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ictive 3D-QSAR models for
predicting the activities of novel oxadiazole
derivatives as multifunctional anti-Alzheimer
agents†

Yekai Sun,‡a Zirou Zhang,‡a Menghao Wen,a Fangfang Wang, *a Xiuling Li,*a

Wei Yang*bcd and Bo Zhoue

In recent years, Alzheimer disease (AD) as a neurodegenerative disorder has been increasing annually with

the aging of the global population, therefore, development of novel anti-AD drugs is imperative. Studies

have proven that glycogen synthase kinase-3b (GSK-3b) is a pivotal factor in the development of AD.

Therefore, GSK-3b inhibitors would provide powerful means to treat the disorders, such as AD. To in-

depth study the structure–activity relationship of a series of oxadiazole derivatives as multifunctional

anti-Alzheimer agents, computational three dimensional quantitative structure–activity relationship (3D-

QSAR) studies, molecular docking and molecular dynamics were conducted. The comparative molecular

field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods were

conducted to build up the 3D-QSAR models, and exhibited significant results (Rcv
2 = 0.692, Rpred

2 =

0.6885/CoMFA, Rcv
2 = 0.696, Rpred

2 = 0.6887/CoMSIA). The accuracy of the 3D-QSAR models was

validated by external validation and applicability domain analysis. The derived contour maps provided

structural information for designing novel compounds to improve the inhibitory activities. Additionally,

molecular docking and molecular dynamics were also employed to investigate the bonding interactions

and stability of this series of inhibitors in the active site of GSK-3b, and the results revealed that the

importance of residues Ile62, Asn64 Val70, Tyr128, Val129 and Leu182 for ligand binding to the receptor

GSK-3b. All the results would be of great help for the discovery of new GSK-3b agents that can solve the

problem of AD.
1 Introduction

Alzheimer disease (AD) was rst described by the German
psychiatrist Alois Alzheimer in 1906 with clinical symptoms
such as progressive memory loss, cognitive impairment, exec-
utive dysfunction, and behavioral change.1 Evidence has proven
that the annual incidence of AD appears to increase with age,
from approximately 53 new cases per 1000 people between age
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65 and 74 to 231 new cases per 1000 people over 85.2 Addi-
tionally, the average life expectancy is three to nine years aer
the diagnosis of AD, and the World Health Organization (WHO)
has reported that AD was the seventh leading cause of death in
2019.3 Unfortunately, there is no cure for this disease so far.

Research has proven that the etiology of AD is considered to
be multifactorial, a few cases are caused by familial origin, most
cases are linked to environmental factors.4 The most relevant
histopathological hallmark for AD is characterized by two
aberrant structures: senile plaques (SP) and neurobrillary
tangles (NFTs).5 The b-amyloid peptide (Ab) is regarded as the
most relevant factor for SP.6 The main component of NFT is the
microtubule-associated protein tau, which can be aberrantly
hyperphosphorylated.7 Relevant studies have shown that the
glycogen synthase kinase 3b (GSK-3b) is mainly responsible for
the modication of tau protein 8.

GSK-3 is a Ser/Thr kinase that is originally found in
mammals, two GSK-3 isoforms GSK-3a and GSK-3b are encoded
by different genes, but possess 85% homology.9 Although GSK-
3b is widely expressed in all tissues, the highest levels are in the
brain, neurons, and developing brains.10 Nowadays, the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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structure of GSK-3b co-crystallized with different inhibitors has
been solved by X-ray crystallography; the crystal structure of
GSK-3b shows that this protein is composed of 433 amino acids
with a mass of 48 034 Da. Furthermore, this protein is
comprised by the N-terminal domain (a b-strand domain
contains residues from 25 to 138 with some antiparallel
strands), C-terminal domain (with a-helical domain from
residue 136 to 343), and kinase domain (the ATP binding site is
located at the interface between the glycine-rich loop and the
hinge domain).11 Researches have validated that GSK-3b can
phosphorylate 15 site on tau protein: Ser46, Thr50, Thr175,
Thr181, Ser199, Ser202, Thr205, Thr212, Thr217, Thr231,
Ser235, Ser396, Ser400, Ser404, and Ser413, further conrming
the relationship between GSK-3b and AD.12

In addition, a large body of evidence suggests the signicant
role of GSK-3b in the AD pathogenesis. The rst proof was
presented in 1988, the enzymatic activity from a partially puri-
ed fraction of brain extracts was demonstrated to generate
paired helical laments-like epitopes on tau protein 13. The
automated high-throughput uorescence imaging systems were
also used to study GSK-3b, and the result indicated that an
abnormal increase in GSK-3b activity, further led to distur-
bances in b-secretase localization and extensive Ab secretion.14

Additionally, the mouse model has proven that GSK-3b could
reduce Ab, improve Ab-induced behavioral performance, and
reduce neuronal loss.15 Therefore, it is imperative to develop
more efficient GSK-3b inhibitors to cure AD.

