 𝒕 ) 

𝜎( 𝒔 ) 𝜎( 𝒕 ) 𝜌( 𝒔 , 𝒕 ) 0 𝜎2 ( 𝒕 ) 0 
0 2 𝜎2 ( 𝒔 ) 𝜎2 ( 𝒕 ) 𝜌2 ( 𝒔 , 𝒕 ) 0 2 𝜎4 ( 𝒕 ) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 
.

(9) 

or the function 𝑔( 𝑥 1 , 𝑦 1 , 𝑥 2 , 𝑦 2 ) = 

(
𝑥 1 √
𝑦 1 

, 
𝑥 2 √
𝑦 2 

)
, application of the delta

ethod yields 

𝑁 

((
𝑑 ( 𝒔 ) , 𝑑 ( 𝒕 ) 

)
− 

(
𝑑( 𝒔 ) , 𝑑( 𝒕 ) 

))  
→  

(
0 , Σ∗ ( 𝒔 , 𝒕 ) 

)
, (10)

here 

∗ ( 𝒔 , 𝒕 ) = 

( 

1 + 

𝑑 2 ( 𝒔 ) 
2 

𝜌( 𝒔 , 𝒕 ) + 𝜌2 ( 𝒔 , 𝒕 ) 𝑑 ( 𝒔 ) 𝑑 ( 𝒕 ) 
2 

𝜌( 𝒔 , 𝒕 ) + 𝜌2 ( 𝒔 , 𝒕 ) 𝑑 ( 𝒔 ) 𝑑 ( 𝒕 ) 
2 

1 + 

𝑑 2 ( 𝒕 ) 
2 

) 

. (11)

Therefore, the limiting field of the Cohen’s 𝑑 estimator 𝑑 ( 𝒔 ) is asymp-

otically normal with asymptotic variance 1 + 

𝑑 2 ( 𝒔 ) 
2 . As alluded to in the

revious section, it is notable that unlike the sample mean, the asymp-

otic variance and spatial correlation of the Cohen’s 𝑑 estimator are de-

endent on the underlying true effect size. In the upcoming section, we

ill use these properties to motivate a construction for Cohen’s 𝑑 Con-

dence Sets. 
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Fig. 2. Visualizing the differences between the sample 

mean and sample Cohen’s 𝑑 field. For 𝑁 = 60 subjects, 

we simulated a signal-plus-noise model where the true 

underlying mean signal 𝜇( 𝒔 ) was a linear ramp increas- 

ing from 0 to 10 across the region (a). To each subject 

we added Gaussian noise with a homogeneous vari- 

ance, so that the true Cohen’s 𝑑 effect 𝑑( 𝒔 ) was equal 

to the group mean signal 𝜇( 𝒔 ) . While the sample mean 

image 𝑌 ( 𝒔 ) is uniformly smooth across the region (b), 

the sample Cohen’s 𝑑 field 𝑑 ( 𝒔 ) becomes rougher from 

left to right (c). 
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.3. Confidence Sets for Cohen’s d effect size images 

Once again, consider the model outlined at the start of Section 2.1 .

or clarity, we reiterate that the spatial CSs for the raw %BOLD change

eld 𝜇( 𝒔 ) of focus in our previous work took the form of (5) , where 𝑘

as determined via a Wild 𝑡 -Bootstrap procedure. This construction of

he CSs was motivated by the limiting properties of the field 

( 𝒔 ) = 

√
𝑁 ⋅

𝑌 ( 𝒔 ) − 𝜇( 𝒔 ) 
𝜎̂( 𝒔 ) 

. (12)

n particular, letting 𝜕 𝑐,𝜇 denote the boundary of  𝑐,𝜇 defined in (4) ,

hen for a neighbourhood 𝑈 of 𝜕 𝑐,𝜇, it is assumed in SSS that 𝑀( 𝒔 )
onverges weakly to a smooth Gaussian field 𝐺( 𝒔 ) on 𝑈 with mean zero,

nit variance, and with the same (unknown) spatial correlation as each

f the 𝜖𝑖 . 

In the previous section, for the Gaussian one-sample model we de-

ived the convergence in distribution of the function 

( 𝒔 ) = 

√
𝑁 ⋅

𝑑 ( 𝒔 ) − 𝑑( 𝒔 ) √ 

1 + 

𝑑 2 ( 𝒔 ) 
2 

(13)

o a Gaussian field  ( 𝒔 ) with mean zero, unit variance, and covariance

tructure 

ov [  ( 𝒔 ) ,  ( 𝒕 )] = 

𝜌( 𝒔 , 𝒕 ) + 𝜌( 𝒔 , 𝒕 ) 2 𝑑 ( 𝒔 ) 𝑑 ( 𝒕 ) 2 √ (
1 + 

𝑑( 𝒔 ) 2 
2 

)(
1 + 

𝑑( 𝒕 ) 2 
2 

) . (14)
This suggests a natural analog to the construction of CSs in (5) for

he Cohen’s 𝑑 effect size given by 

̂
 

+ 
𝑐,𝑑 

∶= 
⎧ ⎪ ⎨ ⎪ ⎩ 𝐬 ∶ 𝑑 ( 𝐬 ) ≥ 𝑐 + 

𝑘 √
𝑁 

√ 

1 + 𝑑 
2 ( 𝐬 ) 
2 

⎫ ⎪ ⎬ ⎪ ⎭ , ̂ 

− 
𝑐,𝑑 

∶= 
⎧ ⎪ ⎨ ⎪ ⎩ 𝐬 ∶ 𝑑 ( 𝐬 ) ≥ 𝑐 − 

𝑘 √
𝑁 

√ 

1 + 𝑑 
2 ( 𝐬 ) 
2 

⎫ ⎪ ⎬ ⎪ ⎭ . 
(15) 

Ideally, we wish to apply the same Wild 𝑡 -Bootstrap procedure de-

cribed in Section 2.2 of BTSN to approximate the limiting field  in or-

er to determine 𝑘 . However, we will now show that such an approach

s not viable for Cohen’s 𝑑, before proposing a modified procedure to

olve the problem. Going forward our focus will primarily be on the

ohen’s 𝑑 effect size, and thus for brevity, we will drop the subscript

rom our notation and refer to the Cohen’s 𝑑 CSs above as ̂ 

+ 
𝑐 

and ̂ 

− 
𝑐 

espectively. 

.4. Modified residuals for the Cohen’s d wild t -bootstrap 

In SSS , it was shown that the limiting coverage of the CSs for the

BOLD effect size 𝜇( 𝒔 ) is governed by the maximum distribution of the

imiting Gaussian field 𝐺( 𝒔 ) on the boundary 𝜕 𝑐,𝜇, such that 

lim 

 →∞
𝑃 

[̂ 

+ 
𝑐,𝜇

⊂  𝑐,𝜇 ⊂ ̂ 

− 
𝑐,𝜇

]
= 𝑃 

[ 
𝑠𝑢𝑝 

𝐬 ∈𝜕 𝑐,𝜇

|𝐺 ( 𝐬 ) | ≤ 𝑘 

] 
. (16)

Since the limiting Gaussian field 𝐺( 𝒔 ) is unknown, in BTSN we imple-

ented a Wild 𝑡 -Bootstrap procedure to approximate 𝐺( 𝒔 ) on the bound-

ry 𝜕 𝑐,𝜇 . Defining the standardized residuals, 

𝑖̃ ( 𝒔 ) = 

𝑌 𝑖 ( 𝒔 ) − 𝑌 ( 𝒔 ) 
𝜎̂( 𝒔 ) 

, (17)
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  
he Wild 𝑡 -Bootstrap approximating field is given by 

̃
 

∗ ( 𝒔 ) = 

1 √
𝑁 

𝑁 ∑
𝑖 =1 

𝑟 ∗ 
𝑖 

𝜖𝑖 ( 𝒔 ) 
𝜎̂∗ ( 𝒔 ) 

, (18)

here the 𝑟 ∗ 
𝑖 

are i.i.d. Rademacher variables (i.e. each 𝑟 ∗ 
𝑖 

takes the value

f − 1 or 1 with probability 1/2), and 𝜎̂∗ ( 𝒔 ) is the standard deviation of

he current realization of bootstrapped residuals 𝑟 ∗ 
𝑖 
𝜖𝑖 ( 𝒔 ) . The asterisk ( ∗ )

ndicates that 𝐺̃ 

∗ ( 𝒔 ) is one of many bootstrap samples; in practice, we

ould obtain a large number 𝐵 of bootstrap samples 𝐺̃ 

∗ ( 𝒔 ) , and approx-

mate 𝑘 as the (1 − 𝛼)100 percentile of the 𝐵 suprema sup 𝒔 ∈𝜕 ̂ 𝑐 
|𝐺̃ 

∗ ( 𝒔 ) |. 
While this method is valid in regards to %BOLD change, for Cohen’s

we demonstrate that asymptotically the correlation structure of the ap-

roximating field 𝐺̃ 

∗ ( 𝒔 ) is incorrect. Consider again the Gaussian model

n Section 2.2 . In this instance, the covariance of the approximating field

s: 

Cov [ ̃𝐺 

∗ ( 𝒔 ) , 𝐺̃ 

∗ ( 𝒕 )] = 

1 
𝑁 

𝑁 ∑
𝑖,𝑗=1 

𝜖𝑖 ( 𝒔 ) ̃𝜖𝑗 ( 𝒕 ) 
𝜎̂∗ ( 𝒔 ) ̂𝜎∗ ( 𝒕 ) 

Cov [ 𝑟 𝑖 , 𝑟 𝑗 ] 

= 

1 
𝑁 

⋅
1 

𝜎̂∗ ( 𝒔 ) ̂𝜎∗ ( 𝒕 ) 
⋅

1 
𝜎̂( 𝒔 ) ̂𝜎( 𝒕 ) 

𝑁 ∑
𝑖 =1 

( 𝑌 𝑖 ( 𝒔 ) − 𝑌 ( 𝒔 ))( 𝑌 𝑖 ( 𝒕 ) − 𝑌 ( 𝒕 )) 

𝑎.𝑠. 
→ 𝜌( 𝒔 , 𝒕 ) , (19) 

here we note that since the standardized residuals 𝜖𝑖 ( 𝒔 ) are asymptoti-

ally Gaussian with unit variance, the bootstrap estimate of the standard

eviation of the standardized residuals 𝜎̂∗ ( 𝒔 ) converges almost surely to

. Since (19) and (14) do not agree except for the complete null case

f 𝑑( 𝒔 ) = 0 everywhere, we conclude that the covariance of the approx-

mating field does not converge to the true covariance of the limiting

eld  ( 𝒔 ) . 
To solve this problem, we implement a Taylor expansion transforma-

ion recently proposed in Telschow et al. (2020) to construct modified

esiduals with the desired limiting properties. Motivated by the delta

ethod procedures used in Section 2.2 , an estimation of the residual

eld for a single subject 𝑖 is given by: 

 𝑖 ( 𝐬 ) = 

𝑌 𝑖 ( 𝐬 ) 
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 

− 

𝑌 ( 𝐬 ) 
𝜎̂( 𝐬 ) 

= 𝑓 

( 

𝑌 𝑖 ( 𝐬 ) , 
(
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 

)2 ) 

− 𝑓 

(
𝑌 ( 𝐬 ) , ̂𝜎2 ( 𝐬 ) 

)
, (20)

here 𝑓 ( 𝑥, 𝑦 ) = 

𝑥 √
𝑦 
. A first-order Taylor expansion of 𝑓 ( 𝑥, 𝑦 ) about the

oint 
(
𝜇̂( 𝒔 ) , ̂𝜎2 ( 𝒔 ) 

)
yields the approximating Cohen’s 𝑑 residuals: 

 𝑖 ( 𝐬 ) = ∇ 𝑓 

(
𝑌 ( 𝐬 ) , ̂𝜎2 ( 𝐬 ) 

)( ( 

𝑌 𝑖 ( 𝐬 ) , 
(
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 

)2 ) 

− 

(
𝑌 ( 𝐬 ) , ̂𝜎2 ( 𝐬 ) 

)
= 

𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 
𝜎̂( 𝐬 ) − 

𝑌 ( 𝐬 ) 
2 ̂𝜎( 𝐬 ) 

( (
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 

)2 
𝜎̂2 ( 𝐬 ) − 1 

) 

. 

