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Abstract 

The relationship between biomedical entities is complex, and many of them have not yet been identified. For many 
biomedical research areas including drug discovery, it is of paramount importance to identify the relationships that 
have already been established through a comprehensive literature survey. However, manually searching through 
literature is difficult as the amount of biomedical publications continues to increase. Therefore, the relation classifica-
tion task, which automatically mines meaningful relations from the literature, is spotlighted in the field of biomedical 
text mining. By applying relation classification techniques to the accumulated biomedical literature, existing semantic 
relations between biomedical entities that can help to infer previously unknown relationships are efficiently grasped. 
To develop semantic relation classification models, which is a type of supervised machine learning, it is essential 
to construct a training dataset that is manually annotated by biomedical experts with semantic relations among 
biomedical entities. Any advanced model must be trained on a dataset with reliable quality and meaningful scale 
to be deployed in the real world and can assist biologists in their research. In addition, as the number of such public 
datasets increases, the performance of machine learning algorithms can be accurately revealed and compared by 
using those datasets as a benchmark for model development and improvement. In this paper, we aim to build such 
a dataset. Along with that, to validate the usability of the dataset as training data for relation classification models 
and to improve the performance of the relation extraction task, we built a relation classification model based on 
Bidirectional Encoder Representations from Transformers (BERT) trained on our dataset, applying our newly proposed 
fine-tuning methodology. In experiments comparing performance among several models based on different deep 
learning algorithms, our model with the proposed fine-tuning methodology showed the best performance. The 
experimental results show that the constructed training dataset is an important information resource for the develop-
ment and evaluation of semantic relation extraction models. Furthermore, relation extraction performance can be 
improved by integrating our proposed fine-tuning methodology. Therefore, this can lead to the promotion of future 
text mining research in the biomedical field.
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Introduction
Biomedical literature is rapidly accumulating, and a large 
amount of this information is in the form of raw text, 
making it difficult to easily gather details on topics of 
interest. Instead of the researcher manually putting effort 
into collecting, reading, and understanding the literature, 
they can make use of text mining techniques, includ-
ing text classification, clustering, topic modeling, and 
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information extraction such as named entity recognition 
(NER) and relation extraction (RE). These can be effec-
tively applied to the vast literature for automated infor-
mation extraction, thus facilitating effective biomedical 
research processes [1].

Among the various biomedical text mining techniques 
evolving as a result of research achievements in the natu-
ral language processing (NLP) field, relation extraction 
is critical. Relation extraction is defined as extracting 
meaningful associations between entities in literature. 
There are several types of relation extraction, including 
semantic relations, grammatical relations, negations, and 
coreferences, depending on the focus and aim of the task 
[2].

Specifically, researchers in the biomedical field primar-
ily focus on semantic relations to identify various rela-
tionships between bio-entities and to infer undiscovered 
knowledge. This perspective of information extraction 
motivates limiting our scope to semantic relation extrac-
tion. Semantic relation classification in the biomedi-
cal field enables the automatic extraction of relations 
between biomedical entities such as diseases, medica-
tions, chemicals, genes/proteins, or medical tests from 
a particular work. Therefore, new relationships can be 
inferred, allowing scientific hypotheses or new knowl-
edge to be discovered or confirmed by identifying mech-
anisms of interaction between these entities or pathways 
to target materials; this in turn facilitates biological or 
new drug development research, biological database 
curation, drug repositioning, and clinical decision mak-
ing [3, 4].

In the machine learning field, relation extraction is 
a classification task that predicts whether there is any 
semantic interaction between two entities (binary-class 
classification) or what type of relation the identified 
interaction belongs to among multiple predefined rela-
tion types (multi-class classification). Since classification 
is a type of supervised learning, in which a model is fitted 
on a labeled training dataset, relation extraction involves 
annotating unstructured natural language text with 
named entities and relations between them. However, 
manually constructing such a dataset takes a consider-
able amount of time and resources. Especially annotat-
ing a dataset with semantic relation information is more 
time-consuming and laborious than constructing a cor-
pus annotated with named entities. Entity annotation is a 
task of simply recognizing bio-instances and categorizing 
them into their proper type, whereas relation annotation 
takes entity annotation as a prerequisite and determines 
the semantic interaction between two entities, which fur-
ther relies on human judgment. Thus, building and shar-
ing quality datasets annotated by experts is a significant 
contribution to the field of biomedical text mining.

Intending to promote relation classification research in 
the biomedical field, after reviewing the available bench-
mark relational corpora (usually for protein–protein 
interactions (PPIs)), this study presents our newly built 
corpus annotated with unique relation types on a mean-
ingful scale. Then, to demonstrate the feasibility of our 
corpus, we built a Bidirectional Encoder Representations 
from Transformers (BERT)-based relation classification 
model, called BertSRC, trained on our dataset. Moreover, 
we proposed a new fine-tuning methodology regarding 
formatting input tokens for BERT, which is the second 
contribution of our study. The corpus for semantic rela-
tion classification and the BertSRC code are publicly 
available at https://​github.​com/​tsmmb​io/​BertS​RC.

Construction of a training dataset annotated with semantic 
relations
Semantic relation classification in the biomedical field 
has been studied primarily as part of shared tasks aimed 
at evaluating and advancing NLP techniques. Currently, 
most prestigious datasets tagged with semantic relations 
are from these tasks, such as BioNLP shared tasks on 
the recognition of biological events, which introduced 
the BioNLP-09, 11, 13 event corpus, and BioCreative 
shared tasks on PPI extraction, which generated the Bio-
Creative-II relation corpus [5]. In most of these corpora, 
the entities that mainly receive attention are genes/pro-
teins, and much of the focus is centered around the rela-
tions between them [6, 7]. Examples of such PPI corpora 
include LLL, BioInfer, IEPA, and HPRD50 [1].

Although such benchmark corpora exist, it is not 
enough to objectively verify and compare many of the lat-
est algorithms. Since it is not easy to build a new dataset 
manually from the scratch, several approaches to com-
pensate for data shortages with relatively little effort have 
been suggested. Kanjirangat and Rinaldi [8] proposed 
the shortest dependency path (SDP) feature to effectively 
eliminate noise samples when augmenting data using 
distant supervision. Sentences were parsed into a tree 
structure and the dependency was calculated to obtain 
the SDP between the two entity mentions. Only features 
with SDP from entities were filtered and used as input to 
the model in the form of a triplet. This strategy effectively 
produced training data and the model performed well in 
biomedical relation extraction tasks with a precision of 
0.65.

Li et  al. [9] has constructed an event-centered PPI 
ontology (PPIO, PPI Ontology) that includes the tem-
poral and spatial vocabulary to represent the biologi-
cal context of PPI events. Six key pieces of information 
(interactor, biological process, subcellular location, 
etc.) were expressed by integrating other thesauruses or 
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ontologies including Gene Ontology and Protein Ontol-
ogy. Designing such ontologies not only helps interpret 
the context of biological PPIs in the literature but also 
facilitates subsequent data construction by being a useful 
tool for PPI annotation tasks.

These works show that securing a reliable dataset in 
sufficient quantities remains challenging in RE. Specifi-
cally, while algorithms are domain-independent, data-
sets are not, causing a chronic lack of data. In this regard, 
manually annotating a dataset for a particular domain 
is a high contribution to the study of text mining in that 
domain, which is biology in this paper.