To date, different fundamental options can be employed to
inhibit GSK-3b, such as competitive metal inhibitors, non-ATP
competitive inhibitors, ATP-competitive inhibitors, peptide
inhibition, and substrate competitive inhibitors. Some groups
have been endeavoring to synthesize novel GSK-3b derivatives
with improved inhibitory activities.16–32 However, it is time-
consuming and material redundant for the synthesis of novel
compounds. Conversely, energy will be saved when the struc-
tural information is obtained prior to in vivo experiment.
Therefore, comparative molecular eld analysis (CoMFA) and
comparative molecular similarity indices analysis (CoMSIA)
approaches were carried out upon a series of novel synthesized
oxadiazole derivatives with GSK-3b inhibitory activities.
Furthermore, molecular docking and molecular dynamics (MD)
analyses were employed to investigate the detailed binding
mode of ligand–receptor interactions. The whole analyses
would provide a useful platform for the prediction of the
activities of novel oxadiazole derivatives and aid the design of
new chemical entities with enhanced GSK-3b inhibitory
activities.

2 Experiments and methods
2.1. Dataset

In this work, the employed oxadiazole derivatives were chosen
from ref. 33, and the inhibitory activity is expresses as IC50. To
construct predictive 3D-QSAR models, IC50 (mM) values are
converted to the corresponding pIC50 (−log IC50), and employed
as dependent variable in the QSAR analyses. To develop and
validate the models, the whole dataset is initially divided into
© 2024 The Author(s). Published by the Royal Society of Chemistry
training set and test set according to the usual guidelines (the
test compounds should be representative of structural diversity
and uniformly span over the whole range of activity). The
structures and activities of the compounds are shown in
Table 1.

2.2. Calculation of molecular descriptors

To improve the performance of the 3D-QSAR models, several
molecular descriptors were calculated by dragon soware. Zero-
, one-, two-, three-dimensional descriptors and others can be
computed, such as constitutional, topological, walk and path
counts, connectivity indices, information indices, 2D autocor-
relations, edge adjacency indices, Burden eigenvalues, topo-
logical charge indices, eigenvalue-based indices, Randic
molecular proles, geometrical, RDF (Radial Distribution
Functions), 3D-MoRSE (3D-Molecular Representation of Struc-
ture based on Electron diffraction), WHIM (Weighted Holistic
Invariant Molecular descriptors), GETAWAY (Geometry,
Topology and Atoms-Weighted AssemblY), functional group
counts, atom-centred fragments, charge descriptors, and
molecular properties.34 In this way, the total number of calcu-
lated molecular descriptors for the whole set under analysis
results in 1664 variables. However, not all the calculated
descriptors would be taken into account for constructing the
QSAR models, thus some descriptors would be removed
according to the following criteria: (1) those with the same
values; (2) descriptors containing 95% zero values.

2.3. 3D-QSAR analysis

2.3.1. Molecular modeling and alignment. The 3D struc-
tures of the compounds are constructed using sybyl soware,
partial atomic charges are added by the Gasteiger Hückel
method. Then, the initial geometries are optimized using the
following settings: method = Powell, initial optimization =

simple, termination = gradient, 0.05 kcal mol−1, max iterations
= 100, the other parameters are set to default values.

Various studies have indicated that molecular alignment
and bioactive conformation selection are signicant factors in
developing 3D-QSAR models.35 The accuracy of the models and
the reliability of the contour maps depends mainly on the result
of alignment. In this work, two different alignment rules are
employed: template ligand-based alignment (alignment I) and
docking-based alignment (alignment II). For alignment I, the
most active compound 16 is selected as template and all other
molecules are aligned on the common substructures (colored as
blue, listed in Fig. 1A) using the “Align database” function, and
the result is shown in Fig. 1B. For alignment II, all compounds
are docked into the ligand binding pocket of the receptor, and
the docked conformations are used for constructing the QSAR
models. The statistical results show that the models based on
alignment II are not as good as alignment I, therefore, the
template ligand-based models are mainly discussed in the
present work.

2.3.2. CoMFA and CoMSIA models. The steric (Lennard-
Jones potentials) and electrostatic (Coulomb potentials) ener-
gies for CoMFA36 are probed using a sp3 carbon atom with +1
RSC Adv., 2024, 14, 30230–30244 | 30231



Table 1 The structures and inhibitory activities of the employed oxadiazole derivatives

Compound A R1 R2 R3 R4 R5 pIC50 (mM)