(21) 

ormalizing by the estimated standard deviation of the limiting field

 ( 𝒔 ) , we obtain the modified standardized residuals: 

̃
 𝑖 ( 𝒔 ) = 

𝑅 𝑖 ( 𝒔 ) √ 

1 + 

𝑑 2 ( 𝒔 ) 
2 

. (22)

n Telschow et al. (2020) , it is shown that the limiting covariance of
̃
 𝑖 ( 𝒔 ) is equal to the covariance function of  ( 𝒔 ) . Therefore, a modifica-

ion of (18) leads us to the Cohen’s 𝑑 version of the Wild 𝑡 -Bootstrap

pproximating field, 

̃
 

∗ ( 𝒔 ) = 

1 √
𝑁 

𝑁 ∑
𝑖 =1 

𝑟 ∗ 
𝑖 

𝑅̃ 𝑖 ( 𝒔 ) 
𝜎̂∗ ( 𝒔 ) 

, (23)

here now 𝜎̂∗ ( 𝒔 ) is the standard deviation of the bootstrapped Cohen’s

residuals 𝑟 ∗ 
𝑖 
𝑅̃ 𝑖 ( 𝒔 ) . 

While normalization of the 𝑅 𝑖 ( 𝒔 ) by an estimator of the standard de-

iation of  ( 𝒔 ) provides us with residuals that have the correct limiting

roperties, for application to fMRI data we wish to optimize the boot-

trap in smaller sample sizes. In this regard, it may be preferable to stan-

ardize the 𝑅 ( 𝒔 ) using an estimator tailored to the sample. Noting that
𝑖 
he sample mean of the approximating residuals, 𝑌 𝑅 ( 𝒔 ) = 

1 
𝑁 

∑𝑁 

𝑖 =1 𝑅 𝑖 ( 𝒔 ) ,
s equal to zero for all 𝑁, letting 

̂ 2 
𝑅 
( 𝒔 ) = 

1 
𝑁 

𝑁 ∑
𝑖 =1 

𝑅 

2 
𝑖 
( 𝒔 ) , (24)

hen an alternative to (22) is to normalize the Cohen’s 𝑑 residuals by

heir sample standard deviation so that 

̃
 𝑖 ( 𝒔 ) = 

𝑅 𝑖 ( 𝒔 ) 
𝜎̂𝑅 ( 𝒔 ) 

. (25)

These standardized residuals can then be used for the Wild 𝑡 -

ootstrap approximating field given in (23) . In this case, the sample

tandard deviation should also be accounted for in the formation of the

Ss, suggesting an alternate construction to (15) given by 

̂
 

+ 
𝑐 
∶= 

{ 

𝐬 ∶ 𝑑 ( 𝐬 ) ≥ 𝑐 + 

𝑘 √
𝑁 

𝜎̂𝑅 ( 𝐬 ) 
} 

, ̂ 

− 
𝑐 
∶= 

{ 

𝐬 ∶ 𝑑 ( 𝐬 ) ≥ 𝑐 − 

𝑘 √
𝑁 

𝜎̂𝑅 ( 𝐬 ) 
} 

. 

(26) 

n Section 3.1 , we assess the performance of the CSs on synthetic data

hen the residuals are standardized using either the estimated limiting

ariance 

√ 

1 + 

𝑑 2 ( 𝒔 ) 
2 or the sample standard deviation 𝜎̂𝑅 ( 𝒔 ) . 

.5. Finite properties of the Cohen’s d estimator and a variance-stabilizing 

ransformation 

Up to now, we have motivated two possible constructions for Cohen’s

CSs ( (15) and (26) ) using the limiting properties of the Cohen’s 𝑑 esti-

ator. Here, we will draw our attention to the distributional properties

f 𝑑 ( 𝒔 ) for finite samples to make further improvements on these meth-

ds, and introduce another novel procedure for obtaining CSs based on

aussianizing the distribution of 𝑑 ( 𝒔 ) . 
Again, assuming the Gaussian model described in Section 2.2 , ob-

erving that the Cohen’s 𝑑 estimator can be expressed in the form, 

 ̂= 

𝑌 

𝜎̂
= 

1 √
𝑁 

⋅
𝑌 

𝜎̂∕ 
√

𝑁 

= 

1 √
𝑁 

⋅

𝑌 − 𝜇
𝜎∕ 
√

𝑁 

+ 

𝜇

𝜎∕ 
√

𝑁 √ (
𝜎̂2 

𝜎2 ∕( 𝑁−1) 

)
∕( 𝑁 − 1) 

, (27)

rom the RHS of the equality we deduce that 
√

𝑁 𝑑 is characterized by a

oncentral 𝑡 -distribution with noncentrality parameter 
√

𝑁 𝑑 and 𝑁 − 1
egrees of freedom. 

Letting 

 𝑁 

= 

√ 

𝑁 − 1 
2 

Γ
(

𝑁−2 
2 

)
Γ
(

𝑁−1 
2 

) , (28)

here Γ denotes the gamma function, then the expectation of 
√

𝑁 𝑑 is

iven by 

 

[√
𝑁 𝑑 

]
= 

√
𝑁 𝐶 𝑁 

𝑑. (29)

herefore, unlike the sample mean, the Cohen’s 𝑑 estimator is biased.

o improve the performance of the CSs for small sample sizes, we will

ccount for this bias in the formulation of the CSs. A well-known ap-

roximation of 𝐶 𝑁 

is 

 𝑁 

≈
( 

1 − 

3 
4 𝑁 − 5 

) 

−1 . (30)

herefore, a bias-corrected version of the CS construction in (15) given

y 

̂
 

± 
𝑐 
∶= 

{ 

𝒔 ∶ 𝑑 ( 𝒔 ) ≥ 𝑐 

( 

1 − 

3 
4 𝑁 − 5 

) 

−1 ± 

𝑘 √
𝑁 

√ 

1 + 

𝑑 2 ( 𝒔 ) 
2 

} 

, (31)
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4 𝑁 − 5 2 
nd similarly, a bias-corrected version of the alternate construction in

26) given by 

̂
 

± 
𝑐 
∶= 

{ 

𝒔 ∶ 𝑑 ( 𝒔 ) ≥ 𝑐 

( 

1 − 

3 
4 𝑁 − 5 

) 

−1 ± 

𝑘 √
𝑁 

𝜎̂𝑅 ( 𝒔 ) 

} 

. (32)

n addition to the formation of the CSs, for any application to real data,

he Wild 𝑡 -Bootstrap described in Section 2.4 must be applied over an

pproximation of the boundary 𝜕 𝑐 = { 𝒔 ∈ 𝑆 ∶ 𝑑( 𝒔 ) = 𝑐} . Taking into

onsideration the bias of the Cohen’s 𝑑 estimator, we will use the plug-

n boundary: 

 ̂ 𝑐 = 

{ 

𝒔 ∈ 𝑆 ∶ 𝑑 ( 𝒔 ) = 𝑐 

( 

1 − 

3 
4 𝑁 − 5 

) 

−1 

} 

. (33)

The noncentral 𝑡 -distribution is asymmetric unless 𝜇 = 0 ; in general,

he size of the asymmetry scales with the magnitude of the noncentral-

ty parameter and is inversely proportional to the degrees of freedom.

herefore, we expect the distribution of the Cohen’s 𝑑 estimator to be

ighly skewed when the true effect size is large and the sample size is

mall. This conflicts with the symmetric construction of the upper and

ower CSs ̂ 

+ 
𝑐 

and ̂ 

− 
𝑐 

given in (31) and (32) , suggesting that the cover-

ge performance of these two methods may decline in such situations. 

To account for skewness, we adapt a method originally proposed in

aubscher (1960) to stabilize the variance of the noncentral 𝑡, trans-

orming to a distribution which is approximately Gaussian, and hence,

ymmetric. Letting 

∗ = 

( 

𝑁 

(
8 𝑁 

2 − 17 𝑁 + 11 
)

( 𝑁 − 3 ) ( 4 𝑁 − 5 ) 2 

) − 1 2 
, 

∗ = 

( 

𝑁 ( 𝑁 − 1 ) 
𝑁 − 3 

) 

1 
2 
( 

8 𝑁 

2 − 17 𝑁 + 11 
( 𝑁 − 3 ) ( 4 𝑁 − 5 ) 2 

) − 1 2 
, 

𝑏 ∗ = 

( 

𝑁 

(
8 𝑁 

2 − 17 𝑁 + 11 
)

( 𝑁 − 3 ) ( 4 𝑁 − 5 ) 2 

) 

1 
2 

, (34) 

n Appendix A we show that the variance-stabilizing transformation of

 ̂is given by: 

𝜁

(
𝑑 

)
= 

√
𝑁 

[ 
𝛼∗ 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 

𝛽∗ 𝑑 

) 

− 𝛼∗ 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 

𝛽∗ 𝑑 

( 

1 − 

3 
4 𝑁 − 5 

) 

−1 

) 

+ 

1 
2 𝑁 

𝑏 ∗2 

( 

𝑑 

( 

1 − 

3 
4 𝑁 − 5 

) 

−1 

) ( 

𝑁 − 1 
𝑁 − 3 

+ 𝑁 𝑑 2 
( 

8 𝑁 

2 − 17 𝑁 + 11 
16( 𝑁 − 3)( 𝑁 − 2) 2 

) 

) 

− 1 2 

]
(35) 

umerical work presented in Laubscher (1960) shows that the 90th per-

entile value of 𝜁
(
𝑑 

)
in (35) closely estimates 𝜙−1 ( 0 . 9 ) for a range of true

ffect sizes 𝑑 when the sample size is larger than 40, suggesting that –

or moderate sample sizes – the distribution of 𝜁
(
𝑑 

)
is approximately

aussian. 

By the monotonicity of the mapping 𝑥 ↦ 𝛼∗ 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 

𝛽∗ 𝑥 

) 

, the

ariance-stabilizing transformation provides a further possibility for

onstructing the CSs in the transformed space 𝜁
(
𝑑 ( 𝑆) 

)
. Reconstructing

35) , the transformed CSs are given by: 

̂ 

± 
𝑐 
= 

{ 

𝒔 ∶ 𝛼∗ 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 

𝛽∗ 𝑑 ( 𝒔 ) 

) 

≥ 𝛼∗ 𝑎𝑟𝑐 𝑠𝑖𝑛ℎ 

( 

𝛽∗ 𝑐 

( 

1 − 3 
4 𝑁 − 5 

) 

−1 

) 

− 1 
2 𝑁 

𝑏 ∗2 

( 

𝑐 

( 
1 − 3 

4 𝑁 − 5 

) 
−1 

) ( 

𝑁 − 1 
𝑁 − 3 

+ 𝑁 𝑐 2 
( 

8 𝑁 

2 − 17 𝑁 +11 
16( 𝑁 − 3)( 𝑁 − 2) 2 

) ) 

− 1 2 ± 𝑘 √
𝑁 

} 

. 