Among various semantic relation corpora, only those 
annotated with binary relations are included as the main 
scope of our study. A binary relation is a type of relation-
ship where a pair of two entities come as arguments. 
Since this type of relation is easy to understand and make 
use of, it is the corpus annotated with this type of relation 
that most current information extraction (IE) systems 
require. For this reason, we deliberately excluded com-
plex relations or events where different levels of relations 
could be nested and become an argument for the other 
relation along with the named entities from the scope 
of our study. The table comparing several representative 
benchmark corpora annotated with binary relations is 
provided in Section A of Additional file 1. We gathered 
information about these corpora by reviewing each cor-
pus or through the literature presenting or explaining the 
corpus [10].

According to Section A in Additional file 1, some cor-
pora annotate only genes/proteins as entities, while oth-
ers annotate other participating entity types exhaustively 
along with genes/proteins. With regard to relation type, 
there are some corpora that do not define separate rela-
tion types at all; in contrast, they only determine the 
presence or absence of a connection within the scope 
they have determined. Other corpora explicitly define 
relation types and express dynamic hierarchical relation-
ships among them, forming complex ontologies. The 
former case has a limitation in that there is only limited 
utility for bio-researchers because various aspects of the 
relation between bio-entities and semantic relationships 
between those relations cannot be expressed. On the 
other hand, the latter has the advantage of being able to 
reflect detailed characteristics and meaning of relations. 
However, introducing many classes, such as in the case 
of BIOINFER, which has more than 60 relation types, 
requires a larger dataset, a more thoughtfully designed 
structure, and a complicated parameter tuning process in 
order to make a model generalize well. This could limit 
the applicability of the corpus compared with the dataset 
working with the model without much configuration.

Therefore, we present a new corpus annotated with 
semantic relation types differentiated from those of 
the existing corpora to provide researchers with use-
ful and easily implemented resources for bio-text min-
ing. Regarding entity, our corpus exhaustively covers 
many types including genes/proteins as long as they 
form meaningful relations. The relation is divided into 
two broader types according to the presence or absence 
of causality. If a causality doesn’t exist, it is considered an 
undirected link, which is a negative example, otherwise, 
a directed link. On the other hand, a directed link, which 
is judged to be causal, can be classified into a more sub-
divided type, such as a positive cause and negative cause, 
if the direction of causality is clearly revealed in the sen-
tence. This hierarchical structure of relations has no bio-
logical meaning and is intended to introduce certainty 
about the interaction. It allows researchers to determine 
the reliability of the relation revealed in the text on their 
own because the relation type itself defines the level of its 
specificity and certainty.

Deep learning‑based semantic relation classification 
model
We evaluated the feasibility of the dataset that we built 
by constructing a semantic relation classification model 
and training it on the dataset. Furthermore, we sought to 
improve the performance of relation extraction by sug-
gesting a new fine-tuning method. Since relation extrac-
tion has significant applications in various NLP tasks, 
improving the performance of relation extraction models 
can also improve the quality of various application tasks 
such as information extraction and knowledge graph 
construction.

Methods for implementing a relation classification 
task are largely divided into rule-based, statistical learn-
ing-based, and deep neural network-based, as in other 
information extraction studies such as NER and entity 
disambiguation [11]. Traditionally, rule-based and sta-
tistical-based machine learning has been widely used, 
but recently most NLP researches rely on a neural net-
work model based on distributed features that do not 
require syntactic parsing or complicated feature engi-
neering. Zeng [12] achieved state-of-the-art performance 
by applying CNN, a deep learning architecture mainly 
used for image and video processing, to a relation clas-
sification task, with only word and sentence level distri-
bution vector as input, without discrete features, which 
were effective in the traditional machine learning meth-
ods. After this groundbreaking study, many studies have 
applied deep learning algorithms such as CNN, RNN, 
and LSTM for various NLP tasks[12–18]. Kim [18] con-
structed a plant-disease relations corpus and proposed a 
classification model trained on this corpus. They noted 
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that Zeng’s model outperformed the SVM, which had 
shown the best performance in classification tasks so far 
by applying CNN, and then deployed CNN as the basic 
architecture of the model to verify the effectiveness of the 
constructed corpus, obtaining an f-score of 0.764.

Currently, one of the deep learning architectures, 
Google’s Transformers [19], has replaced traditional 
rule-based, statistical-based NLP techniques as well as 
other deep learning architectures used in NLP’s various 
tasks such as CNN, RNN, and LSTM. The current lead-
ing NLP models such as BERT[20], GPT[21], and T5[22] 
announced later are all based on this transformer block. 
In particular, BERT is commonly used in biomedical text 
mining research because it is built on multiple trans-
formers encoder blocks, which has the advantage of com-
pressing the sentence and mining semantic information 
from it [8, 23–25].

BERT’s excellence in RE tasks stems from the fact that 
it is not only built on the transformer block which already 
has a proven track record, but also the context of the 
input sequence can be learned in both directions. In con-
trast to a language model for sequence generation such 
as GPT, a model that with a given sequence, predicts the 
next word, BERT is a masked language model that ana-
lyzes both directions of input in the pre-training stage to 
obtain embeddings for the language. By referring to the 
entire context of the sentence, it can produce vectors that 
can well reflect the semantic meaning of each token in 
the sentence. In other words, the quality of embeddings 
representing text is ahead of other models. Thus, imple-
menting a model for NLP downstream tasks such as RE 
with these embeddings performs well [20]. Therefore, 
BERT is an ideal deep learning architecture for our study, 
which aims at predicting the semantic relations between 
bio-entities in biomedical literature.

Hong et al. [25] created a dataset labeled with predicate 
relations by performing automatic NER on SemMedDB 
data and then clustering on predicates that appear with 
the recognized entity pairs. Various deep learning mod-
els were trained with the dataset to verify the usability of 
their dataset and propose the final state-of-the-art per-
formance model optimized with the dataset. Experiments 
demonstrated that the performance of BERT was better 
than that of CNN or LSTM, which had been widely used 
in the existing NLP research. Among BERT and its vari-
ant architectures, BioBERT and SciBERT which are spe-
cialized in biology and science literature showed excellent 
performance with f1-scores of 0.86 and 0.84, respectively. 
This is because BERT architectures, pre-trained on vast 
scientific literature, were able to learn sequential charac-
teristics of text in the biomedical field.

Bioinformatics studies are also actively introduc-
ing BERT. Since the string sequence of the protein or 

gene has a structure similar to that of the natural lan-
guage, NLP can be applied to analyze protein sequence. 
Using BERT, proper embeddings for the protein can be 
acquired which extract its sequence information well. 
To automatically identify sites of DNA 6 ma, Le et  al. 
[26] generated embeddings of DNA sequences through 
BERT blocks and used the CNN structure in the classifi-
cation layer that predicts whether it is 6 ma sites or not. 
The classification model performed better than other 
baseline models with an accuracy of 79.3% and MCC of 
0.58. A similar study [27] also conducted a case study of 
identifying DNA enhancers from DNA sequence repre-
sentations, using hybrid models of BERT and CNN. The 
identifying classifier used CNN, and the fixed vector for 
each nucleotide entering as input of this classifier was 
obtained through BERT. The BERT-based vectors have 
resulted in statistically significant improvements in sensi-
tivity, acuity, and MCC than unidirectional word embed-
ding features such as Word2Vec and fastText. These 
studies have shown that the combination of BERT and 
CNN has strength in modeling protein structures.