1 4-OCH3 — — OCF3 — 4.8128

2 4-C(CH3)3 — — OCF3 — 5.1158

3 5-NO2 — — OCF3 — 5.0799

4 4-COCH3 — — OCF3 — 5.9914

5 2-COF3 — — OCF3 — 5.9172

6 3-CF3 — — OCF3 — 5.5800

7* 3-NHCOCH3 — — OCF3 — 5.6635

8 4-OCF3 — — OCF3 — 5.0585

9* 4-F, 5-Cl — — OCF3 — 4.7224

10 4-F — — OCF3 — 5.5702

11 4-Br — — OCF3 — 5.5058

12 — — — OCF3 — 5.1175
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Table 1 (Contd. )

Compound A R1 R2 R3 R4 R5 pIC50 (mM)

13 5-COOCH3 — — OCF3 — 5.9245

14a 5-Cl — — OCF3 — 5.5258

15a 4-C(CH3)3 — — F CF3 5.4056

16 4-C(CH3)3 — — — Cl 6.7212

17 4-C(CH3)3 — — C(CH3)3 — 6.2518

18 4-C(CH3)3 — — CF3 — 5.8268

19 4-C(CH3)3 — — F F 5.8794

20 4-C(CH3)3 — — CH2CH3 — 5.4895

21 4-C(CH3)3 F — Cl — 5.5452

22a 4-C(CH3)3 — — OCH3 — 5.0048

23 4-C(CH3)3 — — CH(CH3)2 — 5.684

24a 4-C(CH3)3 CH3 — — — 5.6402

© 2024 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2024, 14, 30230–30244 | 30233
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Table 1 (Contd. )

Compound A R1 R2 R3 R4 R5 pIC50 (mM)

25 4-C(CH3)3 — — CH3 — 5.3410

26 4-C(CH3)3 — CH3 — — 6.0269

a Test set.

RSC Advances Paper
charge and van der Waals radius of 1.52 Å. The steric and
electrostatic elds are calculated using the Tripos force eld37

with a distance-dependent dielectric constant at all intersec-
tions on a spaced grid of 2 Å. The grid box dimensions are
determined in such a way that the region boundaries are
extended beyond 4 Å in each direction from the coordinates of
each compound. Furthermore, the minimum sigma is set to
2.0 kcal mol−1 to improve the signal to noise ratio by deleting
the lattice points whose energy variation are below the
threshold. The steric and electrostatic elds are scaled by the
standard method with default cut-off energy of 30 kcal mol−1.

For CoMSIA,38 a distance dependent Gaussian type func-
tional form is introduced, thus it can avoid singularities at the
atomic positions and dramatic changes of potential energy. Five
Fig. 1 (A) The template compound 16, the common substructure is sho

30234 | RSC Adv., 2024, 14, 30230–30244
CoMSIA elds (steric, electrostatic, hydrophobic, hydrogen
bond donor and hydrogen bond acceptor) are used to develop
the CoMSIA models. The sp3 carbons with a van der Waals of 1
Å, charge +1, hydrophobicity +1, hydrogen bond donating +1,
and hydrogen bond accepting +1 are used as probe atom at
every lattice point of the grid box to generate different elds.39

In addition, Gaussian functions controlled by the value of
attenuation factor (is set by default to 0.3) are used to determine
the distance between the compound atoms and the probe
atoms.40

2.3.3. Partial least squares (PLS) analysis. The PLS analysis
is employed to construct the linear relationship between the
CoMFA/CoMSIA descriptors (independent variables) and the
activities (dependent variables).37,41 Initially, cross-validation
wn in blue. (B) The result for template ligand-based alignment.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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applying the leave-one-out (LOO) approach is performed to
generate the optimal number of components (NC) and cross-
validated correlation coefficient (Rcv

2). Then, non-cross valida-
tion is conducted using the NC with a column lter value of 2.0
to generate the nal 3D-QSAR models. Additionally, some
statistical parameters: the non-cross-validated correlation
coefficient (Rncv

2), the standard error of estimation (SEE) and F
value are generated to evaluate the result.

To validate the predictive ability of the derived models, the
activities of the test set are predicted, and the external predictive
correlation coefficient (Rpred

2) is dened by the following
equation:

Rpred
2 ¼ ðSD� PRESSÞ

SD
(1)

where SD is the sum of squared deviation between the activities
of the test set andmean activity of the training set, and PRESS is
the sum of squared deviations between the experimental and
predicted activities for compounds in the test set.
2.4. Applicability domain (AD)

In general, the utility of a QSAR model mainly depends on the
predictive ability for novel compounds. Therefore, the domain
of applicability must be calculated, which is dened through
the degree of similarity of the predicted molecule to those in the
training set.42,43 When the compound is located within the
applicability domain, the model would be regarded as reliable.
Several methods can be employed to compute the AD, such as:
ranges in the descriptor spaces, geometrical methods, proba-
bility density distribution, distance-based methods, range of
response variable, and miscellaneous. In the present study, the
AD is calculated through the following link: http://
dtclab.webs.com/sowaretools or http://teqip.jdvu.ac.in/
QSAR_Tools/.
2.5. Molecular docking