(36) 

In this case, the Cohen’s 𝑑 residuals given in (21) for the Wild 𝑡 -

ootstrap must also be modified. An estimation of the transformed resid-
al field for a single subject 𝑖 is given by 

 𝑖 ( 𝐬 ) = 𝛼∗ arcs inh 

( 

𝛽∗ 
𝑌 𝑖 ( 𝐬 ) 

𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 

) 

− 𝛼∗ arcs inh 
(
𝛽∗ 𝑌 ( 𝐬 ) 

𝜎̂( 𝐬 ) 

)
= 𝑔 

( 

𝑌 𝑖 ( 𝐬 ) , 
(
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 

)2 ) 

− 𝑔 

(
𝑌 ( 𝐬 ) , ̂𝜎2 ( 𝐬 ) 

)
, 

(37) 

here the function 𝑔( 𝑥, 𝑦 ) = 𝛼∗ 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 

𝛽∗ 𝑥 √
𝑦 

) 

. Similarly to the meth-

ds applied in Section 2.4 , a first-order Taylor expansion of 𝑔( 𝑥, 𝑦 ) about

he point ( 𝑌 ( 𝐬 ) , ̂𝜎2 ( 𝐬 )) obtains the transformed Cohen’s 𝑑 residuals 

𝑅̃ 𝑖 ( 𝐬 ) = ∇ 𝑔 

(
𝑌 ( 𝐬 ) , ̂𝜎2 ( 𝐬 ) 

)( ( 

𝑌 𝑖 ( 𝐬 ) , 
(
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 

)2 ) 

− 

(
𝑌 ( 𝐬 ) , ̂𝜎2 ( 𝐬 ) 

)) ⊺

= 

𝛼∗ 𝛽∗ √ 

1+ 𝛽∗2 𝑌 
2 ( 𝐬 ) 

𝜎̂2 ( 𝐬 ) 

( 

𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 
𝜎̂( 𝐬 ) − 

𝑌 ( 𝐬 ) 
2 ̂𝜎( 𝐬 ) 

( (
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 

)2 
𝜎̂2 ( 𝐬 ) − 1 

) ) 

. 

(38) 

n practice, the critical value 𝑘 in (36) is computed by applying the Wild

 -Bootstrap over 𝜕 ̂ 𝑐 using the transformed Cohen’s 𝑑 residuals given

bove for the bootstrap approximating field in (23) . 

For coherence, we will now formalize the complete procedures to

btain CSs for each of our three proposed CS constructions in (31), (32) ,

nd (36) . 

.6. Three algorithms for computing Cohen’s d CSs 

Based on our derivations up to this point, we give three algorithms to

ompute Cohen’s 𝑑 CSs for data modelled within the one-sample model

n Section 2.1 . While the first two algorithms are similar, the key differ-

nce separating these methods is the estimator of the variance used in

he formation of the CSs and for standardizing the Cohen’s 𝑑 residuals.

e first describe Algorithm 1 , where we use 1 + 

𝑑 2 ( 𝒔 ) 
2 as the estimator of

he variance, motivated by the variance of the limiting field  ( 𝒔 ) derived

n Sections 2.2 and 2.3 . 

lgorithm 1. For observations 𝑌 1 ( 𝒔 ) , … , 𝑌 𝑁 

( 𝒔 ) modelled by the one-

ample linear model in (1) , the following procedure yields CSs for the

ohen’s 𝑑 image 𝑑 ( 𝐬 ) = 

𝑌 ( 𝐬 ) 
𝜎̂( 𝐬 ) corresponding to a fixed threshold 𝑐 and

onfidence level (1 − 𝛼)% . 

1. For each observation, 𝑌 𝑖 ( 𝒔 ) , let 𝜖𝑖 ( 𝒔 ) denote the residual field, 𝜖𝑖 ( 𝐬 ) =
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) . Then compute the Cohen’s 𝑑 residuals as 

𝑅 𝑖 ( 𝐬 ) = 

𝜖𝑖 ( 𝐬 ) 
𝜎̂( 𝐬 ) 

− 

𝑌 ( 𝐬 ) 
2 ̂𝜎( 𝐬 ) 

( 

𝜖2 
𝑖 
( 𝐬 ) 

𝜎̂2 ( 𝐬 ) 
− 1 

) 

. 

2. Normalize the Cohen’s 𝑑 residuals by the estimated limiting stan-

dard deviation of the Cohen’s 𝑑 image to obtain the standardized

residuals, 

𝑅̃ 𝑖 ( 𝐬 ) = 

𝑅 𝑖 ( 𝐬 ) √ 

1 + 

𝑌 
2 
( 𝐬 ) 

2 ̂𝜎2 ( 𝐬 ) 

. 

3. Draw 𝑁 i.i.d. Rademacher variables 𝑟 ∗ 1 , … , 𝑟 ∗ 
𝑁 

, and compute the Wild

𝑡 -Bootstrap approximating field, 

𝐺̃ 

∗ ( 𝒔 ) = 

1 √
𝑁 

𝑁 ∑
𝑖 =1 

𝑟 ∗ 
𝑖 

𝑅̃ 𝑖 ( 𝒔 ) 
𝜎̂∗ ( 𝒔 ) 

, 

where 𝜎̂∗ ( 𝒔 ) is the bootstrap standard deviation of the bootstrapped

residuals 𝑟 ∗ 
𝑖 
𝑅̃ 𝑖 ( 𝒔 ) . 

4. Obtain the value 𝑘 ∗ = sup 𝒔 ∈𝜕 ̂ 𝑐 
|𝐺 

∗ ( 𝒔 ) |, using the bias-corrected esti-

mator of the boundary 𝜕 ̂ 𝑐 = 

{ 

𝒔 ∈ 𝑆 ∶ 𝑑 ( 𝒔 ) = 𝑐 

( 

1 − 

3 
4 𝑁−5 

) 

−1 

} 

. 

5. For a large number of bootstrap replications B repeat steps 3. and

4., obtaining the empirical distribution of the absolute maximum

 𝐵 = { 𝑘 ∗ 1 , … , 𝑘 ∗ 
𝐵 
} . Compute 𝑘 as the (1 − 𝛼) percentile of  𝐵 . 

6. Obtain the Cohen’s 𝑑 CSs, 

̂ 

± 
𝑐 
∶= 

{ 

𝒔 ∶ 𝑑 ( 𝒔 ) ≥ 𝑐 

( 

1 − 

3 
) 

−1 ± 

𝑘 √
√ 

1 + 

𝑑 2 ( 𝒔 ) 
} 

. 

𝑁 



A. Bowring, F.J.E. Telschow, A. Schwartzman et al. NeuroImage 226 (2021) 117477 

 

u  

S

A  

s  

C  

c

 

 

 

 

 

 

 

 

f  

G  

t  

o  

u  

C

A  

s  

C  

c

 

 

 

 

 

 

 

 

 

) 

3

3

 

m  

s  

o

𝑌

u  

a  

g  

W  

m  

o  

S  

t  

g  


(  

t  

a  

1

3

 

h  

s  

t  

m  

p  

o  

G  

2  

6

 

𝜖  

s  

t  

1  

t  

s  

r  

fi  

f

 

n  

C  

t  

g  

t 𝑐  
For Algorithm 2 , we use the sample variance of the Cohen’s 𝑑 resid-

als 𝜎̂2 
𝑅 
( 𝒔 ) as the variance estimator, motivated by our workings in

ection 2.4 . 

lgorithm 2. For observations 𝑌 1 ( 𝒔 ) , … , 𝑌 𝑁 

( 𝒔 ) modelled by the one-

ample linear model in (1) , the following procedure yields CSs for the

ohen’s 𝑑 image 𝑑 ( 𝐬 ) = 

𝑌 ( 𝐬 ) 
𝜎̂( 𝐬 ) corresponding to a fixed threshold 𝑐 and

onfidence level (1 − 𝛼)% . 

1. For each observation, 𝑌 𝑖 ( 𝒔 ) , let 𝜖𝑖 ( 𝒔 ) denote the residual field, 𝜖𝑖 ( 𝐬 ) =
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) . Then compute the Cohen’s 𝑑 residuals as 

𝑅 𝑖 ( 𝐬 ) = 

𝜖𝑖 ( 𝐬 ) 
𝜎̂( 𝐬 ) 

− 

𝑌 ( 𝐬 ) 
2 ̂𝜎( 𝐬 ) 

( 

𝜖2 
𝑖 
( 𝐬 ) 

𝜎̂2 ( 𝐬 ) 
− 1 

) 

. 

2. Normalize the Cohen’s 𝑑 residuals by their sample standard devia-

tion to obtain the standardized residuals, 

𝑅̃ 𝑖 ( 𝒔 ) = 

𝑅 𝑖 ( 𝒔 ) 
𝜎̂𝑅 ( 𝒔 ) 

. 

3. Draw 𝑁 i.i.d. Rademacher variables 𝑟 ∗ 1 , … , 𝑟 ∗ 
𝑁 

, and compute the Wild

𝑡 -Bootstrap approximating field, 

𝐺̃ 

∗ ( 𝒔 ) = 

1 √
𝑁 

𝑁 ∑
𝑖 =1 

𝑟 ∗ 
𝑖 

𝑅̃ 𝑖 ( 𝒔 ) 
𝜎̂∗ ( 𝒔 ) 

, 

where 𝜎̂∗ ( 𝒔 ) is the bootstrap standard deviation of the bootstrapped

residuals 𝑟 ∗ 
𝑖 
𝑅̃ 𝑖 ( 𝒔 ) . 

4. Obtain the value 𝑘 ∗ = sup 𝒔 ∈𝜕 ̂ 𝑐 
|𝐺 

∗ ( 𝒔 ) |, using the bias-corrected esti-

mator of the boundary 𝜕 ̂ 𝑐 = 

{ 

𝒔 ∈ 𝑆 ∶ 𝑑 ( 𝒔 ) = 𝑐 

( 

1 − 

3 
4 𝑁−5 

) 

−1 

} 

. 

5. For a large number of bootstrap replications B repeat steps 3. and

4., obtaining the empirical distribution of the absolute maximum

 𝐵 = { 𝑘 ∗ 1 , … , 𝑘 ∗ 
𝐵 
} . Compute 𝑘 as the (1 − 𝛼) percentile of  𝐵 . 

6. Obtain the Cohen’s 𝑑 CSs, 

̂ 

± 
𝑐 
∶= 

{ 

𝒔 ∶ 𝑑 ( 𝒔 ) ≥ 𝑐 

( 

1 − 

3 
4 𝑁 − 5 

) 

−1 ± 

𝑘 √
𝑁 

𝜎̂𝑅 ( 𝒔 ) 

} 

. 

Finally, Algorithm 3 is based on the derivations in Section 2.5 , trans-

orming the estimated Cohen’s 𝑑 image to a field which is approximately

aussian. This is done to stabilize the variance and remove the skew of

he Cohen’s 𝑑 estimator, which may adversely effect the performance

f the CSs. By the monotonicity of the transformation, the CSs obtained

sing this method are valid for inference on the true (un-transformed)

ohen’s 𝑑 effect size. 

lgorithm 3. For observations 𝑌 1 ( 𝒔 ) , … , 𝑌 𝑁 

( 𝒔 ) modelled by the one-

ample linear model in (1) , the following procedure yields CSs for the

ohen’s 𝑑 image 𝑑 ( 𝐬 ) = 

𝑌 ( 𝐬 ) 
𝜎̂( 𝐬 ) corresponding to a fixed threshold 𝑐 and

onfidence level (1 − 𝛼)% . 

1. For each observation, 𝑌 𝑖 ( 𝒔 ) , let 𝜖𝑖 ( 𝒔 ) denote the residual field, 𝜖𝑖 ( 𝐬 ) =
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) . Then compute the transformed, variance-stabilized Co-

hen’s 𝑑 residuals as 

𝑅̃ 𝑖 ( 𝐬 ) = 

𝛼∗ 𝛽∗ √ 

1 + 𝛽∗2 𝑌 
2 
( 𝐬 ) 

𝜎̂2 ( 𝐬 ) 

⎛ ⎜ ⎜ ⎜ ⎝ 
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 

𝜎̂( 𝐬 ) 
− 

𝑌 ( 𝐬 ) 
2 ̂𝜎( 𝐬 ) 

⎛ ⎜ ⎜ ⎜ ⎝ 
(
𝑌 𝑖 ( 𝐬 ) − 𝑌 ( 𝐬 ) 

)2 
𝜎̂2 ( 𝐬 ) 

− 1 
⎞ ⎟ ⎟ ⎟ ⎠ 
⎞ ⎟ ⎟ ⎟ ⎠ . 