BERT is also being utilized in the medical and clinical 
fields to automatically analyze various medical data such 
as electronic health records [24, 28]. The need for a sys-
tematic review is emerging for evidence-based diagnosis 
and treatment in the medical field. However, it can be 
time-consuming for the medical staff to manually per-
form systematic reviews of numerous documents, result-
ing in outdated information. Therefore, automating SR 
with NLP technology is attempted [28]. BERT showed 
state-of-the-art performance in document classification 
and relation extraction tasks. In addition, experiments 
with different settings for BERT have been conducted 
to propose the best model with optimized performance. 
As a result, it was found that the size and class ratio of 
the training data play an important role in the model’s 
performance.

As such, more recent studies applying NLP technol-
ogy in a diverse domain, including the biofield, consist-
ently demonstrate that the BERT algorithm based on the 
transformer structure performs very well, and in order 
to apply it to a specific domain, it is important to secure 
good quality data, which is the goal of our study.

In summary, we built a training dataset for semantic 
relation classification that annotates various bio-entity 
types and their semantic relational information. In addi-
tion, we proposed a new fine-tuning method for BERT to 
improve the performance of relation classification tasks. 
By comparing the relation extraction performance of 
models with various methodologies trained on the con-
structed dataset including the proposed methodology, we 
evaluated the usability of our constructed dataset and the 
performance of our proposed methodology. The creation 
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of these novel datasets and fine-tuning methodology for 
classifying relations provides a meaningful contribution 
to this field and is expected to advance future semantic 
relation classification research.

The following parts of this paper are organized as is: 
Sect.  2. Material and Methods, sub-Sect.  2.1 reports on 
PubMed data collection and annotation procedures, 
including guidelines for building datasets. Section  2.2 
presents setting details for constructing a classifica-
tion model based on BERT architecture using the con-
structed dataset as training data. In addition, we present 
a fine-tuning methodology to enhance classification 
performance. In Sect.  3. Results, sub-Sect.  3.1 presents 
an overview of the constructed dataset, and 3.2 reports 
the results of the model comparison experiment and the 
structure of the best model. Finally, in Sect. 4, the conclu-
sion and outlook of the entire paper are discussed.

Material and methods
Construction of semantic relation corpus
Data preparation
To begin with, PubMed data that were published between 
2004 and 2019, a total of 15 years, were collected regard-
less of the topic within the boundaries of the biomedical 
field. A total of 1,500 candidate abstracts were obtained. 
After a brief inspection of the abstracts, we excluded 
documents that were too short or lacked sufficient enti-
ties for a relation to be assigned. The number of screened 
papers was 154, and a total of 1,346 filtered papers in our 
dataset were subject to annotations. The collected data 
were then separated into sentences, which became the 
unit of annotation in this work. Sentences were distin-
guished from one another based on the combination of 
the PMID that they belonged to and the sentence identity 
(ID) that represented the sequential order of the sentence 
in the text. The title of each work was treated as the sen-
tence with the sentence ID of 0.

Annotation
We extracted different types of entities from the titles 
and abstracts of papers provided by PubMed and then 
built a semantic relation corpus that assigned semantic 
relation types to those entities based on the contextual 
information surrounding them and an expert’s judgment. 
Recognizing different types of entities outside the scope 
of proteins/genes and granting those entities semantic 
relations were highly dependent on manual expert cura-
tion. Such studies have not been extensively performed in 
the past.

Various bio-entities in each sentence were manually 
identified and annotated with the corresponding entity 
type. When annotating them or resolving any ambiguity 
after the annotation process, annotators referred to three 

databases, namely, Pubtator, Uniprot, and GeneCards, 
that contain information about bio-entities. Entity types 
that were annotated, with their definitions given later 
in the paper, included biological processes, cells, com-
pounds, DNA, enzymes, genes, hormones, molecular 
functions, phenotypes, proteins, RNA, and viruses.

After the process of annotating entities was complete, 
the process of assigning the eight types of semantic rela-
tions between those annotated entities followed. The 
relation was decided based on the context of the sentence 
or the full abstract. The eight types of semantic relations 
included the following: undirected link, directed link, 
positive cause, positive increase, negative decrease, nega-
tive cause, positive decrease, and negative increase.

For the sake of convenience, the annotation work was 
assisted by an online annotation tool developed by our 
research team. The software tool is based on an open-
source project TextAE (Text Annotation Editor),1 a visual 
annotation tool, that can support not only creating and 
saving annotation results but also conveniently retriev-
ing and editing existing ones. This tool saved us signifi-
cant time whenever we needed to revise the annotation 
guideline or amend previously accumulated annota-
tions. The tool can be accessed at http://​165.​132.​151.​153/​
annot​ator/. Screenshots of the tool are given in the figure 
below (Fig. 1).

Annotation guidelines
Entity annotations  Recognition of named entities is a 
prerequisite in the relation extraction process. Discov-
ering the relationship between two entities is possible 
after they are accurately recognized. To ensure accurate 
and consistent annotation, multiple annotators worked 
independently at first, and in the event of a discrepancy, 
a consensus was reached after multiple agreements to 
resolve it. Brief explanations of each entity type are shown 
below (Table 1). Please see Section B in Additional file 1 
for details.

If more than one entity was recognized in a sentence, 
the sentence moved to the step of assigning the type of 
semantic relation between the entities.

Semantic relation annotations  Relation annotation is 
performed on two entities that appear within a sentence. 
In principle, the assignment of relations is based on the 
sentence in which the entities appear, but when ambig-
uous, the entire abstract of a piece can be read, and the 
annotator can decide based on the full context in the 
final stage. To define semantic relations between entities, 

1  Text annotation editor. TextAE, 2020. Accessed 2021 Aug 30. Available 
from: https://​textae.​puban​notat​ion.​org/

http://165.132.151.153/annotator/
http://165.132.151.153/annotator/
https://textae.pubannotation.org/
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we extracted relational verbs and contextual informa-
tion between two entities. When determining semantic 
relations between entities, contextual information must 
be considered along with the meaning of the verb. For 
example, if “miR-194,” “basal and insulin-stimulated glu-
cose uptake,” and “glycogen synthesis” were recognized as 
named entities in the sentence “Knockdown of miR-194 in 
L6 skeletal muscle cells induced an increase in basal and 
insulin-stimulated glucose uptake and glycogen synthe-

sis” [29], the verb associated with “miR-194,” “basal and 
insulin-stimulated glucose uptake,” and “glycogen synthe-
sis” would be “induce.” Although the verb “induce” is usu-
ally classified as positive, the word “knockdown of” fol-
lowed by “miR-194” means inhibition; therefore, it should 
be classified as negative rather than positive. Thus, con-
textual information, which plays an important role in cor-
rectly classifying relations, should be annotated together.