Molecular docking is a method that can be implemented to
study the interactions of compounds with the receptor at the
molecular level. In this work, Autodock soware was utilized for
molecular docking experiments. The X-ray crystal structure of
GSK-3b (PDB ID: 3F88) was retrieved from the RCSB PDB data-
base (https://www.rcsb.org/). Initially, the crystallized ligands
and water molecules were removed from the protein, polar
hydrogen atoms and Kollman charges were calculated. The 3D
grid was generated using the AutoGrid algorithm to evaluate
ligand-receptor interactions energy.44 The grid map was
created at 60 Å in all dimensions (X, Y, Z) with a default grid
space size of 0.375 Å. In addition, the co-crystallized ligand was
regarded as a reference inhibitor for molecular docking. Aer
docking, the conformations with the lowest energy were
collected to construct the docking-based 3D-QSAR models.

To validate the performance of molecular docking, the re-
docking procedure was carried out on the co-crystallized
ligand. The root means square deviation (RMSD) was calcu-
lated between the crystal structure and the docked conforma-
tion. The result shows that the RMSD value is smaller than 2 Å,
© 2024 The Author(s). Published by the Royal Society of Chemistry
suggesting that the molecular docking is reliable, and the
parameters can be employed to dock the oxadiazole derivatives
to the active site of GSK3b.45
2.6. Molecular dynamics

Based on the docking results, the scaffold of the most potent
compound 16 and the lowest compound 09 was further inves-
tigated in MD using AMBER.46 The AMBER 19SB force eld was
used to describe the protein, while the General Amber Force
Field (GAFF) parameter and restrained electrostatic potential
(RESP) charges were applied to the ligands.47 Each ligand–
receptor complex was neutralized using counter ions (Na+ and
Cl−) and immersed in a box of TIP3P48 water molecules with
a margin distance of 16 Å.

The systems were energetically minimized using a multistep
process involving 10 000 steps of the steepest descent method
followed by 5000 steps of the conjugate gradient method.
Subsequently, the systems were gradually heated from 0 to 300
K over 500 ps in the NVT ensemble to ensure that all water
molecules were fully optimized. The equilibration process
included 500 ps of heating, 500 ps of density equilibration with
weak restraints (5 kcal mol−1), 500 ps of constant pressure (1
atm) equilibration at 300 K with a time step of 2 fs. During the
MD simulation, all hydrogen atoms were constrained by SHAKE
algorithm49 and the non-bonded cutoff distance was set to 16 Å.
Finally, a 200 ns production run with 3 replicates was con-
ducted, and the trajectories were sampled every 10 ps.
2.7. Binding free energy calculations

The free energy of ligands binding to the receptor GSK3b was
calculated by the molecular mechanics-Poisson Boltzmann
surface area (MM-PBSA) and the molecular mechanics gener-
alized born surface region (MM-GBSA).50,51 The binding free
energy (DGbind) is computed as follows:

DGbind = DEMM + DGsol − TDS (2)

where DEMM, DGsol and TDS is the molecular mechanical free
energy, the solvation free energy, and the entropy contribution,
respectively. DEMM is the sum of the van der Waals interaction
energy (DEvdw), electrostatic interaction energy (DEele), and the
internal energy of bonds, angles and torsions (DEval). The
solvation free energy DGsol is computed by: DGsol = DGPB/GB +
DGNP, the DGPB/GB and DGNP represents the electrostatic energy
and non-polar energy, respectively, and DGPB is calculated by
Poisson-Boltzmann function52 with the default cavity radii.
DGGB employs Hawkins, Cramer, and Truhlar pairwise gener-
alized Born model with the parameters described by Case.53 The
DGNP was determined according to:

DGNP = gSASA + b (3)

The SASA (represents the solvent accessible surface area) was
calculated by the LCPO method,54 the parameters of g and b are
set to 0.00542 kcal mol−1$Å−2 and 0.92 kcal mol−1,
respectively.55
RSC Adv., 2024, 14, 30230–30244 | 30235
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2.8. Local principal component analysis and local free
energy landscape

As a statistical technique, principal component analysis (PCA)
was employed to reduce the complexity of the dynamics data
and extract the stable binding pose with minimum local free
energy. The PCA process was conducted on the replicates of
each production phase by Gromacs v 5.11.56 In addition, the
local free energy of each microstate was computed by
a weighted-histogram analysis (WHAM).57 The parameters and
congurations of these analyses were employed the same as in
our previous published works,58–60 therefore, it is no longer
described in detail here.
3 Results and discussion
3.1. CoMFA and CoMSIA statistical results

To achieve a predictive model, different combinations of the
elds were computed, and the results of CoMFA and the various
combinations of CoMSIA elds are shown in Table S1.†

According to the statistical parameters at the level of the
construction phase Rcv

2 and at the level of external validation
Rpred

2 of the model, we have selected the optimum CoMFA and
CoMSIA models for analysis, as listed in Table 2. The data
reveals that the Rcv