2. Draw 𝑁 i.i.d. Rademacher variables 𝑟 ∗ 1 , … , 𝑟 ∗ 
𝑁 

, and compute the Wild

𝑡 -Bootstrap approximating field, 

𝐺̃ 

∗ ( 𝒔 ) = 

1 √
𝑁 

𝑁 ∑
𝑖 =1 

𝑟 ∗ 
𝑖 

𝑅̃ 𝑖 ( 𝒔 ) 
𝜎̂∗ ( 𝒔 ) 

, 

where 𝜎̂∗ ( 𝒔 ) is the bootstrap standard deviation of the bootstrapped

residuals 𝑟 ∗ 
𝑖 
𝑅̃ 𝑖 ( 𝒔 ) . 

3. Obtain the value 𝑘 ∗ = sup 𝒔 ∈𝜕 ̂ 𝑐 
|𝐺 

∗ ( 𝒔 ) |, using the bias-corrected esti-

mator of the boundary 𝜕 ̂ 𝑐 = 

{ 

𝒔 ∈ 𝑆 ∶ 𝑑 ( 𝒔 ) = 𝑐 

( 

1 − 

3 
4 𝑁−5 

) 

−1 

} 

. 
4. For a large number of bootstrap replications B repeat steps 3 and 4,

obtaining the empirical distribution of the absolute maximum  𝐵 =
{ 𝑘 ∗ 1 , … , 𝑘 ∗ 

𝐵 
} . Compute 𝑘 as the (1 − 𝛼) percentile of  𝐵 . 

5. Obtain the Cohen’s 𝑑 CSs, 

̂ 

± 
𝑐 
= 

{ 

𝒔 ∶ 𝛼∗ 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 

𝛽∗ 𝑑 ( 𝒔 ) 

) 

≥ 𝛼∗ 𝑎𝑟𝑐 𝑠𝑖𝑛ℎ 

( 

𝛽∗ 𝑐 

( 

1 − 3 
4 𝑁 − 5 

) 

−1 

) 

− 1 
2 𝑁 

𝑏 ∗2 

( 

𝑐 

( 
1 − 3 

4 𝑁 − 5 

) 
−1 

) ( 

𝑁 − 1 
𝑁 − 3 

+ 𝑁 𝑐 2 
( 

8 𝑁 

2 − 17 𝑁 + 11 
16( 𝑁 − 3)( 𝑁 − 2) 2 

) ) 

− 12

± 𝑘 √
𝑁 

} 

. (39

. Methods 

.1. Simulation setup 

In this section we describe the settings used to evaluate the perfor-

ance of each of the three algorithms for obtaining Cohen’s 𝑑 CSs on

ynthetic data. For each method, we simulate 3000 independent samples

f the Gaussian one-sample model 

 𝑖 ( 𝒔 ) = 𝜇( 𝒔 ) + 𝜖𝑖 ( 𝒔 ) , 𝑖 = 1 , … , 𝑁 

sing a range of signals 𝜇( 𝒔 ) , Gaussian noise structures 𝜖𝑖 ( 𝒔 ) with station-

ry and non-stationary variance 𝜎2 ( 𝒔 ) , in two- and three-dimensional re-

ions 𝑆. To compute the critical value 𝑘, we apply the given method’s

ild 𝑡 -Bootstrap procedure with 𝐵 = 5000 bootstrap samples on the esti-

ated boundary 𝜕 ̂ 𝑐 that must be used for application to real data. We

btain the boundary using the linear interpolation method described in

ection 2.3 of BTSN . We then compute the empirical coverage using

he interpolation assessment method described in Section 2.4 of BTSN ,

iven as the percentage of trials for which the true thresholded signal

 𝑐 contains the upper CS ̂ 

+ 
𝑐 

and is contained within the lowers CS ̂ 

− 
𝑐 

i.e. the proportion of trials for which ̂ 

+ 
𝑐 

⊂  𝑐 ⊂ ̂ 

− 
𝑐 
). In each simula-

ion, we apply the given method to sample sizes of 𝑁 = 30 , 60 , 120 , 240
nd 480, and for each of the three nominal coverage probability levels

 − 𝛼 = 0 . 80 , 0 . 90 and 0.95. 

.2. 2D simulations 

We analyzed the performance of the three algorithms to obtain Co-

en’s 𝑑 CSs on a square region of size 100 × 100 . For the true underlying

ignal 𝜇( 𝒔 ) we considered two different raw effects: first, a linear ramp

hat increased from a magnitude of 0 to 1 in the 𝑥 -direction while re-

aining constant in the 𝑦 -direction. Second, a circular effect, created by

lacing a circular phantom of magnitude 1 and radius 30 in the centre

f the search region, which was then smoothed using a 3-voxel FWHM

aussian kernel. If we were to assume that each voxel had a size of

 mm 

3 , we note that this would amount to applying smoothing with a

 mm FWHM kernel, a fairly typical setting used in fMRI analyses. 

To each of these signals we added subject-specific Gaussian noise

𝑖 ( 𝒔 ) , obtained from smoothing white noise with a 3 voxel FWHM Gaus-

ian kernel, with homogeneous and non-homogeneous variance struc-

ures: the first noise field had a spatially constant standard deviation of

, and therefore in this case the true Cohen’s 𝑑 effect was identical to

he underlying signal 𝜇( 𝒔 ) . The second field had a linearly increasing

tandard deviation structure in the 𝑦 -direction from 

√
0 . 5 to 

√
1 . 5 while

emaining constant in the 𝑥 -direction. Thus, the variance of this noise

eld spatially increased in the y -direction from 0.5 to 1.5 in a non-linear

ashion. 

The true Cohen’s 𝑑 fields 𝑑( 𝒔 ) for the linear ramp signal with homoge-

eous and heterogeneous noise are shown in Fig. 3 . The corresponding

ohen’s 𝑑 fields for the circular signal are shown in Fig. 4 . Altogether, for

he three algorithms, the two underlying signals and two noise sources

ave us 12 different simulation setups; for all of the simulations, we ob-

ained Cohen’s 𝑑 CSs for the noise-free cluster  at a cluster-forming
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Fig. 3. The two Cohen’s 𝑑 effects corresponding to the 

linear ramp signal 𝜇( 𝒔 ) . On the left, the subject-specific 

Gaussian noise field 𝜖𝑖 ( 𝒔 ) has a spatially constant standard 

deviation of 1, and therefore 𝑑( 𝒔 ) = 𝜇( 𝒔 ) . On the right, 𝜖𝑖 ( 𝒔 ) 
had a spatially increasing standard deviation structure in 

the y -direction (from top-to-bottom), while remaining con- 

stant in the x -direction. 

Fig. 4. The two Cohen’s 𝑑 effects corresponding 

to the circular signal 𝜇( 𝒔 ) . On the left, the subject- 

specific Gaussian noise field 𝜖𝑖 ( 𝒔 ) has a spatially 

constant standard deviation of 1, and therefore 

𝑑( 𝒔 ) = 𝜇( 𝒔 ) . On the right, 𝜖𝑖 ( 𝒔 ) had a spatially in- 

creasing standard deviation structure in the y - 

direction (from top-to-bottom), while remaining 

constant in the x -direction. 
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hreshold of 𝑐 = 0 . 8 . In Chapter 2.2 of Cohen (2013) , 𝑑 = 0 . 8 was clas-

ified as a ‘large effect’; for group-level analyses of large-sample fMRI

ata with ample statistical power (such as the HCP or UK Biobank), ef-

ect sizes of this magnitude may be used to assess brain areas where

ractically significant activation has occurred. 

.3. 3D simulations 

Four signal types 𝜇( 𝒔 ) were considered to analyze the performance of

he three algorithms in three dimensions. The first three of these signals

ere generated synthetically on a cubic region of size 100 × 100 × 100 :
rstly, a small spherical effect, created by placing a spherical phantom

f magnitude 1 and radius 5 in the centre of the search region, which

as then smoothed using a 3-voxel FWHM Gaussian kernel. Secondly,

 larger spherical effect, generated identically to the first effect with

he exception that the spherical phantom had a radius of 30. Lastly, we

reated an effect by placing four spherical phantoms of magnitude 1 in

he region of varying radii and then smoothing the entire image using a

-voxel FWHM Gaussian. 

Each of the images were rescaled after smoothing to have a maxi-

um intensity of 1. For the small and large spherical effect an imagewise

escaling was applied, where all locations in the smoothed map were

ivided through by the maximum intensity across the region. For the
 e  
nal effect, because parts of the four spherical phantoms overlapped af-

er smoothing, the signal intensities in these regions summed to greater

han 1. In this case, we reduced the intensities in these areas to have

 magnitude of 1 while leaving the rest of the image untouched. This

nsured that the signal at the center of each spherical phantom had a

agnitude of 1, coinciding with the previous small and large spherical

ffect signal types (see Fig. 5 , the signal at the center of each spherical

hantom in plot (c) is 1, in correspondence with the small and large

pherical effects in plots (a) and (b)). 

Similar to the two-dimensional simulations, for the three signals de-

cribed above we added white noise smoothed using a 3-voxel FWHM

aussian kernel with homogeneous and heterogeneous variance struc-

ures. The first noise field had a spatially constant standard deviation

f 1, while the second field had a linearly increasing standard devia-

ion in the 𝑧 -direction from 

√
0 . 5 to 

√
1 . 5 , while remaining constant in

oth the x - and y -directions. As demonstrated for the 2D simulations in

igs. 3 and 4 , this lead to two different true Cohen’s 𝑑 effect-size images

( 𝒔 ) corresponding to the homogeneous and heterogeneous standard de-

iation fields 𝜎( 𝒔 ) used for the noise. 

For the final signal type, we took advantage of big data that has

een made available through the UK Biobank in an attempt to gener-

te an effect that replicated the true %BOLD change induced during an

MRI task. We randomly selected 4000 subject-level contrast of param-

ter estimate result maps from the Hariri Faces/Shapes task-fMRI data
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Fig. 5. Four of the Cohen’s 𝑑 fields 𝑑( 𝒔 ) used for the 3D simulations. Plots (a)–(c) show the Cohen’s 𝑑 field for the three different spherical effects 𝜇( 𝒔 ) when Gaussian 

noise with spatially homogeneous standard deviation was added to the signal. Plot (d) shows the Cohen’s 𝑑 field corresponding to the UK Biobank full mean and 

standard deviation images. Note that the colormap limits for the first three Cohen’s 𝑑 effect-size images are from 0 to 1, while the colormap limits for the UK Biobank 

image is from − 0.9 to 0.9. 
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ollected as part of the UK Biobank brain imaging study. Full details on

ow the data were acquired and processed is given in Miller et al. (2016) ,

lfaro-Almagro et al. (2018) and the UK Biobank Showcase; information

n the task paradigm is given in Hariri et al. (2002) . From these contrast

aps, we computed a group-level full mean and full standard deviation

mage, considering all voxels where at least one hundred subjects had

ata (instead of discarding voxels with any missing data). In the final

imulation, we used the group-level Biobank mean image as the true

nderlying signal 𝜇( 𝒔 ) for each subject, and the full standard deviation

mage was used for the standard deviation of each simulated subject-

pecific Gaussian noise field 𝜖𝑖 ( 𝒔 ) added to the true signal. Because of

he considerably large sample size of high-quality data from which these

aps have been obtained, we anticipate that both of these images are

ighly representative of the true underlying fields that they approxi-

ate. Both images were masked using an intersection of all 4000 of the

ubject-level brain masks. 

Once again, we smoothed the noise field using a 3-voxel FWHM

aussian kernel; as the Biobank maps had voxel sizes of 2 mm 

3 , this

quated to applying 6 mm FWHM smoothing to the noise field of the

riginal data. 
y  
In Fig. 5 , we show the true underlying Cohen’s 𝑑 fields for the three

ynthetic 3D effects with homogeneous noise structure, and the Cohen’s

field corresponding to the UK Biobank full mean and standard de-

iation (a histogram of the UK Biobank Cohen’s 𝑑 field is provided in

ig. B.14 ). For all four signal types we obtained Cohen’s 𝑑 Confidence

ets for the threshold 𝑐 = 0 . 8 , and in order to assess if a change of thresh-

ld could affect the performance of the CSs, we also obtained Cohen’s 𝑑

Ss using a threshold of 𝑐 = 0 . 5 for the final UK Biobank signal type. 