Fig. 1  A Sentence within the corpus that was subject to annotation. B Sentence annotation result visualized with TextAE. Annotation tool based 
on TextAE: TextAE is a text annotation tool that can annotate named entity and relation information in the text. Each term (entity) can be dragged 
or double-clicked in Term Edit Mode, and the corresponding type can be selected to annotate them. If the corresponding entity type does not exist 
at the time, a new type can be defined. Likewise, in Relation Edit Mode, a type of relation can be selected or created and visualized. It is also possible 
to annotate multiple relations where one entity is associated with multiple other entities at once. The results of the annotation can be downloaded 
locally in the form of a json file

Table 1  Twelve entity types

Explanation

Genes, DNA, RNA, and Proteins A gene is the functional unit of heredity and the nucleotide sequence of 
DNA or RNA that holds instructions for synthesizing either RNA or protein

Enzymes Proteins that act as biological catalysts

Hormones Signaling molecules that act distant from their site of production

Compounds Additives such as drugs or chemicals

Molecular functions Proteins with the role of binding such as hormones and antigen-antibodies

Phenotypes Limited to human diseases

Biological processes Processes/activities that occur within cells

Cells Smallest functional units of an organism with which biological experi-
ments are conducted to observe their mechanisms or to grow targeted 
compounds

Viruses Used to indicate when experiments are conducted on a virus
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The semantic relations defined in this study were clas-
sified into a total of eight types: undirected link, directed 
link, positive cause, positive increase, negative decrease, 
negative cause, positive decrease, and negative increase 
(Table  2). They were structured into three layers, and 
each level represents the extent of granularity. Initially, 
a relation between two entities in a sentence was classi-
fied into an undirected link and a directed link at the top 
level based on whether the causal relationship between 
the two entities was clearly revealed. When a relation 
was identified as a directed link where there was a causal 
relationship based on the sentence, if it could be decided 
whether the two entities were positively or negatively 
correlated, the relation proceeded down one level down 
and was matched with finer types (positive cause/nega-
tive cause) or stopped at the first level (directed link). 
Similarly, at the second level (positive cause/negative 
cause), if the sentence captured causality according to an 
increase or decrease in the amount of each entity or its 
strength with explicit expressions of quantity, the relation 
proceeded down to the lowest level (positive increase/
negative decrease, positive decrease/negative increase) 
or stopped at the second level (positive cause/nega-
tive cause). With regard to the relation of an undirected 
link, which is a correlation without causation revealed, 
since this type of relation is rarely a subject of attention 
for researchers, it does not need to be broken down to a 
more granular level, and this type of relation was treated 
as a negative example. This stratified structure between 
the types allows researchers to determine the reliability 
of the relation revealed. In addition, depending on the 
purpose and usefulness of the classification, it can be eas-
ily converted to binary class and integrated with other 
benchmark datasets, which is commonly binary. In sum-
mary, with respect to the relationships that researchers 
might be interested in, each relation was classified into 
the most detailed and specific type possible. Examples 
of sentences corresponding to each relation type and 
detailed descriptions are provided in Section C of Addi-
tional file 1.

Annotation procedure
We finished collecting data in February 2019 and per-
formed trial annotations until April 2019. During the trial 
period, entities and relations were annotated for a small 
amount of collected data referring to previous related 
works for exploratory purposes. At this time, entities 
were pre-annotated through an automated biomedi-
cal NER/RE system called PKDE4J [30], and annotators 
had to modify incorrect entity annotations or add missed 
annotations. Relations between these readily annotated 
entities were classified manually by four to six annotators. 
However, as the decision to include gene-related entities 
in our annotation scope in a more exhaustive way was 
made, the method of entity annotation also shifted from 
utilizing PKDE4J to manual annotation to cover entity 
types that PKDE4J is not aimed at extracting, such as 
enzymes and viruses. Throughout the manual annotation 
process, the lead annotator, a biology expert with rich 
hands-on experience in bio-corpus construction projects, 
refined the guidelines and detailed the workflows.

The full-scale annotation process based on the final 
guidelines and workflows began in May 2019. The anno-
tators included the lead annotator and eight researchers 
working on text mining in the biomedical field. More 
specifically, two of the eight researchers were selected 
as senior annotators to coordinate the entire annota-
tion process among the multiple annotators and played 
important roles in settling any ambiguities, such as medi-
ating disagreements that failed to be resolved in the 
previous stage. The lead annotator controlled the final 
verification and resolved any remaining ambiguous cases.

As we decided to annotate both entities and relations 
manually from the beginning, we developed a web-based 
annotation tool to streamline the annotation process 
and introduced this tool to our task in earnest starting in 
June. The annotation process was completed at the end of 
June 2020. The entire process, including data preparation, 
took approximately one and a half years to complete.

The final annotation workflow consisted of three stages: 
annotation, error review, and final verification (Fig. 2).

	 i.	 Annotation
	Annotators who had conducted research in the 
field of text mining and had experience building 
corpora in the biomedical field read the abstracts 
and manually annotated bio-entities by referring to 
the Uniprot, GeneCards, and Pubtator databases. 
They selected sentences in which two or more enti-
ties appeared and annotated the verb between the 
two entities and other contextual information that 
could help resolve any ambiguities. Based on this 
information and the annotator’s judgment after 
reading the sentence, the relationship between two 

Table 2  Eight types of relations

Causality Direction of causality Expressions of quantity

Directed Link Positive Cause Positive Increase

Negative Decrease

Negative Cause Positive Decrease

Negative Increase

Undirected Link –



Page 8 of 18Lee et al. BMC Medical Informatics and Decision Making          (2022) 22:234 

entities was mapped into one of the eight semantic 
relation types we defined in this work.

	 ii.	 Error review
	Except for the lead and senior annotators, six 
annotators formed two teams of three to assess for 
simple errors within their own teams. If there was 
a disagreement within the teams, they attempted 
to reach an agreement in a reasonable direction 
through discussion and provision of evidence. The 
discussion usually resolved the disagreement. If 
the issue persisted, however, the teams convened 
to discuss the issue and moved forward with an 
agreement or passed the disagreement on to the 
senior annotators.
	The annotation result, which had undergone the 
first error review process, was delivered to the 
remaining two senior annotators who did not 
belong to either of the teams, and they conducted 
a second review process. The delivered annotation 
modifications and unresolved discrepancies were 
reviewed once more by these senior annotators, 
and agreement was attempted. Any inconsistencies 
that were not settled were finally resolved in the 
next verification step.

	iii.	 Final verification
	To increase the quality of the dataset, the lead 
annotator verified the annotation result one last 
time in consideration of the context of the original 

text based on his or her biological knowledge. The 
lead annotator then corrected the result if neces-
sary and decided whether to include it in the final 
dataset. The lead annotator not only adjudicated 
disagreements that could not be settled in the pre-
vious steps but also reviewed the entire dataset, 
including data that were already agreed upon by 
the teams for final verification. In practice, only a 
few simple errors were found after the multi-step 
review process, and these were quickly corrected.
Annotations that remained ambiguous even in 
the final verification stage were excluded from the 
final corpus.

Semantic relation classification model training
To verify the credibility and usefulness of the semantic 
relation corpus we established, we attempted to build a 
semantic relation classification model that utilized the 
corpus. In order to fully optimize performance for our 
model, we compared the performances of several deep 
learning-based pre-training models and suggested new 
fine-tuning techniques for the model that produced opti-
mal results. While performing the classification task, 
precision, recall, and f1 score are commonly used as 
performance metrics, so we adopt them to evaluate our 
model. The explanation and calculation formula for each 
metric are as follows (Table 3).