2 values for CoMFA and CoMSIA models are
all greater than 0.5, suggesting that the models have good
internal predictive ability. The Rncv

2 values are all very close to 1,
indicating that the tting degree of the models is high. In
addition, the predictive correlation coefficient Rpred

2 values are
found to be higher than 0.5 for the test set, illustrating that the
derived 3D-QSAR models are statistically signicant and
Table 2 Statistical results for the optimal QSAR modelsa

Parameters CoMFA CoMSIA

Rcv
2 0.692 0.696

Rncv
2 0.818 0.820

SEE 0.260 0.260
F 21.670 21.852
Rpred

2 0.6885 0.6887
SEP 0.313 0.312
NC 2 2

Field contribution
S 0.078 —
E 0.006 0.016
H — 0.044
D — 0.020
A — —
RDF060p 0.303 0.299
Mor20e 0.277 0.278
Mor28m 0.336 0.343

a Rcv
2 = cross-validated correlation coefficient using the leave-one-out

methods; Rncv
2 = non-cross-validated correlation coefficient; SEE =

standard error of estimate; F = ratio of Rncv
2 explained to unexplained

= Rncv
2/(1 − Rncv

2); Rpred
2 = predicted correlation coefficient for the

test set of compounds; SEP = standard error of prediction; NC =
optimal number of principal components; S = steric, E =
electrostatic, H = hydrophobic, D = H-bond donor, A = H-bond
acceptor.

30236 | RSC Adv., 2024, 14, 30230–30244
predictive. The correlation between actual activities and pre-
dicted activities depicted in Fig. 2, demonstrates that the pre-
dicted values are in good agreement with the experimental
ones, proving that the CoMFA and CoMSIA models are reliable.

For CoMFA model, the steric and electrostatic contributions
are 7.8% and 6%, respectively, indicating that the steric eld
has a greater inuence on the inhibitory activity. Additionally,
molecular descriptors H0p (30.3%), MATS4m (27.7%), and
nROH (33.6%) are introduced to improve the performance of
the model.

In the CoMSIA model, the steric, electrostatic, hydrophobic,
hydrogen bond donor and hydrogen bond acceptor elds
interact with each other and cannot be completely independent,
therefore, the ve elds are randomly arranged to get different
combination, as shown in Table S1.† It is obvious that the
model based on electrostatic, hydrophobic and hydrogen bond
donor elds gives the highest Rcv

2 values of 0.696 with 2
components, relatively higher Rncv

2 of 0.820, F value of 21.852,
and SEE value of 0.260. The contribution of electrostatic,
hydrophobic, hydrogen bond donor, RDF060p, Mor20e, and
Mor28m are 1.6%, 4.4%, 2%, 29.9%, 27.8%, and 34.3%,
respectively. The predictability and the reliability of the CoMSIA
model is judged by external validation, the external predictive
ability Rpred

2 is 0.6887, indicating that this model has good
predictive capacity. And the graphs of actual versus predicted
inhibitory activity exhibit satisfactory linear correlation
(Fig. 2B).
3.2. Contour map analysis

The contour maps of CoMFA and CoMSIA models would give
the information about the favorable and unfavorable regions of
the compounds. Changes in the structures according to contour
map might result in the changes of the activities, therefore, the
information originated from the maps can be employed to
modify the compounds to improve the activity. Compound 16
with the potent activity was chosen to illustrate the contour
maps using the StDev*Coeff type.

3.2.1. Contour maps for CoMFA model. The steric contour
maps are shown in Fig. 3A, the green contours indicate areas
where bulky group would favor activity, while the yellow
contours show unfavorable effects of bulky groups. A green
contour near R1 substitution indicates that bulky groups at this
site would be favorable. For example, compound 2 with 4-
C(CH3)3 exhibits higher activity than compound 1 (4-OCH3).
The above green contour map is also around ring A, further
suggesting that large group at this position would benet the
potency. The compounds employed in the present work are
either or at this position, and compounds 12–14
with group exhibit lower activity than the compound 16
with the highest activity. In addition, the R5 position is sur-
rounded by a small yellow contour, illustrating that a minor
group at this region would increase the activity. This may
explain why compound 19 bearing a small group –F shows
signicant increased activity than compound 15 with a huge
substituent –CF3.
© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 2 The plots of the correlations between the actual and the predicted activities. (A) CoMFA model. (B) CoMSIA model.
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The CoMFA electrostatic contours indicated by blue (electro-
positive favored region) and red (electronegative favored region)
colors are listed in Fig. 3B. A blue contour near ring A suggests
that the electropositive substituent can enhance the activity.
There are red and blue contours existing around R1 substituent,
however, the R1 group is closer to the blue contour, further sug-
gesting that electropositive groups are favored, and that is why the
activity of compound 2 (4-C(CH3)3) is higher than that of
compound 1 (4-OCH3). The presence of a blue contour around the
R2 substituent also suggests electropositive group at this region
would be favorable, this is in good correlation with the experi-
mental activities. As a result of comparing the activities, the rank
would be as: compound 24 (CH3) > compound 21 (F). A blue
contour near the R3 position suggests the electro-donating groups
on this position would benet activity, therefore, for the most
active compound, this group can bemodied. In addition, a small
red contour near the R5 substituent suggests that an electroneg-
ative substituent would increase the activity.