.4. Application to Human Connectome Project data 

To provide a real-data demonstration of the three methods proposed

n this work, we computed Cohen’s 𝑑 CSs on 80 participants data from

he Unrelated 80 package released as part of the Human Connectome

roject (HCP, S1200 Release) using all three algorithms described in

ection 2.6 . Cohen’s 𝑑 CSs were obtained for the subject-level 2-back vs

-back contrast maps from the working memory task results included

ith the HCP dataset. For a comparison with standard fMRI inference

rocedures, we also performed a traditional statistical group-level anal-

sis on the data. A one-sample 𝑡 -test was carried out in SPM, using a
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oxelwise FWE-corrected threshold of 𝑝 < 0 . 05 obtained via permuta-

ion test with SPM’s SnPM toolbox. 

For the working memory task participants were presented with pic-

ures of places, tools, faces and body parts in a block design. The task

onsisted of two runs, where on each run a separate block was des-

gnated for each of the image categories, making four blocks in total.

ithin each run, for half of the blocks participants undertook a 2-back

emory task, while for the other half a 0-back memory task was used.

ight EVs were included in the GLM for each combination of picture

ategory and memory task (e.g. 2-back Place); we compute CSs on the

ubject-level contrast images for the 2-back vs 0-back contrast results

hat contrasted the four 2-back related EVs to the four 0-back EVs. 

Imaging was conducted on a 3T Siemans Skyra scanner using a

radient-echo EPI sequence; TR = 720 ms, TE = 33.1 ms, 208 × 180 mm

OV, 2.0 mm slice thickness, 72 slices, 2.0 mm isotropic voxels, and a

ulti-band acceleration factor of 8. Preprocessing of the subject-level

ata was carried out using tools from FSL and Freesurfer following

he ‘fMRIVolume’ HCP Pipeline fully described in Glasser et al. (2013) .

o summarize, the fundamental steps carried out to each individual’s

unctional 4D time-series data were gradient unwarping, motion correc-

ion, EPI distortion correction, registration of the functional data to the

natomy, non-linear registration to MNI space (using FSL’s Non-linear

mage Registration Tool, FNIRT), and global intensity normalization.

patial smoothing was applied using a Gaussian kernel with a 4 mm
WHM. F  
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ig. 6. Coverage results for the linear ramp signal, with homogeneous (top row) and

he empirical coverage performance of all three algorithms was similar, hovering sli

maller the degree of over-coverage became larger for Algorithm 1 , while empirical c

est, with all results remaining particularly close to the nominal target level for simu
Modelling of the subject-level data was conducted with FSL’s FM-

IB’s Improved Linear Model (FILM). The eight working task EVs were

ncluded in the GLM, with temporal derivatives terms added as con-

ounds of no interest, and regressors were convolved using FSL’s de-

ault double-gamma hemodynamic response function. The functional

ata and GLM were temporally filtered with a high-pass frequency cutoff

oint of 200 s, and time series were prewhitened to remove autocorre-

ations from the data. 

Mirroring the methods used in BTSN , we applied additional smooth-

ng to the final contrast maps to mimic images smoothed using a 6 mm

WHM Gaussian kernel. This is a more typical degree of smoothing ap-

lied to functional data than the 4 mm kernel originally used in the HCP

nalysis pipeline. 

. Results 

.1. 2D simulations 

Empirical coverage results for each of the three algorithms are pre-

ented for the linear ramp signal in Fig. 6 and for the circular signal

n Fig. 7 , where in all simulations a Cohen’s 𝑑 threshold of 𝑐 = 0 . 8 was

pplied. In both figures, on the top row we display the coverage results

btained when the standard deviation field of the noise was homoge-

eous across the region (corresponding to Fig. 3 (a) for the linear ramp,

ig. 4 (a) for the circle), and on the bottom row we display the equivalent
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 heterogeneous (bottom row) Gaussian noise structures. For large sample sizes 

ghtly above the nominal level in all simulations. As the sample size was made 

overage for Algorithm 2 fell below the nominal target. Algorithm 3 performed 

lations using a 95% confidence level (right plots). 
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Fig. 7. Coverage results for the circular signal, with homogeneous (top row) and heterogeneous (bottom row) Gaussian noise structures. All algorithms performed 

well, and unlike the linear ramp, empirical coverage for all three methods converged towards the nominal level. For smaller sample sizes there was a larger degree 

of over-coverage, most noticeably for simulations using the 80% nominal target. Overall, Algorithm 2 performed marginally better than the other two methods, and 

Algorithm 1 performed the worst. 
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esults when the standard deviation field was spatially heterogeneous

 Fig. 3 (a) and Fig. 4 (b) for the linear ramp and circle respectively). 

For the linear ramp, across all confidence levels 1 − 𝛼 = 0 . 80 , 0 . 90 ,
nd 0.95 we observed valid, over-coverage for all three algorithms when

ufficiently large sample sizes ( 𝑁 ≥ 60 ) were used. In all plots, it appears

hat the coverage rates for the three algorithms are converging to the

ame value, slightly above the nominal target. Specifically, for the nom-

nal target level of 80%, in both the homogeneous and heterogeneous

ases all empirical results seem to be converging to around 88% ( Fig. 6 ,

eft-side plots). For the 95% target, the scale of disagreement between

he empirical results and the nominal target is smaller; here, all cover-

ge results hover close to 96% for 𝑁 = 240 and 480 ( Fig. 6 , right-side

lots). 

While for larger sample sizes the performance of all three algorithms

as similar, there was greater disparity between the methods for simu-

ations using the smaller sample sizes of 𝑁 = 30 and 60. Here, the em-

irical coverage results for Algorithm 1 were consistently higher than

he other two methods, with the degree of over-coverage increasing as

he sample size was lowered. On the other hand, the coverage results for

lgorithms 2 and 3 both decreased as the sample size was made smaller;

hile there was only a slight dip in coverage for Algorithm 3 here, the

rop-off for Algorithm 2 was more considerable, with coverage results

alling substantially below the nominal target level when 𝑁 = 30 . 
For the circular signal, on the whole all three methods performed

ell. In this instance, almost all empirical results for Algorithms 2 and

 lay within the 95% confidence interval of the nominal coverage rate

blue and magenta curves sandwiched between black dashed lines for all

lots in Fig. 7 ), with Algorithm 2 performing marginally better. While

e observed greater over-coverage for the smaller sample sizes, most

ubstantially in simulations using the 80% nominal target ( Fig. 7 , left-

ide plots), empirical coverage converged towards the nominal level for

ll three algorithms. 

Finally, the use of homogeneous or heterogeneous noise in the model

ad minimal impact on any of the algorithm’s empirical coverage per-

ormance for either of the signals. This is exemplified in Figs. 6 and 7 ,

here in both cases the homogeneous coverage plots presented in the

op row are almost identical to the corresponding heterogeneous plots

hown below. 

.2. 3D simulations 

Empirical coverage results for each of the three algorithms are pre-

ented in Figs. 8 , 9, 10 and 11 respectively for each of the four 3D signal

ypes displayed in Fig. 5 (small sphere, large sphere, multiple spheres,

K Biobank), where in all simulations a Cohen’s 𝑑 threshold of 𝑐 = 0 . 8
as applied. In Fig. C.15 , results are presented for the UK Biobank sig-
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Fig. 8. Coverage results for the small sphere signal type, with homogeneous (top row) and heterogeneous (bottom row) Gaussian noise structures. In general, 

empirical coverage remained above the nominal level across all simulations, and for the 95% confidence level (right plots), the results of all three methods fell close 

to the nominal target (with some over-coverage for 𝑁 = 30 ). All methods were robust as to whether the subject-level noise had homogeneous or heterogeneous 

variance structure. Because of this, there are minimal differences comparing the plots between both rows. 
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al type using a smaller Cohen’s 𝑑 threshold of 𝑐 = 0 . 5 . For the spherical

ffects ( Figs. 8 –10 ), on the top row we display the coverage results ob-

ained when the standard deviation field of the noise was homogeneous

cross the region, and on the bottom row we display the equivalent

esults when the standard deviation field was spatially heterogeneous.

or the UK Biobank signal ( Fig. 11 ), the full standard deviation image

omputed from the UK Biobank data was used for the standard devia-

ion field of the noise, and hence in this case there is only one row of

esults. 

Across all 3D simulations we observed consistencies between the re-

ults obtained with each of the three algorithms: in general, empiri-

al coverage for all methods came above the nominal target, with in-

reasing severity for smaller sample sizes. Similar to the 2D simula-

ions, the extent of over-coverage was smaller when a larger confi-

ence level was used. Comparing the three methods, coverage results for

lgorithm 1 were considerably higher than the other two methods, par-

icularly when a small sample size and confidence level were used. For

he ‘large sphere’ and ‘multiple spheres’ signal types, Algorithm 1 suf-

ered with over-coverage of above 15% in simulations with a sample of

ize of 𝑁 = 30 and 60 and a nominal target level of 80% ( Figs. 9 and 10 ,

eft-side plots). For both of these signals, there was still a considerable
mount of over-coverage when larger sample sizes of 𝑁 = 120 , 240 and

to a lesser degree) 480 were used. On the other hand, Algorithms 2 and

 performed similarly in large sample sizes across all simulations, with

mpirical coverage results coming slightly above the nominal target. No-

ably, both of these algorithms performed very well for simulations with

 95% nominal target level (all figures, right-side plots). Differences be-

ween these two methods were more distinguished for smaller sample

izes of 𝑁 = 30 and 60, where we observed a greater degree of over-

overage for Algorithm 3 . Consequentially, Algorithm 2 ’s results came

loser to the nominal target here, although for the ‘multiple sphere’ and

UK Biobank’ signal types, in some cases Algorithm 2 ’s results fell slightly

elow the nominal level ( Figs. 10 and 11 ). Overall, empirical coverage

or Algorithm 3 was the most uniform of the three methods across mod-

rate and large sample sizes. 

Comparing Figs. 8 and 9 , we observed a slight deterioration in the

erformance of all three algorithms when moving from the small sphere

ignal type to the large sphere. In particular, results obtained from apply-

ng the three methods to the large sphere fell further above the nominal

arget relative to the small sphere. This was most severe for Algorithm 1 ,

here differences between the two sets of results were larger than 10%

or the 80% confidence level ( Figs. 8 and 9 , left-side plots). These dif-
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Fig. 9. Coverage results for the large sphere signal type, with homogeneous (top row) and heterogeneous (bottom row) Gaussian noise structures. Compared with 

the small sphere results displayed in Fig. 9 , empirical coverage results were higher for all three methods here. Algorithm 1 suffered from a particularly large degree 

of over-coverage for simulations with a small sample size. Coverage performance for Algorithms 2 and 3 was closer in resemblance to the corresponding small sphere 

results, with Algorithm 2 performing slightly better. This suggests that both of these methods are fairly robust to changes in the boundary length. 
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erences were comparatively smaller for Algorithms 2 and 3 , where we

bserved only a slight increase in empirical coverage, particularly for

imulations using larger sample sizes. This would suggest that both of

hese methods are fairly robust to changes in the boundary length. We

bserved a similar sort of degradation in performance for the two sim-

lation results obtained using the UK Biobank signal type, where sim-

lations using the smaller threshold of 𝑐 = 0 . 5 ( Fig. C.15 ) fell further

bove the nominal target relative to the simulations using a threshold

f 𝑐 = 0 . 8 . Once again, this may be attributable to changes in the bound-

ry length between the two simulations (the boundary length was longer

or the smaller threshold of 𝑐 = 0 . 5 ). Rather than a degradation in the

hree algorithms’ performances per se, we suspect that inaccuracies in

he methods used to assess the simulations may have induced a positive

ias into the coverage results for signals with a longer boundary (see

he end of Section 5.2 for more on this). 