Fig. 2  Annotation workflow
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In particular, all of the deep learning models used in 
our study are BERT-based architectures that are available 
through the well-known library Hugging face or are pre-
sented in precedent studies. As mentioned earlier, BERT 
is good at compressing and understanding the meaning 
of the text, making it suitable for our purpose, which is 
to extract semantic relations. Along with that, it is easy 
to implement and capable of making predictions imme-
diately without much configuration, which is an impor-
tant consideration to our work since the primary focus of 
the study was to demonstrate the feasibility of the corpus 
that we had constructed. For these reasons, we choose 
BERT as the model architecture to apply our data.

Pre‑training and Fine‑tuning stage of BERT
BERT is a pre-trained model that leverages the structure 
of the transformer encoder [19, 20]. Pre-trained models 
learn and utilize universal text embeddings rich in gram-
matical and semantic features from pre-training on a vast 
amount of textual data, and only a simple additional layer 
is needed for the aiming task. The basic BERT model was 
trained on the Book corpus (800 M words) and Wikipedia 
(2.5B), achieving SOTA in most common NLP tasks [20]. 
Since then, its variant models, which were pre-trained 
on domain-specific data, such as BioBERT [31], SciBERT 
[32], and PubMedBERT [33] as well as advanced versions 
of BERT with tweaked pre-training methods or a struc-
ture of layers, such as ALBERT [34] and RoBERTa [35], 
have been announced.

In the pre-training stage of BERT, a masked language 
model (MLM) and next sentence prediction (NSP) were 
utilized to learn various characteristics of natural lan-
guages [20]. The MLM method is a method of randomly 
replacing 15% of tokens with [MASK] tokens in the 
input sentence, expecting the BERT model to predict 
the original word of the [MASK] token. The pre-training 
of BERT involves two different sentences divided by the 
[SEP] token as input. At this time, 50% of the sentence 
pairs are in order, with the next sentence being the actual 
sentence that follows the prior in the original text, and 
the rest are not, with the first sentence being followed 
by a random sentence. NSP involves models learning to 
determine whether these two statements are in order. 
To develop a BERT model trained with these methods 

in the pre-training stage to perform downstream NLP 
tasks, such as relation extraction, an additional layer for 
detailed tasks is appended after the transformer encoder 
layer which has learned weights, and further fine-tuning 
is performed using relevant data for the desired tasks. 
This is how fine-tuning can provide a model for handling 
detailed downstream tasks.

During the fine-tuning stage, the simplest approach to 
processing input text for the relation classification task 
is using a single sentence containing the relationship 
between entities without any pre-processing treatment. 
However, to achieve optimal performance, introducing 
a slightly more complex input data processing method is 
necessary. Soares et  al. [36] compared several fine-tun-
ing methodologies for relation extraction, such as input 
structure, architecture of the downstream layer, a train-
ing setup, and explored effective ways to produce good-
quality output vectors that represent relation for a given 
sentence.

Masked input
Yang et al. [37] demonstrated that there is a mismatch in 
the original BERT model. The [MASK] tokens are used in 
the pre-training process but not in the fine-tuning stage. 
To compensate for this limitation, in this work, we use 
a methodology that utilizes [MASK] tokens as the input 
sequence in both the pre-training and fine-tuning stages 
for relation classification.

In the pre-training of BERT, input sentences contain-
ing [MASK] tokens are received as input data, and the 
original tokens for the [MASK] tokens within each sen-
tence are predicted using the output of the final layer cor-
responding to the location of [MASK] tokens. Namely, 
the output of the final layer at [MASK] token contains 
contextual information needed to predict the original 
token replaced with [MASK]. Likewise, during the fine-
tuning process, if the token corresponding to the enti-
ties of interest within the input sentence is replaced with 
a [MASK] token, the final output layer at the location of 
the replaced tokens can be considered to output a seman-
tic and contextual vector for the token.

There are several objectives to using this approach. The 
first is to maintain consistency between the pre-training 
and fine-tuning training of the model. As mentioned 

Table 3  Evaluation metrics

Accuracy = correct predictions
total predictions

Useful when target classes are well balanced

Recall = True positives
True positives+False negatives

The ability of a model to find all relevant cases within a 
dataset

Precision =
True positives

True positives+False positives
The ability of a model to identify only the relevant data points

F1− score = 2(precision×recall)
precision+recall

Combination between Precision and Recall
Used to punish extreme values
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above, the pre-training process for BERT employs 
[MASK] tokens that are not introduced in the fine-tun-
ing stage, resulting in the disadvantage of inconsistent 
models. In this work, the [MASK] tokens are also uti-
lized as input data in the fine-tuning process to increase 
the consistency of the model. The second objective is to 
effectively convey to the model the information of enti-
ties that span over multiple tokens. In relation classifi-
cation, each entity often consists of multiple words. To 
deal with this problem, the aforementioned study by [36] 
introduced the method entity marker–entity start, which 
employs additional marker tokens, such as [E1], [/E1] and 
[E2], [/E2], before and after the entity to convey informa-
tion about where the entity is located in the sentence. 
However, it still has the disadvantage of inconsistency 
because the tokens are not used for pre-training and the 
entity itself is not replaced (Fig. 3). Although this method 
enables the model to learn the span of entities in a given 
sentence, the model is limited in accurately recognizing 
additional marker tokens that were unseen in pre-train-
ing. Furthermore, it fails to directly convey information 
about the entities as a whole to the model. On the other 
hand, when replacing an entity itself with a [MASK] 
token, as suggested in this study, the entity exists as a 
token, and the output vector corresponding to the token 
contains contextual information that helps to effectively 
predict the meaning of the original word for the token 
(i.e., an entity) (Fig. 4).

Finally, it can alleviate the out-of-vocabulary (OOV) 
problem that occurs when a token that the model did not 
learn during training is introduced as input data. This 
problem can be improved using word piece tokenizing 
with BERT [20] but is not fully resolved. Tasks includ-
ing named entity recognition and relation classification 
are likely to cause OOV problems because entities often 
contain proper nouns that have many variations of case 
or abbreviation (e.g., BERT, Bert, bert, bert algorithm). If 
an OOV problem occurs and the model cannot recognize 
entity tokens in a sentence correctly, it may struggle to 
predict the relation type between the entities. By replac-
ing the entity with the [MASK] token, the OOV problems 
can be more effectively prevented.

However, the masked input method has a fatal draw-
back in that it loses the original token information of 
the entity. Therefore, we propose the two masked sen-
tence input method, the masked input method coupled 
with the two-sentence input method, to overcome this 
weakness.

Two‑sentence input
Two-sentence input is a method of utilizing two identi-
cal sentences that are linked with [SEP] tokens as input 
data in fine-tuning. In this paper, specifically, we propose 
the two masked sentence input method, which masks one 
of the two entities in each of the sentences (Fig. 5). The 
masked entities are different from each other to keep one 
of the original entities unmasked, which is more benefi-
cial than simply linking the duplicate of the sentence.