3.2.2. Contour maps for CoMSIA model. Fig. 4A depicts the
CoMSIA electrostatic contour maps, similar results are derived
for the electrostatic contours of CoMSIA as those of the CoMFA
model, such as the blue contour at ring A, red contour around
R5 substituent. However, there are also some differences
between the CoMFA-electrostatic and CoMSIA-electrostatic
contours, for example, the blue contours around R2 and R3
Fig. 3 CoMFA StDev*Coeff contour plots in combination of compound
represent 80% and 20% level contributions, respectively. (B) The electros
20% level contributions, respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
(CoMFA contour map) disappeared in the CoMSIA contour
maps. Furthermore, a red contour is located at R4 substituent,
suggesting that electronegative groups are favored, thus modi-
cations can be made at this position to improve the inhibitory
activity.

The hydrophobic interactions are depicted by yellow and
white contour maps (Fig. 4B), where the yellow and white
contours represent the hydrophobic groups favored and dis-
favored regions. A yellow contour map is observed around R1,
indicating that hydrophobic substituents are favorable for
improving potency. This may explain why the activity of
compound 10 with 4-F at R1 is greater than that of compound 3
with 5-NO2. Meanwhile, another yellow contour map is also
located at R5 substituent, illustrating that hydrophobic groups
are favorable for the activity. Additionally, a grey contour
around R4 position indicates that a hydrophobic substituent
would decrease the potency. This may explain why compound 4
with a relative more hydrophilic substituent –OCF3 at this
position exhibits better potency than compound 18 (–CF3).

The hydrogen bond donor contour map of CoMSIA is shown
in Fig. 4C, the cyan contour indicates that the activity of the
compound would increase with the appearance of hydrogen
bond donor group, while the purple area is the opposite. For
this series of inhibitors, the substituents possess no hydrogen-
bonded donor groups, thus, the contour maps are mainly
16. (A) The steric contour map, where the green and yellow contours
tatic contour map, where the blue and red contours represent 80% and

RSC Adv., 2024, 14, 30230–30244 | 30237



Fig. 4 CoMSIA StDev*Coeff contour plots in combination of compound 16. (A) The electrostatic contour map, where the blue and red contours
represent 80% and 20% level contributions, respectively. (B) The hydrophobic contour map, where the yellow and grey contours represent 80%
and 20% level contributions, respectively. (C) The hydrogen bond donor contour map, where the cyan and purple contours represent 80% and
20% level contributions, respectively.

Table 3 Descriptors used in model construction

Symbol Class Meaning

RDF060p RDF descriptors Radial distribution function-6.0/weighted by atomic polarizabilities
Mor20e 3D-MoRSE descriptors 3D-MoRSE-signal 20/weighted by atomic Sanderson electronegativities
Mor28m 3D-MoRSE descriptors 3D-MoRSE-signal 28/weighted by atomic masses

RSC Advances Paper
distributed around the common skeleton, for example, a cyan
and a purple contour are positioned at the –NH–SO2 group, and
a purple contour is located at another –NH group, further
illustrating that the groups at these areas can interact with the
receptor to enhance the activity.
3.3. Interpretation of the molecular descriptors

It is apparent from Table 2 that the molecular descriptor
RDF060p plays a signicant role in affecting the inhibitory
activity. This descriptor belongs to the RDF descriptors, which
is weighted by atomic polarizabilities (Table 3). Studies have
shown that the polarizability is connected to the chemical
reactivity of a compound. Therefore, the polarizability
Fig. 5 The RMSD of the backbone atoms relative to the docking structu
three replicates of GSK3b/L16.

30238 | RSC Adv., 2024, 14, 30230–30244
descriptor RDF060p is signicant for the inhibitory activity and
allows us to assert that separation of compounds depend on the
polarizability of molecules that correlated with the chemical
reactivity.61

The next descriptor isMor20e,62which belong to the 3D-MoRSE
descriptors (Table 3). This descriptor is dened by 3D-MoRSE-
signal 20 weighted by atomic Sanderson electronegativities.
Based on the compound structure interpretation, the inhibitory
activity would be desirable when the atoms have higher total
electronegativity, which is supported by compounds 5 and 6, the
corresponding trend of inhibitory activity is: compound 5 >
compound 6.