Finally, the use of homogeneous or heterogeneous noise in the model

nce again had very little impact on the performance of all three algo-

ithms. Nevertheless, for simulations with small sample sizes, a hetero-

eneous noise structure led to a slight decrease in the empirical coverage

esults for Algorithms 2 and 3 ( Figs. 8–10 , left-side plots). 
.3. Human Connectome Project 

Cohen’s 𝑑 Confidence Sets obtained by applying Algorithm 3 to 80

ubjects’ contrast data from the Human Connectome Project are shown

n Fig. 12 . CSs computed on the same data using Algorithm 1 and

lgorithm 2 are displayed in Figs. D.1 and D.2 respectively. For each

gure, we display the CSs obtained from applying the specified algo-

ithm with three separate thresholds, 𝑐 = 0 . 5 , 0 . 8 , and 1.2. These three

ohen’s 𝑑 effect sizes were classified as medium, large, and very large

n Cohen (2013) . 

In the top plot of Fig. 12 , the red upper CSs localized brain regions

ithin the frontal cortex that are commonly associated with working

emory. This included areas of the superior frontal gyrus (left and right,

ll slices), middle frontal gyrus (left, coronal slice), paracingulate gyrus

left and right, axial slice) and insular cortex. Other brain areas encap-

ulated inside the upper CS were the angular gyrus (left and right, axial

lice), cerebellum (left and right, sagittal slice) and precuneus (left and

ight, axial slice). For all these regions, the method identified clusters of

oxels where we can assert with 95% confidence there was a Cohen’s 𝑑

ffect size greater than 0.5. 
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Fig. 10. Coverage results for the multiple spheres signal type, with homogeneous (top row) and heterogeneous (bottom row) Gaussian noise structures. 

Algorithms 2 and 3 both performed well, particularly for the 95% confidence level, where for moderate-to-large sample sizes coverage remained in the vicinity 

of the 95% confidence interval of the nominal target. Once again, the degree of over-coverage increased as the sample size was made smaller, most severely for 

Algorithm 1 , while Algorithm 2 remained relatively close to the nominal level. 
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Fig. 11. Coverage results for the UK Biobank signal type, where the full standard deviation image was used as the standard deviation of the subject-level noise fields. 

Coverage results here were similar to the results for the multiple spheres signal type shown in Fig. 10 . Once again, both Algorithms 2 and 3 performed well for large 

samples, with empirical coverage rates hovering above the nominal target, while results for Algorithm 1 came further above the nominal level. While for smaller 

samples the degree of over-coverage became greater for Algorithms 1 and 3 , results for Algorithm 2 appear to slightly drop here. 
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Fig. 12. Slices views of the Cohen’s 𝑑 Confidence Sets obtained from applying Algorithm 3 to the HCP working memory task data, using three Cohen’s 𝑑 effect size 

thresholds, 𝑐 = 0 . 5 , 0 . 8 and 1.2. The upper CS ̂ 

+ 
𝑐 

is displayed in red, and the lower CS ̂ 

− 
𝑐 

in blue. Yellow voxels represent the point estimate set ̂ 𝑐 , the best guess 

from the data of voxels that have surpassed the Cohen’s 𝑑 threshold. The red upper CS has localized regions in the frontal gyrus, paracingulate gyrus, angular gyrus, 

cerebellum and precuneus which we can assert with 95% confidence have attained (at least) a 0.5 Cohen’s 𝑑 effect size. 
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By increasing the threshold to 𝑐 = 0 . 8 ( Fig. 12 , middle plot), there

as a shrinking of both the blue lower CSs and red upper CSs. Therefore,

hile we can confidently declare a medium effect size in all of the brain

reas identified above, the quantity of voxels within each region that we

an proclaim to have a large effect size is considerably smaller. In the

ase of the right cerebellar hemisphere (left, sagittal slice) and insular

ortex, the upper CS vanished completely, indicating that the method

id not locate any voxels in these regions where we can assert a Cohen’s

effect size greater than 0.8. 

The results for the largest threshold assessed, 𝑐 = 1 . 2 ( Fig. 12 , bot-

om plot) are particularly notable. Here, the yellow point estimate set

ontains a small but appreciable number of voxels, marking where the

bserved Cohen’s 𝑑 effect size was greater than 1.2. However, in this case

here was no red upper CS (i.e. the upper CS was completely empty).

herefore, contrary to the inference one might come to based on the

oint estimate set alone, we can not state with confidence that any voxels

ave attained a very large effect size. Conversely, the large quantity of

grey background) voxels lying outside the blue lower CS in Fig. 12 im-

ly an effect size less than 1.2 across the vast majority of the brain. 

In Fig. 13 , the red upper CSs computed with Algorithm 3 are

ompared with the thresholded 𝑡 -statistic map (green-yellow voxels)
btained from applying a one-sample 𝑡 -test group-analysis to the 80

ubjects’ contrast data, using a voxelwise FWE-corrected threshold of

 < 0 . 05 . This figure demonstrates the improved spatial specificity that

an be provided with the CSs in comparison with the traditional ap-

roach. Specifically, while the thresholded statistic map contains one

arge cluster covering a sizeable portion of the parietal lobe across

oth brain hemispheres, the red upper CSs pinpoint precise areas

n the precuneus and angular gyrus where a practically significant

edium (or large) Cohen’s 𝑑 effect size can be inferred ( Fig. 13 , axial

lices). 

. Discussion 

.1. Spatial inference on Cohen’s d effect size 

To fully appreciate the outcomes of a neuroimaging study, informa-

ion about the magnitude (as well as presence) of effects must be reported

t the end of an investigation. It is only with this knowledge that one

an truly determine the practical relevance (and potential clinical im-

ortance) of any discoveries made during the analysis. In this work,
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Fig. 13. Comparing the upper CSs (red voxels) computed with Algorithm 3 on the HCP working memory task data (same slice views as Fig. 12 ) with the thresholded 

𝑡 -statistic results obtained by applying a traditional group-level one-sample 𝑡 -test, voxelwise 𝑝 < 0 . 05 FWE correction (green-yellow voxels). While the thresholded 

statistic map contains a single cluster covering a sizable portion of the parietal lobe across both hemispheres (axial slices), the upper CSs have localized the precise 

areas of the precuneus and anglur gyrus where we can confidently declare a Cohen’s 𝑑 effect size of at least 0.5. This demonstrates how the CSs can provide improved 

spatial specificity in determining regions with practically significant activation. 

w  

𝑑  

o  

a  

p  

a  

g  

a  

d  

𝑝  

a  

a  

i  

f  

a  

s  

u  

e  

s  

t  

e

 

m  

a  

t  

l  

t  

b  

t  

u  

t  

f  

p  

H  

p  

h  

s  

s  

l

 

i  

c  
e have presented three methods to create Confidence Sets for Cohen’s

effect size maps, providing formal confidence statements on regions

f the brain where the Cohen’s 𝑑 effect size has exceeded a specified

ctivation threshold, alongside regions where the effect size has not sur-

assed this threshold. Both of these statements are made simultaneously

cross the entire brain, enabling researchers to pinpoint the precise re-

ions where meaningful differences have occurred as well as identifying

reas that have not responded to the task. This is in contrast to the tra-

itional statistical approach, where a test statistic (e.g. a 𝑡 -statistic) or a

 -value can only quantify the compatibility between the observed data

nd what would be expected under the null-hypothesis of no activation,

nd no information is provided about the effect size when a finding

s deemed to be statistically significant. Since the test statistic is con-

ounded by the sample size of the study, it is not possible to implement

 similar framework to obtain Confidence Sets for statistic images; as

ample sizes increase test statistics also become arbitrarily large, until

ltimately there is enough statistical power to declare even the small-

st of effects as statistically significant. On the other hand, for larger

amples we expect the red upper CSs to converge towards the popula-

ion parameter  𝑐 representing the set of voxels with a true population

ffect magnitude above a purposeful activation threshold 𝑐. 
While in our analysis of the HCP working memory task data we pri-

arily focused on activated regions localized by the red upper CSs, it is

lso important to note the added utility provided by the blue lower CSs

hat can not be obtained with standard statistical inferences. In particu-

ar, while the logic of statistical testing means that one can never prove

he null-hypothesis to be true, the blue lower CSs provide inference on

rain areas where effect sizes have not attained a sufficient activation

hreshold. Therefore, if the Cohen’s 𝑑 threshold is chosen appropriately,

sers could essentially accept the null of no (practically significant) ac-

ivation for all voxels lying outside the blue CSs. Another method that

acilitates for evidence in support of either the null- or an alternative hy-

othesis is Bayesian testing ( Han and Park, 2018; Rouder et al., 2009 ).

owever, this procedure can not guarantee the same control of false-

ositives that has been demonstrated in terms of coverage for the CSs

ere, and requires that users set a log odds threshold (to define the

trength of evidence needed to accept the null or alternative hypothe-

is) which is arguably less intuitive than the pre-determined confidence

evel needed for the CSs. 

The use of CSs for inference on effect size may also help to alleviate

ssues associated with hypothesis testing for studies with lower statisti-

al power. Specifically, for studies with small sample sizes it has been
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b  
eported that applying traditional inference procedures can lead to spu-

ious or irreproducible results with considerably inflated observed effect

izes ( Cremers et al., 2017; Poldrack et al., 2017 ). In regards to the lat-

er, this is often caused by a form of selection bias known as the ‘winners

urse’ ( Button et al., 2013; Reddan et al., 2017 ), whereby voxels whose

bserved effect size has exceeded their expected performance are in-

rinsically more likely to be determined as statistically significant. This

ecomes a problem as magnitudes are commonly reported only for sig-

ificant voxels, a practice that leads to positively biased effect estimates.

ur analysis results from the Human Connectome Project dataset exem-

lify how the CSs can help to resolve this issue. In Fig. 12 , the yellow

oint estimate ‘best guess from the data’ clusters identified a number

f voxels with a Cohen’s 𝑑 effect size greater than 1.2 that were also

ncluded in the thresholded statistic map obtained from applying a one-

ample 𝑡 -test, voxelwise 𝑝 < 0 . 05 FWE correction ( Fig. 13 ). However, by

ynthesizing information about the effect magnitude as well as the reli-

bility of the estimate, the CSs presented in Fig. 12 affirm that there are

n fact no voxels that can be confidently declared to have an effect size

arger than 1.2. On the contrary, only a handful of brain regions were

ontained in the red upper CS asserting a Cohen’s 𝑑 effect size exceeding

.5 for the HCP working memory task data. 

In our previous effort we described a method to obtain CSs for un-

tandardized percentage BOLD change maps, rather than the Cohen’s

images that have served as our main focus here. The use of Co-

en’s 𝑑 instead of %BOLD is likely to be advantageous due to com-

lications associated with the BOLD effect. As discussed in our previ-

us work, %BOLD effect sizes have been shown to modulate accord-

ng to acquisition parameters such as the scanner field strength or MRI

ulse sequence, and inhomogenieties in vascularity between different

rain regions can cause further variation in the BOLD response. At a

ore rudimentary level, there are also difficulties involved in obtain-

ng percentage BOLD change images. While all of the main fMRI soft-

are packages provide contrast of parameter estimate maps, each of the

hree most widely-used analysis packages (AFNI, FSL and SPM) scale the

aw data differently; the parameter estimates are often given in arbi-

rary units which deviate between packages. Conversion to percentage

OLD change therefore requires a software-dependent normalization,

here one must take into consideration how to appropriately scale the

ata, design matrix and analysis contrasts. While this can be cumber-

ome and prone to human error, conversion to Cohen’s 𝑑 is relatively

imple. Due to the straightforward relationship between the Cohen’s 𝑑

ffect size and the one-sample 𝑡 -statistic ( ̂𝑑 = 𝑡 ∕ 
√

𝑁 ), users can easily

enerate Cohen’s 𝑑 images from the unthresholded 𝑡 -statistic maps cre-

ted by all the main neuroimaging packages. For all of these reasons,

he Cohen’s 𝑑 CS maps may be more suitable for comparison between

tudies. 