The first advantage of this method is that it maintains 
consistency in the pre-training and fine-tuning stages. In 
the original BERT paper, the pre-training stage exploited 
two sentences linked with the [SEP] token. During fine-
tuning for the classification task, however, only one 
sentence was used, which can be disadvantageous to 
the performance due to the fact that the model’s learn-
ing process is inconsistent. The second advantage is that 
this method prevents information loss associated with 
the masked input methodology. Within sentences that 

Fig. 3  Entity marker–entity start: Input sentence with additional 
marker tokens

Fig. 4  Masked input: Input sentence masked as [MASK] for entities

Fig. 5  Two masked sentence input

Fig. 6  Two-sentence entity token input
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have multiple entities, we can preserve token information 
by replacing only one entity at a time with the [MASK] 
token. This method completely prevents the loss of token 
information that can be caused by using masked input. 
Finally, this method conveys sequential information 
about the entity to the model. In relation extraction tasks, 
the relationship might be decided differently if the order 
of the first entity and the second entity are reversed. 
Therefore, it is critical that the model accurately recog-
nizes the order of entities. Soares [36] used additional 
numbered marker tokens to carry sequence information 
to the model, but there is a limit to the model’s recogni-
tion of additional tokens that have been unseen during 
pre-training. In our two masked sentence input method, 
the first entity is replaced with the [MASK] token in the 
first sentence, and the second entity is replaced with the 
[MASK] token in the second sentence, effectively passing 
the semantic and contextual information corresponding 
to the first and second entities to the model in order.

Additionally, for multilateral comparison, we included 
another variant method—named the two-sentence entity 
token input method— in the comparison experiment 
(Fig. 6). This is a combination of the entity marker–entity 
start and the two masked sentence input, which is replac-
ing two entities in a sentence differently with additional 
entity tokens, [E1] and [E2]. Since this is also a two-sen-
tence input strategy, the two replaced tokens for each 
entity are differentiated from each other.

Downstream layer structure
We also make a slight modification to the standard 
BERT downstream architecture for classification from 
the original BERT paper [20] which uses a special token 
[CLS]. Instead of mapping the entire input sequence to 
only a [CLS] special token, we produce two vectors cor-
responding to the location of the entities, to acquire 
semantic representations for each entity. With these vec-
tors as input, the added classification layer optimizes the 
weights for determining relations between entities. This 
method is suggested in [36] and turned out to have the 
advantage of more effective learning for relation predic-
tion by directly utilizing vectors corresponding to infor-
mation of entities.

For comparison, we experimented with the conven-
tional [CLS] token vector method, the aforementioned 
method that utilizes both vectors corresponding to enti-
ties, and the method that uses those two vectors along 
with the [CLS] token vector altogether. We call these 
three methods respectively CLS token layer, two-token 
layer, and three-token layer.

In the CLS token layer, the input size of the classifica-
tion output layer is set to 512, which is the output size 
of each layer of the pre-trained BERT model. In the two 

token layer, the input size is set to 2 × 512 (1024), which 
is the size of two outputs combined. In the three-token 
layer, which receives three BERT layer outputs as input, 
the input size is set to 3 × 512 (1536), which is the size 
of three outputs combined. The output size of the clas-
sification layer for all the methods is set to 8, which is 
the number of relation types or the number of classes 
to be predicted. The loss function of the model is cross-
entropy loss.

Our three main experiments–comparison of pre-
trained BERT models, comparison of masking input 
methods, comparison of classification–use each model’s 
PyTorch implementation by HuggingFace. AdamW was 
used as an optimizer in all models, and the performance 
was reported by applying the best-performing model to 
the test data after training up to 10 epochs. The com-
monly applied hyperparameters are shown in Table 4.

The overview of the study is illustrated in Fig. 7.

Results
Dataset overview
We constructed a semantic relation corpus consisting of 
1,346 abstracts annotated with 5,031 relations classified 
into eight types. A total of 10,062 distinct bio-entities 
of 12 types were annotated with half of then in the left 
portion of the sentence and the rest in the right portion 
of the sentence. The general statistics for the corpus are 
shown in the table below (Table 5).

The verb in the sentence is one point of reference 
when classifying the relation type; however, it does not 
exclusively determine the relation type. A relation type 
is determined by comprehensively considering the verb 
and verb-related information in the sentence, contextual 
information around entities, and human interpretation. 
For example, common context words such as “inhibition” 
and “decreased” can reverse the meaning of a verb. Thus, 
the semantic relation type assigned to the sentence might 
be the opposite of the original meaning of the verb.

Table 4  Hyper parameters

Hyper Parameter

num_train_epochs 10

learning_rate 5e-5

per_device_train_batch_size 16

per_device_eval_batch_size 64

warmup_ratio 0.1

weight_decay 0.01

adam_beta1 0.9

adam_beta2 0.999

adam_epsilon 1e-8

max_grad_norm 1
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Fig. 7  The overview of the study

Table 5  A Entity types. B Relation types. Dataset overview

Train Validate Test

Left Right Left Right Left Right

A

BIOLOGICAL PROCESS 181 825 61 301 70 270 1,708

CELL 60 25 15 12 16 12 140

COMPOUND 769 225 232 75 266 72 1,639

DNA 4 1 4 9

ENZYME 67 34 28 8 20 17 174

GENE 1,017 598 347 180 328 185 2,655

HORMONE 25 10 6 3 7 4 55

MOLECULAR FUNCTION 59 71 24 26 21 20 221

PHENOTYPE 494 1053 168 355 160 368 2,598

PROTEIN 241 142 84 33 84 46 630

RNA 91 33 34 13 33 13 217

VIRUS 10 1 3 2 16

3,018 3,018 1,006 1,006 1,007 1,007 10,062

Train Validate Test

B

Directed Link 484 174 175 833

Negative Cause 403 141 156 700

Negative Decrease 208 82 74 364

Negative Increase 145 52 48 245

Positive Cause 662 219 206 1087

Positive Decrease 89 18 26 133

Positive Increase 172 54 47 273

Undirected Link 855 266 275 1396

3018 1006 1007 5031
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Semantic relation classification model
Performance comparison between pre‑trained models
While applying an effective masking methodology for 
input sentences and downstream layers to the model is 
crucial, it is also important to select a pre-trained lan-
guage model that best fits our tasks and data as the base 
model. Therefore, we compared the performance of 
various existing pre-trained BERT models for our data-
set with the same hyperparameters specified in Table 4, 
setting two masked sentence input and two-token layer 
for all models. The models were evaluated using fivefold 
cross-validation with all of the train, validation, and test 
sets combined (Table 6).

Comparisons have shown that PubMedBERT models 
pre-trained on abstracts from PubMed and full-text arti-
cles from PubMedCentral performed better than others. 
This confirms that when building a downstream model 
using a pre-trained language model, the data used for 
pre-training should be homogeneous to those used for 
fine-tuning. Therefore, PubMedBERT, which performed 

the best on our PubMed datasets, will be used as the base 
model in later experiments.

Performance comparison between methods of masking input
For this experiment, we used PubMedBERT, the language 
model with the best performance in the abovementioned 
comparative experiment, as the base model and the CLS 
token layer as the downstream output layer. The methods 
were evaluated using fivefold cross-validation with all of 
the train, validation, and test sets combined (Table 7).

We specifically compared the performance of the fol-
lowing methods: default method, which only adds 
[CLS] token in front of a sentence, entity marker–entity 
start, which marks a span of entities, masked input, two 
masked sentence input, and two sentence entity token 
input, which masks entities with additional tokens other 
than [MASK].