Another descriptor Mor28m belongs to the 3D-MoRSE
descriptors, which is weighted by atomic masses (Table 3).63
res as function of time. (A) The three replicates of GSK3b/L09. (B) The

© 2024 The Author(s). Published by the Royal Society of Chemistry



Fig. 6 RMSF analysis of GSK3b backbone atoms. The root-mean-square fluctuation (RMSF) of the GSK3b backbone atoms in the MD systems is
shown. The L12 and L21 regions are highlighted with blue and yellow shades, respectively, for clarity. The residue index starts from the first
residue, Ser35. Adjacent to the RMSF panel are the overlapped structures from the MD simulation, where proteins are shown as tubes colored
from red (0 ns) to blue (200 ns). Ligands are represented by balls and sticks.

Fig. 7 Metastable States Identified in GSK3b-L09 and GSK3b-L16 MD Systems. (A and B) Principal Component Analysis (PCA) was performed on
all heavy atoms and local heavy atoms in the GSK3b-L09 and GSK3b-L16 MD simulations, identifying six metastable states. The projections of the
trajectories on the same subspace reveal distinct dynamics for each system. (C and D) Porcupine plots illustrating the principal component 1
(PC1) movement in the GSK3b-L09 and GSK3b-L16 systems. Domain 1 is shown in purple, and domain 2 in blue. Red arrows indicate the scale of
protein dynamics, with L12 and L21 regions highlighted for clarity.

© 2024 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2024, 14, 30230–30244 | 30239
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Fig. 8 Binding poses and decomposed free energy analysis. (A and B) Binding details of the most stable states in GSK3b-L09 and GSK3b-L16
systems. Key residues and ligands are shown in ball-and-stick representation, with H-bond occupancy percentages indicated. (C) Decomposed
binding free energy contributions for residues in GSK3b-L09 and GSK3b-L16 systems. The key residues refer to the top 10 positive and top 9
negative residual contributions.
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Based on the compound structure interpretation, the inhibitory
activity would be desirable when the atoms have high atomic
masses, such as compound 1 (4-OCH3) and compound 2 (4-
C(CH3)3) (compound 2 > compound 1). This is also in accor-
dance with the CoMFA contour map, further validating the
importance of this descriptor to the inhibitory activities.
3.4. Molecular dynamics

In the present work, all-atom molecular dynamics (MD) simu-
lations have been conducted on the GSK3b-L09 and GSK3b-L16
systems to elucidate the binding mechanism and associated
protein dynamics. Stability analyses were analyzed by calcu-
lating the root-mean-square deviation (RMSD) (Fig. 5) and root
mean square uctuation (RMSF) (Fig. 6), the curve of RMSD and
RMSF conrms the reliability of the productionMD trajectories.
Furthermore, PCA was employed on both all heavy atoms and
those proximal to the ligand binding sites to capture system
dynamics and identify metastable states (Fig. 7). Fig. 7C and D
illustrate the PC1 movements, indicating random uctuations
in the L12 and L21 regions for both systems. Notably, the rst
six beta-sheets exhibit greater rotational movements in the
GSK3b-L16 system compared to GSK3b-L09. Both systems
demonstrate helix 5–6 movements resembling a “Pack-man”
motion. The probability-based energy landscapes reveal six
30240 | RSC Adv., 2024, 14, 30230–30244
metastable states (a to f, Fig. S1†). The GSK3b-L09 system
exhibits more metastable states and uctuations (Fig. S1†),
suggesting less stable binding compared to GSK3b-L16, which
shows only two states.

The binding analysis (Fig. 8) reveals that Region A, R1 and R4

in GSK3b-L09 displays signicant movement within the binding
pocket. In contrast, GSK3b-L16's Region A and R1 occupy
a central position in the binding pocket, reducing uctuations.
The smaller chlorobenzene of R4 in GSK3b-L16 also remained
more rigid compared to the R4 in GSK3b-L09.
3.5. Binding free energy analysis

Binding energy calculations reveal that GSK3b-L16 has a tighter
binding affinity (−13.44 ± 0.69 kcal mol−1 for GBSA and −7.08
± 0.70 kcal mol−1 for PBSA) compared to GSK3b-L09 (−12.70 ±

0.54 kcal mol−1 for GBSA and−7.05± 0.53 kcal mol−1 for PBSA)
(Table S3†), this trend is consistent with the experimental
data.33 The higher uctuations in GSK3b-L09 result in a more
negative entropy contribution (−26.54 ± 0.48 kcal mol−1)
compared to GSK3b-L16 (−24.77 ± 0.64 kcal mol−1).