In this work, we have used classifications of the Cohen’s 𝑑 effect

ize as initially suggested in Cohen (2013) , describing 0.5 as a ‘medium’

ffect, 0.8 as ‘large’, and 1.2 as ‘very large’. While these benchmarks pro-

ide basic descriptors of effect size, in general we recommend that users

ake appropriate steps to contextualize what sort of magnitude consti-

utes a meaningful finding in their own study. In context, this means that

or some task-fMRI studies brain regions with a Cohen’s 𝑑 effect size of

.2 (classified as a ‘small’ effect by Cohen) may represent an important

nding (see Fig. 2 in Noble et al., 2020 for the distributions of ground-

ruth effect sizes found across the brain for a range of common task-fMRI

aradigms). Overall, users should factor in the aims of their investiga-

ion, the quality of the study and, if possible, the effect sizes reported

n similar previous efforts before choosing a threshold. Obtaining the

Ss for the Human Connectome Project contrast data in this work was

omputationally quick, with each analysis taking less than one minute

or all three proposed algorithms. Therefore, one possible strategy is to

valuate a variety of different 𝑐’s on pilot or historical data before fixing

 value to use on a study of interest. 
While we have developed the Cohen’s 𝑑 CSs for a one-sample model,

he methods presented here may also be applied to the general lin-

ar model 𝒀 ( 𝒔 ) = 𝑿 𝜷( 𝒔 ) + 𝝐( 𝒔 ) , where 𝑿 is the design matrix and 𝜷( 𝒔 )
s the vector of unknown coefficients. In this setting, for a contrast

ector 𝒘 , the quantity of interest would be the standardized contrast

 

𝑇 𝜷( 𝒔 )∕ 𝜎( 𝒔 ) (instead of the Cohen’s 𝑑 effect size 𝜇( 𝒔 )∕ 𝜎( 𝒔 ) ). The method

ould be carried out similarly, except, for example, the normalized

tandard deviation of the contrast estimate 𝒘 

𝑇 ( 𝑿 

𝑇 𝑿 ) − 
1 
2 would need

o be considered in the construction of the CSs (replacing the 1∕ 
√

𝑁 

erm in the one-sample CS constructions for the three algorithms). It

s important to note that the mathematical results underpinning this

ork in Telschow et al. (2020) have as yet only been provided for the

ne-sample model, which is why this model has been our primary fo-

us here. Nevertheless, a further intuition on applying the method to

he general linear model can be obtained from BTSN , where we de-

eloped the CSs in the general linear model setting for raw effect size

mages. 

.2. Three algorithms for Cohen’s d Confidence Sets 

In this work, we have theoretically motivated three algorithms for

btaining Cohen’s 𝑑 CSs. Our simulation results in Sections 4.1 and

.2 have demonstrated differences in the coverage performance for each

f these algorithms. Across all sets of simulation results, empirical cov-

rage for Algorithm 1 came above the nominal level, with particularly

evere over-coverage for 3D simulations carried out on large synthetic

ignals when small sample sizes were used ( Figs. 8 –10 ). The cause for

uch poor performance here is likely to be due to the variance term

sed to construct the CSs in Algorithm 1 . Recalling the derivations in

ection 2.2 , the variance term 

√ 

1 + 

𝑑 2 ( 𝒔 ) 
2 used for Algorithm 1 . was

hosen as an estimator of the variance of the limiting Gaussian field  ( 𝒔 ) .
herefore, while we expect this term to correctly approximate the vari-

nce of the bootstrap approximating field asymptotically, our theory

rovides no indication about the accuracy of this term in small samples.

he over-coverage seen in our simulation results suggests that this term

verestimates the true variance of the approximating field when the

ample size is low. While there was some improvement in Algorithm 1 ’s

esults as 𝑁 increased, even for the largest sample size we analyzed,

 = 480 , empirical coverage for the other two methods was consistently

loser to the nominal target level. 

Overall, Algorithm 2 and Algorithm 3 both performed well across our

D and 3D simulations. For simulations using a 95% confidence level,

he empirical coverage performance of these two methods was remark-

bly similar for 𝑁 ≥ 120 (in most cases, slightly above the nominal tar-

et). It is therefore difficult to conclude which method should be imple-

ented in practice. For our 3D simulations ( Figs. 8 –11 ), Algorithm 2 ’s

mpirical coverage results fell slightly closer to the nominal level in

ost cases. However, the results for Algorithm 3 were slightly more

obust across moderate and large sample sizes, as observed in the UK

iobank and multiple spheres simulations ( Figs. 10 and 11 ). When

maller sample sizes of 𝑁 ≤ 60 were used, Algorithm 3 consistently

uffered from a higher degree of over-coverage. However, the perfor-

ance of Algorithm 2 also appeared to be drop off in some cases,

arginally for the UK Biobank simulation ( Fig. 11 ), and considerably

or the Ramp simulation ( Fig. 6 ), where for 𝑁 = 30 Algorithm 2 ’s

overage results fell well below the nominal target level. Therefore,

lgorithm 3 may still be preferable in small sample sizes to ensure the

nference remains valid (in respect to obtaining at least a 95% coverage

ate). 

From a theoretical standpoint, the variance-stabilizing transforma-

ion approach used in Algorithm 3 assumes that the observations are

aussian, while this is somewhat relaxed for Algorithm 2 , where the

ootstrap is applied to estimate the standard deviation directly from



A. Bowring, F.J.E. Telschow, A. Schwartzman et al. NeuroImage 226 (2021) 117477 

t  

n  

m  

A  

c  

d

 

a  

a  

i

(  

‘  

s  

t  

t  

i  

𝑐  

a  

3  

e  

a  

w  

s  

t  

t  

s  

a  

d  

s  

i  

e  

w  

z  

e  

p  

c  

w  

t

 

w  

e  

s  

n  

i  

t  

o  

t  

A  

A  

s  

i  

t  

i  

W  

e  

b  

A  

a  

s

 

a  

u  

o  

o  

c  

l  

t  

w  

t  

T  

s  

l  

t  

t  

w  

t  

s  

B  

s  

t  

r  

f  

h  

v  

S

D

 

U  

d  

S  

m  

N

C

 

e  

i  

S  

a  

T  

&

A

 

t  

b  

p

 

W  

K  

C  

b  

v

 

e  

p

he data. While this supports that Algorithm 2 may be preferable for

on-Gaussian data, in our Human Connectome Project analyses the CSs

aps obtained using both methods ( Fig. 12 for Algorithm 3, Fig. D.2 for

lgorithm 2 ) were virtually identical, indicating that both methods

ould be equally effective for fMRI data with sample sizes on the or-

er of the HCP. 

While our simulations have primarily focused on how well the three

lgorithms are able to maintain a targeted nominal coverage level, we

lso carried out further analyses to evaluate each method’s capacity for

dentifying voxels with a true effect size greater than the threshold 𝑐

akin to the power of a statistical test). In Appendix E , we present the

 ̂ 

+ 
𝑐 

sensitivity’ of each of the three algorithms across our 2D and 3D

imulations. For each simulation type, we computed the sensitivity of

he upper CS ̂ 

+ 
𝑐 

as the proportion of voxels in the noise-free popula-

ion cluster  𝑐 that were identified in ̂ 

+ 
𝑐 
. In other words, ̂ 

+ 
𝑐 

sensitivity

s the percentage of voxels with a true Cohen’s 𝑑 effect size greater than

correctly identified within the upper CS ̂ 

+ 
𝑐 
. Overall, the results for

ll three methods were similar here ( Figs. E.1 –E.6 ), although Algorithm

 performed marginally better than the two remaining methods. In gen-

ral, we found that more than 100 subjects were required to achieve

 sensitivity above 10% , and that sensitivity could be exceedingly low

hen 𝑁 < 60 . These small-sample results are similar to corresponding

ensitivity figures reported in Noble et al. (2020) for standard fMRI sta-

istical methods, where the mean true positive rate was found to be less

han 5% after a cluster-based FWER correction for a range of task-fMRI

tudies using a sample size of 𝑁 = 20 (although note that this is not

 like-for-like comparison, as the CSs control the inclusion error of in-

ividual voxels rather than clusters). While the CSs may not be very

ensitive by this measure in small samples, we stress that the inference

s still valid, in the sense that the CSs can still provide (at least) a 95%

mpirical coverage rate. Therefore, while a traditional statistical test

ith voxelwise FDR correction may be more suitable for detecting non-

ero effects in this setting, the CSs could still find utility for delineating

ffect sizes that have surpassed a practically significant threshold and

roviding information about the spatial uncertainty of the thresholded

lusters. We are pursuing further work on ‘FDR-controlled’ CSs, which

e hope will lead to a more sensitive approach with the CSs in the fu-

ure. 

Although we have assessed the three algorithms on synthetic data,

here the variance of the subject-level errors was either homo- or het-

rogeneous across space, a limitation of this work is that only Gaus-

ian noise fields were considered for our simulations. While various

on-Gaussian error fields were included in the simulations conducted

n Sommerfeld et al. (2018) , where the CSs were shown to be effec-

ive for inference on the sample mean effect size, further assessments

n the methods proposed here using noise structures more comparable

o actual fMRI data would be a valuable addition to any future work.

s already discussed, the variance-stabilizing transformation utilized by

lgorithm 3 makes an assumption of Gaussianity, so a future study may

eek to verify whether this method’s performance is adversely affected

n a non-Gaussian setting. One approach that could be taken here is

hrough empirical evaluations based on real data, where a large dataset

s split in half to define a ground-truth and draw many random samples.

e investigated such an evaluation with the UK Biobank, but found that

ven with 4000 subjects set aside we were unable to obtain a highly sta-

le ground-truth set  𝑐 required to accurately assess the coverage rate.

s the UK Biobank expands towards making 100,000 subjects’ fMRI data

vailable, we look forward to revisiting this approach with yet larger

ample sizes. 

It is noticeable that the asymptotic coverage for all three procedures

ppeared to converge to above the nominal level in nearly all of our sim-

lations. As well as this, the size of the over-coverage varied depending

n the signal type and the confidence level (in all cases, the degree of
ver-coverage was higher for the smaller confidence level of 1 − 𝛼 = 0 . 80
ompared to the larger confidence level of 1 − 𝛼 = 0 . 95 ). We do not be-

ieve this is due to changes in the signal type per se, but instead due

o inaccuracies in the interpolation method used to assess if coverage

as obtained (i.e. if ̂ 

+ 
𝑐 

⊂  𝑐 ⊂ ̂ 

− 
𝑐 
) caused by the resolution of the lat-

ice, positively biasing results for signals with a longer boundary 𝜕 𝑐 .

he assessment method evaluates whether coverage holds at a discrete

et of sub-sampled points on 𝜕 𝑐 , but as the boundary length becomes

onger, this set of discrete points becomes relatively less dense within

he true, continuous boundary. Violations of the subset condition are

herefore more likely to be missed for signals with a longer boundary,

hich could explain why, for example, the empirical coverage results for

he large spherical effect were systematically higher than for the small

pherical effect ( Figs. 8 and 9 ), or why the coverage results for the UK

iobank signal type and a threshold of 𝑐 = 0 . 5 (longer boundary) were

ystematically higher than the corresponding results obtained using a

hreshold of 𝑐 = 0 . 8 (shorter boundary; Figs. C.15 and 11 ). This line of

easoning is also consistent with the greater levels of over-coverage seen

or the lower confidence levels, as more violations of coverage should

ave occurred here, but this also meant there was a higher chance that

iolations could be missed. We discussed this issue in further detail in

ection 5.2 of BTSN . 
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ppendix A. Variance-stabilizing transformation of Cohen’s 𝒅

stimator 

heorem 1. Assume the one-sample Gaussian model described in

ection 2.2 . For fixed 𝑁, let: 

 = 

√ 

𝑁 − 1 
𝑁 − 3 

, 𝑏 = 

√ 

8 𝑁 

2 − 17 𝑁 + 11 
( 𝑁 − 3)(4 𝑁 − 5) 2 

, 

nd define 

= 

1 
𝑏 
, 𝛽 = 

𝑎 

𝑏 
. 

hen for 𝑏 ∗ = 

√
𝑁 𝑏, 𝛼∗ = 

𝛼√
𝑁 

, and 𝛽∗ = 

√
𝑁 𝛽, define the transformation

∶ ℝ → ℝ as: 

(
𝑑 

)
= 

√
𝑁 

[ 
𝛼∗ 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 

𝛽∗ 𝑑 

) 

− 𝛼∗ 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 

𝛽∗ 𝑑 

( 

1 − 

3 
4 𝑁 − 5 

) 

−1 

) 

+ 

1 
2 𝑁 

𝑏 ∗2 

( 

𝑑 

( 

1 − 

3 
4 𝑁 − 5 

) 

−1 

) ( 

𝑁 − 1 
𝑁 − 3 

+ 𝑁 𝑑 2 
( 

8 𝑁 

2 − 17 𝑁 + 11 
16( 𝑁 − 3)( 𝑁 − 2) 2 

) 

) 

− 1 2 

] 
. 