The comparison of input methods showed that the two 
sentence entity token input and the two masked sentence 
input methods, which used two combined sentences as 
input data, performed better than default method, the 

Table 6  Performance comparison of pre-trained language models

The best scores are in bold
* Mean
** Standard deviation
a Bert-base-uncased, Accessed July 20, 2022, Available from: https://​huggi​ngface.​co/​bert-​base-​uncas​ed
b Biobert-base-cased-v1.2, Accessed July 20, 2022, Available from: https://​huggi​ngface.​co/​dmis-​lab/​biobe​rt-​base-​cased-​v1.2
c BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext, Accessed July 20, 2022, Available from: https://​huggi​ngface.​co/​micro​soft/​Biome​dNLP-​PubMe​dBERT-​base-​
uncas​ed-​abstr​act-​fullt​ext
d Roberta-base, Accessed July 20, 2022, Available from: https://​huggi​ngface.​co/​rober​ta-​base
e Scibert_scivocab_uncased, Accessed July 20, 2022, Available from: https://​huggi​ngface.​co/​allen​ai/​scibe​rt_​scivo​cab_​uncas​ed

Model Accuracy Precision Recall F1-score

BERT [20]a *0.849 **(0.003) 0.817 (0.010) 0.822 (0.019) 0.818 (0.011)

BioBERT [31]b 0.861 (0.008) 0.835 (0.017) 0.846 (0.015) 0.839 
(0.011)

PubMedBERT[34]c 0.865 (0.014) 0.833 (0.020) 0.849 (0.009) 0.839 
(0.015)

RoBERTa [35]d 0.862 (0.009) 0.835 (0.018) 0.837 (0.009) 0.835 (0.010)

SciBERT [32]e 0.862 (0.010) 0.836 (0.017) 0.843 (0.013) 0.838 (0.013)

Table 7  Performance comparison of masking input methods

The best scores are in bold
* Mean
** Standard deviation

Method Accuracy Precision Recall F1-score

Default *0.700 **(0.018) 0.646 (0.019) 0.647 (0.016) 0.642 (0.013)

Entity Marker–Entity Start 0.857 (0.012) 0.825 (0.029) 0.836 (0.007) 0.828 (0.015)

Masked Input 0.844 (0.013) 0.811 (0.023) 0.826 (0.011) 0.817 (0.012)

Two Masked Sentence Input 0.866 (0.014) 0.837 (0.018) 0.847 (0.013) 0.840 (0.014)
Two Sentence Entity Token Input 0.865 (0.012) 0.839 (0.019) 0.845 (0.014) 0.840 (0.015)

https://huggingface.co/bert-base-uncased
https://huggingface.co/dmis-lab/biobert-base-cased-v1.2
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext
https://huggingface.co/roberta-base
https://huggingface.co/allenai/scibert_scivocab_uncased
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entity marker–entity start method or the masked input 
method. Two masked sentence input, which replaces 
entities with [MASK] tokens, was superior to using addi-
tional tokens, [E1] and [E2] tokens, as a way to replace 
entities.

These findings show that leveraging [MASK] tokens is 
better than introducing additional tokens such as [E1] 
and [E2] to replace entities. This confirms that maintain-
ing consistency between the pre-training and fine-tuning 
stages can lead to improved performance. Furthermore, 
[MASK] tokens, which have only been used in pre-train-
ing phases, can be appropriately utilized in downstream 
tasks. In addition, the two sentence input methodology 
performed better than the methodologies where only one 
sentence is entered as input; this finding suggests that in 
such a relation classification task, using two identical sen-
tences, each of which contains a masked entity, can lead 
to improved performance.

Performance comparison of downstream layers
Additional downstream layer construction is essential 
to fine-tuning a model for specific NLP tasks, using pre-
trained models. Relation extraction models based on 
BERT require the addition of the classification output 
layer for relation prediction after the output of the trans-
former encoder. For performance comparisons between 
different layer structures, we equally apply the two 
masked sentence input methodology to the same Pub-
MedBERT model with the same hyperparameters as the 
previous experiments. In this experiment, we compare 
the performance of the CLS token layer, using the output 
of the [CLS] token location, two-token layer, using the 
output values of the two [MASK] token locations, and 
three-token layer, using the output values of the [CLS] 
and two [MASK] token locations. The layer architectures 
were evaluated using fivefold cross-validation with all of 
the train, validation, and test sets combined (Table 8).

The two-mask token layer showed better performance 
than the other two techniques. Even though it is not a 
large increase in performance, concatenating two vec-
tors corresponding to entities and utilizing them for the 
prediction of relations is a better method than mapping 
the entire input sequence to only a [CLS] special token 

or even just using a [CLS] token, which is a representa-
tion of the entire sentence. Therefore, we can conclude 
that the two-token layer is the architecture that produces 
representations, which hold the most useful semantic 
information to predict a proper relation between the two 
entities. In other words, the number or location of the 
final output vectors in the downstream layer does matter 
in a RE task.

Final comparison of model performance
The experiments comparing different base models, input 
methodologies, and output layer structures using our 
datasets showed that utilizing PubMedBERT as a base 
model with the two masked sentence input methodol-
ogy and two-token layer applied performs best. Finally, 
we compared this model with existing models presented 

Table 8  Performance comparison of downstream layers

The best scores are in bold

*Mean

**Standard deviation

Layer architecture Accuracy Precision Recall F1-score

CLS token layer *0.858 **(0.016) 0.823 (0.026) 0.835 (0.015) 0.827 (0.017)

Two-token layer 0.867 (0.014) 0.840 (0.018) 0.847 (0.011) 0.842 (0.013)
Three-token layer 0.861 (0.013) 0.835 (0.027) 0.842 (0.009) 0.836 (0.016)

Table 9  Performance comparison against models from related 
works

The best scores are in bold

Model F1

Word2vec + CNN [38] 0.708

Entity Attention Bi-LSTM [13] 0.787

Matching the Blanks [36] 0.799

Our Model 0.852

Table 10  Per-class performance

Support: Number of instances in the test data represents 20% of the full data set, 
which is proportional to each class

Class Precision Recall F1-score Support

Directed Link 0.949 0.851 0.898 175

Negative Cause 0.902 0.888 0.895 156

Negative Decrease 0.909 0.918 0.914 74

Negative Increase 0.837 0.891 0.863 48

Positive Cause 0.907 0.895 0.901 206

Positive Decrease 0.714 0.741 0.727 26

Positive Increase 0.759 0.732 0.746 47

Undirected Link 0.840 0.906 0.872 275

0.852 1007
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in related works using our dataset. In addition to BERT-
based models that have shown SOTA performance in 
relation extraction tasks, such as [36], we also included 
models based on other deep learning algorithms such as 
the CNN [38] and entity attention Bi-LSTM, which is a 
semantic relation classification model using bidirectional 
LSTM networks with entity-aware attention using latent 
entity typing [13]. In this final experiment, models were 
trained on a train set and evaluated on a validation set. 
The Table  9 reports the scores of the best models from 
the validation step evaluated on the test set.

The experimental results confirm that the final pro-
posed PubMedBERT-based model with the two masked 
sentence input methodology and two token layer per-
formed best. The best model is illustrated in Fig. 8.

To determine how well our model predicts on each 
class and examine situations where our model has limita-
tions, we further analyzed the per-class performance for 
each of the eight types of relations (Table 10).

In general, per-class performance relied on the number 
of data instances under the class. Classes designated as 

positive decrease, and positive increase, which had the 
fewest data instances of 26 and 47, respectively, obtained 
the lowest f1 scores among the different relation types. 
Other than the issue, the model showed generally even 
scores over the classes.

We closely examined the data points where the value 
predicted by the model differed from the annotated 
target value to objectively assess the limitations of our 
model or corpus and obtain insights for future reinforce-
ment. As a result of the observation, we were able to 
identify two interesting patterns in false cases.