Detailed analysis of the most stable states shows similar
binding patterns for both ligands. Amino acid residue Val129
consistently forms the most stable hydrogen bonds, with
occupancy rates of 45.68% and 25.04% in GSK3b-L09 and
© 2024 The Author(s). Published by the Royal Society of Chemistry
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GSK3b-L16, respectively (Table S4†). This residue also contrib-
utes signicantly to the binding free energy (−2.26 ±

0.01 kcal mol−1 for GSK3b-L09 and −2.19 ± 0.01 kcal mol−1 for
GSK3b-L16). Residues Ile62, Val70, and Leu82 also show notable
contributions, particularly in the GSK3b-L09 system. The
negative contribution of Cys193 in GSK3b-L09 may explain the
overall lower binding free energy compared to GSK3b-L16.
Additionally, the backbone hydrogen atom of Asn64 forms
stable hydrogen bonds with the sulfone group in the mutual
scaffold, but its energy contribution was relatively minor (−0.72
± 0.01 kcal mol−1 for GSK3b-L09 and −0.55 ± 0.01 kcal mol−1

for GSK3b-L16).

4 Discussion and conclusion

In the present work, predictive 3D-QSAR models were con-
structed for novel oxadiazole derivatives targeting GSK-3b.
Initially, the 3D-QSAR models were investigated by CoMFA and
CoMSIA methods. Reliable CoMFA models were obtained by
employing steric and electrostatic elds. In addition, when
incorporating of electrostatic, hydrophobic, and hydrogen bond
donor elds, better statistically meaningful CoMSIA models
were constructed. On the other hand, several molecular
descriptors were also employed to improve the performance of
the models, results suggest that RDF descriptors and 3D-MoRSE
descriptors appeared to capture sufficient structural informa-
tion to correlate the inhibitory activities. The analysis of AD also
shows that all the studied inhibitors ll in the dened domain
for the CoMFA and CoMSIA models, further suggesting that the
constructed models can be used for helping the design of novel
and more potent compounds. Furthermore, the contour maps
were carefully used to provide detailed structural information
responsible for the inhibitory activity.

Molecular docking was also performed to generate the
conformations for receptor-based 3D-QSAR models and the
initial conformations for subsequent MD simulations. At the
same time, in order to verify the rationality of the above
approaches and the ndings, MD simulations and binding free
energy calculations were also conducted on the potent and
lowest inhibitors. Our study shows that the most active inhib-
itor 16 remained stable within the receptor's active pocket, with
minor uctuation in RMSD and RMSF while maintain good
binding energy. Conversely, compound 09 demonstrated less
stability during the MD simulation. This phenomenon is
consistent with the activity of the compounds. In addition, the
consistent and signicant contribution of Val129 in forming
stable H-bonds across both systems further underscores its
critical role in ligand binding. In addition, we have observed
that amino acid Val129 mainly forms hydrogen bond with
atoms (–NH– and nitrogen atom) in the common skeleton, this
nding is also in accordance with the hydrogen bond donor
contour map (Fig. 4C), further indicating that the derived 3D-
QSAR models are reliable. Furthermore, the binding analysis
for the conformation derived from MD simulation also reveals
that the substituents, especially Region A, R1 and R4 in
compound 09 displays higher movement within the binding
pocket than those in compound 16, suggesting that the binding
© 2024 The Author(s). Published by the Royal Society of Chemistry
ability of compound 16 to the receptor GSK3b is better than that
of compound 09, this is in accord with the higher inhibitory
activity of compound 16 when compared with compound 09.
Therefore, the results obtained clearly show that the title
molecule compound 16 has a great chance of becoming
a template molecule for designing more active inhibitors.

To obtain more information, the residue-wise decomposed
binding free energy analysis was examined using the MM-PBSA
and MM-GBSA methods, the value of the free energy conrms
the stability of compound 16 showing the lowest energy. And
the results also reveal that amino acid residues Ile62, Val70,
Tyr128, Val129 and Leu182 signicantly contribute to the
binding energy for GSK3b-L09 and GSK3b-L16. Furthermore,
the negative contribution of Cys193 in GSK3b-L09 may account
for its overall lower binding free energy compared to GSK3b-
L16. Additionally, the backbone of residue Val129, serving as
hydrogen bond acceptor and hydrogen bond donor, forms the
main hydrogen bonds with this series of inhibitors. In addition,
the hydrogen atom of Asn64, while forming stable hydrogen
bonds with the sulfone group, also contributes minimally to the
binding free energy in both systems. The binding free energy
analysis illustrates that residues Asn64 and Val129 may be the
key residues for hydrogen bonding interactions with GSK3b.

On the basis of the above results, the derived 3D-QSAR
models play a signicant role in understanding the relation-
ship of physiochemical properties with structure and activity.
Molecular docking, MD simulation and energy calculation
conrm the binding efficiency of the employed inhibitors, and
assess the conformational stability and uctuations of
receptor–inhibitor complexes. These are in good agreement
with the results of the 3D-QSAR models. Overall, this generated
work may provide helpful information to aid the design of novel
oxadiazole derivatives with higher activity. More broadly, these
studies demonstrate how present methods to enhance the
inhibitory activity in novel inhibitor design.
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