(A

hen the random variable 𝜁
(
𝑑 

)
has, approximately, zero mean and unit

ariance. 

roof. We closely follow the workings given in the ‘ 2. Noncentral t. ’

ection of Laubscher (1960) . We have shown that 
√

𝑁 𝑑 is distributed

y a noncentral 𝑡 -distribution with noncentrality parameter 
√

𝑁 𝑑 and

 − 1 degrees of freedom. Defining: 

 𝑁 

= 

√ 

𝑁 − 1 
2 

Γ
(

𝑁−2 
2 

)
Γ
(

𝑁−1 
2 

) , (A.2)

here Γ is the gamma function, then the expectation and variance of

𝑁 𝑑 are: 

 

[√
𝑁 𝑑 

]
= 

√
𝑁 𝑑𝐶 𝑁 

, Var 
[√

𝑁 𝑑 

]
= 

𝑁 − 1 
𝑁 − 3 

+ 𝑁𝑑 2 

( 

𝑁 − 1 
𝑁 − 3 

− 𝐶 

2 
𝑁 

) 

. (A.4) 

t is known that 𝐶 𝑁 

is well-approximated by the polynomial 

 𝑁 

≈

( 

1 − 

3 
4 𝑁 − 5 

) 

−1 . (A.5)

Substituting into Eqs. (A.3) and (A.4) , we deduce approximations of the

xpectation and variance of 
√

𝑁 𝑑 , 

 

[√
𝑁 𝑑 

]
≈
√

𝑁 𝑑 

( 

1 − 

3 
4 𝑁 − 5 

) 

−1 = 𝑚 1 , (A.6)

ar 
[√

𝑁 𝑑 

]
≈ 𝑁 − 1 

𝑁 − 3 
+ 𝑁 𝑑 2 

( 

8 𝑁 

2 − 17 𝑁 + 11 
16( 𝑁 − 3)( 𝑁 − 2) 2 

) 

= 𝑚 2 . (A.7)

ow, noting that: 

 

2 
1 = 𝑁𝑑 2 

(4 𝑁 − 5) 2 

16( 𝑁 − 2) 2 
, (A.8)

hen 𝑚 2 can be expressed in the form 

 2 = 𝑎 2 + 𝑏 2 𝑚 

2 
1 , (A.9)
here 𝑎 = 

√ 

𝑁−1 
𝑁−3 , 𝑏 = 

√ 

8 𝑁 

2 −17 𝑁+11 
( 𝑁 −3)(4 𝑁 −5) 2 . Using the variance expression in

A.9) and applying Corollary 1 in Laubscher (1960) , the approximate

ariance-stabilizing transformation of 
√

𝑁 𝑑 is given by 

𝜓 

(√
𝑁 𝑑 

)
= ∫

√
𝑁 ̂𝑑 

0 

(
𝑎 2 + 𝑏 2 𝑥 2 

)
− 1 2 𝑑𝑥 

= 𝛼𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 

𝛽
√

𝑁 𝑑 

) 

, (A.10) 

here 𝛼 = 

1 
𝑏 

and 𝛽 = 

𝑎 

𝑏 
. The quadratic Taylor approximation of

 

(√
𝑁 𝑑 

)
about the point 𝑚 1 is given by 

 

(√
𝑁 𝑑 

)
≈ 𝜓( 𝑚 1 ) − 

1 
2 
𝑏 2 𝑚 1 𝑚 

− 1 2 
2 . (A.11)

Therefore, the random variable: 

 

(√
𝑁 𝑑 

)
= 𝜓 

(√
𝑁 𝑑 

)
− 𝜓( 𝑚 1 ) + 

1 
2 
𝑏 2 𝑚 1 𝑚 

− 1 2 
2 (A.12)

ill have, approximately, mean zero and unit variance. Substituting the

recise expressions for 𝜓, 𝑚 1 , and 𝑚 2 into (A.12) yields 

 

(√
𝑁 𝑑 

)
= 𝛼𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 
𝛽
√

𝑁 𝑑 

) 
− 𝛼𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 

𝛽
√

𝑁 𝑑 

( 
1 − 3 

4 𝑁 − 5 

) 
−1 

) 

+ 1 
2 
𝑏 2 

( √
𝑁 𝑑 

( 
1 − 3 

4 𝑁 − 5 

) 
−1 

) ( 

𝑁 − 1 
𝑁 − 3 

+ 𝑁 𝑑 2 
( 

8 𝑁 

2 − 17 𝑁 + 11 
16( 𝑁 − 3)( 𝑁 − 2) 2 

) ) 

− 1 2 . 

(A.13)

At this point, we have established a variance-stabilizing transformation

n terms of 
√

𝑁 𝑑 , when in practice, we require a transformation in terms

f the Cohen’s 𝑑 estimator 𝑑 . This is possible by applying a change of

ariables to 𝑏, 𝛼 and 𝛽. Defining 𝑏 ∗ = 

√
𝑁 𝑏, 𝛼∗ = 

1 
𝑏 ∗ 

= 

1 √
𝑁 

𝛼, and 𝛽∗ =
𝑏 ∗ 

𝑎 
= 

√
𝑁 𝛽, substituting into (A.13) obtains the desired transformation: 

 

(√
𝑁 ̂𝑑 

)
∶= 𝜁

(
𝑑 

)
= 
√

𝑁 

[ 
𝛼∗ 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 
𝛽∗ 𝑑 

) 
− 𝛼∗ 𝑎𝑟𝑐𝑠𝑖𝑛ℎ 

( 

𝛽∗ 𝑑 

( 
1 − 3 

4 𝑁 − 5 

) 
−1 

) 

+ 1 
2 𝑁 

𝑏 ∗2 

( 

𝑑 

( 
1 − 3 

4 𝑁 − 5 

) 
−1 

) ( 

𝑁 − 1 
𝑁 − 3 

+ 𝑁 𝑑 2 
( 

8 𝑁 

2 − 17 𝑁 + 11 
16( 𝑁 − 3)( 𝑁 − 2) 2 

) ) 

− 1 2 

] 
. 

(A.14)

□
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A

F ohen’s 𝑑 field used for the final 3D simulation, as shown in the bottom row of Fig. 5 . 

A

F hen’s 𝑑 threshold of 𝑐 = 0 . 5 (instead of the 𝑐 = 0 . 8 threshold used for the simulation 

r er-coverage for all three methods across all sample sizes, and on-the-whole the CSs 

p f 𝑐 = 0 . 8 ( Fig. 11 ), it is notable that there is a slightly higher degree of over-coverage 

a cies in the interpolation method used to assess the simulations results, rather than 

i maller threshold used here, it is more likely that violations of coverage were missed 

(  𝜕 𝑐 ), inducing a positive bias in the results. We discuss this issue in more depth at 

t

ppendix B. UK Biobank Cohen’s 𝒅 image histogram 

ig. B1. Histogram showing the distribution of effect sizes in the UK Biobank C

ppendix C. Supplementary simulation results 

ig. C1. Coverage results for the UK Biobank signal type simulation with a Co

esults presented in Fig. 11 ). For this smaller threshold, we observed valid, ov

erformed well. In comparison to the results obtained for the larger threshold o

cross all of the results here. We believe this may be in part due to inaccura

naccuracies in the method itself; as the boundary length 𝜕 𝑐 is longer for the s

due to the fact coverage is assessed at only a discrete set of lattice points along

he end of Section 5.2 . 
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A

F ing Algorithm 1 to the HCP working memory task data, using three Cohen’s 𝑑 effect 

s s presented here are slightly more conservative than the corresponding CSs obtained 

w nd blue lower CSs are larger). This is consistent with the simulation results obtained 

i istently larger than the other two methods. 
ppendix D. Supplementary Human Connectome Project results 

ig. D1. S.1:Slices views of the Cohen’s 𝑑 Confidence Sets obtained from apply

ize thresholds, 𝑐 = 0 . 5 , 0 . 8 and 1.2. Comparing with Fig. 12 and Fig. D.2 , the CS

ith Algorithms 2 and 3 (in the sense that the red upper CSs here are smaller, a

n Sections 4.1 and 4.2 , where the empirical coverage for Algorithm 1 was cons
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F g Algorithm 2 to the HCP working memory task data, using three Cohen’s 𝑑 effect 

s er CSs presented here are almost identical to the corresponding CSs obtained with 

A

ig. D2. Slices views of the Cohen’s 𝑑 Confidence Sets obtained from applyin

ize thresholds, 𝑐 = 0 . 5 , 0 . 8 and 1.2. Comparing with Fig. 12 , the upper and low

lgorithm 3 . 



A. Bowring, F.J.E. Telschow, A. Schwartzman et al. NeuroImage 226 (2021) 117477 

A

ce Sets ̂ 

+ 
𝑐 

obtained using the three algorithms proposed in Section 2.6 across 

o  in Sections 4.1 and 4.2 , in Figs. E1 , E2 , E3 , E4 , E5 and E6 below we show 

t re included in the upper CS ̂ 

+ 
𝑐 

across all toy-runs of the respective signal- 

p ̂
 

+ 
𝑐 

⊂  𝑐 ⊂ ̂ 

− 
𝑐 
). In other words, this is the average percentage of voxels with 

a  within the upper CS ̂ 

+ 
𝑐 
. In this sense, these results are similar to the true 

p

s (top row) and heterogeneous (bottom row) Gaussian noise structures. 
ppendix E. ̂ 

+ 
𝒄 Sensitivity 

Here we provide an indication of the sensitivity of the upper Confiden

ur simulations. For each of the 2D and 3D simulation results presented

he proportion of voxels in the noise-free population cluster  𝑐 that we

lus-noise model whenever coverage was obtained (i.e. trials for which 
 true Cohen’s 𝑑 effect size greater than 𝑐 that were correctly identified

ositive rate used to indicate the sensitivity of a statistical test. 

Fig. E1. Sensitivity results for the ramp signal, with homogeneou
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us (top row) and heterogeneous (bottom row) Gaussian noise structures. 
Fig. E2. Sensitivity results for the circular signal, with homogeneo
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eous (top row) and heterogeneous (bottom row) Gaussian noise structures. 
Fig. E3. Sensitivity results for the small sphere signal, with homogen
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eous (top row) and heterogeneous (bottom row) Gaussian noise structures. 
Fig. E4. Sensitivity results for the large sphere signal, with homogen
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neous (top row) and heterogeneous (bottom row) Gaussian noise structures. 

F ull standard deviation image was used as the standard deviation of the subject-level 

G

Fig. E5. Sensitivity results for the multiple spheres signal, with homoge

ig. E6. Sensitivity results for the UK Biobank signal, where the UK Biobank f

aussian noise fields. 
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