First, our model revealed its weakness when the verb 
between entities did not directly convey the meaning 
of increase/decrease or a cause-and-effect relationship, 
such as “improve,” “exacerbate,” and “aggravate,” making 
it difficult to accurately infer the relationship through 
context words surrounding entities. In this case, to cor-
rectly determine the direction in the quantity of the 
right entity, knowing whether the entity instance itself 
held a positive or negative meaning was necessary, such 
as in the sentence below:

Fig. 8  Best model: PubmedBERT-based model with the two masked sentence input method and two token layer applied
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Moreover, hepatic knockdown of HFREP1 improved 
insulin resistance in both mice fed a high-fat diet 
and ob/ob mice

The target relation type associating “HFREP1” and 
“insulin resistance” belongs to the negative decrease 
class, but the model incorrectly predicted it as the nega-
tive increase class. To accurately classify their relation-
ship, in this case, the model needs to know whether 
insulin resistance itself has a positive or negative mean-
ing. This type of error could be alleviated with a language 
model pre-trained on richer literature in the biomedi-
cal field, resulting in more comprehensive coverage of 
semantic meaning for bio-vocabulary.

Second, we found several cases of errors due to the 
conflict between the annotators’ contextual consid-
erations of the entirety of the literature findings and the 
model predictions that exploit contextual words limited 
to each sentence in classifying the relationship between 
entities. An example of this is as follows:

Our data suggest that titanium particles may cause 
less leukocyte activation and inflammatory tissue 
responses than other particulate biomaterials used 
in total joint arthroplasty.

For this sentence, the annotator classified the relation-
ship between titanium particles and inflammatory tissue 
response as the negative cause class, and the model pre-
dicted the positive cause class. The annotator compared 
the relationship between these two entities to other enti-
ties in the sentence and focused on the intention of the 
sentence. However, if we simply considered the direc-
tional association between the two entities of interest, 
we could assign the positive cause class, which was the 
model prediction.

To avoid this controversial gray area, the data that 
required abstract and complex consideration of con-
text were excluded as much as possible from the corpus 
construction stage; as a result of this, few of these cases 
were found. However, we specifically paid attention to 
this example because it provided insights on how the 
model prediction works in these special circumstances 
and which direction to move forward in future research 
to overcome this limitation. In the example sentence, 
the model prediction cannot be regarded as wrong, but 
the main finding conveyed in the sentence must have 
been that titanium particles cause “less” inflammatory 
reactions, not the fact that they do. Therefore, this case 
demonstrates that meaningful relation types, which bet-
ter reflect the intentions of the text and provide benefit 
to researchers, require elaborately reflecting not only the 
causality between entities and its direction but also the 
relative extent of the increased or decreased amount of 

a particular entity. This is possible by pushing beyond 
the limits of the current relation classification based on 
binary entities and addressing subtle and complicated 
interactions among multiple bio-entities appearing in a 
sentence.

Conclusion
Machine learning-based relational classification tasks can 
be successfully performed based on good quality training 
data and well-designed algorithms. Especially, as Trans-
former-based algorithms become mainstream in NLP, the 
importance of quality datasets rather than complex fea-
ture engineering is increasing. Thus, constructing train-
ing datasets annotated with bio-entities and the relations 
between them is an urgent task to promote text mining 
research in biomedical fields.

In this paper, we developed a corpus with a wide range 
of bio-entities, such as biological processes, cells, com-
pounds, DNA, enzymes, genes, hormones, molecular 
functions, phenotypes, proteins, RNA, and viruses, along 
with their annotated semantic relations. The construc-
tion of a corpus with multiple types of bio-entities and 
their rich relationships is essential to extracting complex 
and significant biological information from a wide range 
of bio-entity types that the biomedical literature con-
tains. Considering this need, our newly constructed cor-
pus, built by manually tagging a wide range of bio-entities 
and their relations from a rich amount of biomedical lit-
erature, represents a significant contribution. We com-
prehensively annotated verbs situated between entities, 
contextual information, such as positive/negative and 
active/passive information that affects their meanings, 
and other meaningful information in the sentence as fea-
tures to consider in assigning semantic relation types, 
opening the possibility of further research on semantic 
relations. This corpus could be used as a reliable refer-
ence standard in the development of text mining systems.

Another contribution of this paper is that we dem-
onstrated the utilization of the dataset that we built 
by training and evaluating BERT-based classification 
models leveraging the data and further presented a way 
to improve the performance of the relation classifica-
tion task. Tweaking existing BERT-based models that 
are already known to show good performance for the 
classification task, we devised a new technique that can 
achieve better performance by alleviating the limita-
tions of existing models for RE. By introducing a [MASK] 
token respectively on two identical input sentences, we 
effectively improved problems such as OOV words and 
inconsistency between pre-training and fine-tuning that 
afflict existing relation extraction models. In the overall 
comparison experiment between our model with all of 
the suggested methods applied and the existing models 
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suggested in the related works, our proposed model 
showed the best performance, confirming that this 
methodology is effective in fine-tuning BERT-based pre-
trained models for relation classification tasks.

In summary, the developed dataset for semantic rela-
tion classification was successfully applied to train the 
classification model. Therefore, this could be used as a 
valuable resource for similar text mining research. We 
also made significant improvements to the algorithms of 
the relation classification model. We expect that the bio-
logical information extracted with high accuracy through 
our proposed dataset and relation extraction technique 
will be used as a trusted source of information in the 
development of a biomedical text mining system. We also 
believe that the annotation processes we elaborated on 
here will be of significant help to fellow researchers per-
forming similar work.

However, there remains room for improvement. To 
begin with, in the per-class performance analysis, our 
semantic relation based on the causality of binary enti-
ties and its direction showed limitations in sufficiently 
describing complex semantic associations among bio-
entities in a sentence. For example, in cases where the 
relative intensity of the association needs to be revealed 
for meaningful knowledge discovery, the current rela-
tion type might be insufficient. To tackle this problem, 
introducing a complex semantic relation, of which the 
degree is higher than two, can be considered. Also, we 
are exploring ways of implementing RE with generative 
models such as T5, allowing the models to output sen-
tences, which will be a direct and flexible answer reflect-
ing the relation’s subtle nuance to the given prompt. 
Secondly, in the comparative experiment of the masking 
input method, while our proposed methods–two-sen-
tence input, masked input, and combined or modified 
methods of these two–, were significantly superior to the 
original BERT method, the difference among them was 
trivial. Especially, our best method, two masked sentence 
input, outperformed entity marker-entity start, which 
was proposed in the previous study [36] by only a small 
margin. We additionally conducted an analysis of vari-
ance with the multiple measurements obtained through 
k-fold cross-validation, shown in Section  D in  Addi-
tional file 1, and the performance difference among non-
original BERT methods was not statistically significant, 
although it was possible to determine which model or 
methodology is better than the rest. These minor dif-
ferences between suggested structures warrant more 
in-depth future research, leading to a novel effective 
input treatment for RE providing significantly improved 
performance compared with the existing methods. If 
follow-up studies are conducted to address these listed 
limitations based on the realizations obtained through 

the experiments and analysis in this paper, we can expect 
further improvement in constructing a dataset and deep 
learning model for effective semantic relation classifica-
tion to be achieved in the near future.
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