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Abstract

Background: Although several previous studies have assessed the association of fine particulate matter (PM;s)
exposure during pregnancy with preterm birth, the results have been inconsistent and remain controversial. This
meta-analysis aims to quantitatively summarize the association between maternal PM, s exposure and preterm birth
and to further explore the sources of heterogeneity in findings on this association.

Methods: We searched for all studies published before December 2014 on the association between PM, s
exposure during pregnancy and preterm birth in the MEDLINE, PUBMED and Embase databases as well as
the China Biological Medicine and Wanfang databases. A pooled OR for preterm birth in association with
each 10 pg/m? increase in PM, s exposure was calculated by a random-effects model (for studies with
significant heterogeneity) or a fixed-effects model (for studies without significant heterogeneity).

Results: A total of 18 studies were included in this analysis. The pooled OR for PM, s exposure (per 10 pg/m?
increment) during the entire pregnancy on preterm birth was 1.13 (95 % Cl= 1.03-1.24) in 13 studies with a significant
heterogeneity (Q=80.51, p < 0.001). The pooled ORs of PM, 5 exposure in the first, second and third trimester were
1.08 (95 % Cl=0.92-1.26), 1.09 (95 % Cl = 0.82-144) and 1.08 (95 % Cl =0.99-1.17), respectively. The corresponding
meta-estimates of PM, s effects in studies assessing PM, 5 exposure at individual, semi-individual and regional level
were 1.11 (95 % Cl =0.89-1.37), 1.14 (95 % Cl =0.97-1.35) and 1.07 (95 % Cl = 0.94-1.23). In addition, significant
meta-estimates of PM, 5 exposures were found in retrospective studies (OR=1.10, 95 % Cl=1.01-1.21), prospective
studies (OR =142, 95 % Cl=1.08-1.85), and studies conducted in the USA (OR=1.16, 95 % Cl = 1.05-1.29).

Conclusions: Maternal PM, 5 exposure during pregnancy may increase the risk of preterm birth but significant
heterogeneity was found between studies. Exposure assessment methods, study designs and study settings might be
important sources of heterogeneity, and should be taken into account in future meta-analyses.
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Background

Preterm birth (before 37 weeks of gestation) is the lead-
ing cause of newborn deaths and the second-leading
cause of death (after pneumonia) in children less than
5 years old [1]. More than 1 million children die each
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year worldwide due to complications of preterm birth.
Many survivors face lifelong disabilities and chronic dis-
eases, including learning disabilities, adult hypertension,
diabetes, coronary heart disease, and visual and hearing
problems [1, 2]. An emerging body of evidence indicates
that ambient air pollution may play an important role in
the incidence of preterm birth [3, 4]. As a prominent com-
ponent of the ambient air pollution mixture, fine particu-
late matter (PM, 5, aerodynamic diameter <2.5 pm) may
cause greater harm to human health due to its specific
characteristics such as smaller diameter, larger surface
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area, and longer suspension time in air [5, 6]. Although pre-
vious studies have estimated the association between PM, 5
exposure during pregnancy and preterm birth, the results
have been inconsistent and remain controversial [7—10].

To quantitatively summarize the association between
PM, 5 exposure and preterm birth risk, a few meta-
analyses have been conducted during the past several
years [11-13]. However, due to some methodological
issues in previous studies, further research is needed.
For example, all three meta-analyses found a significant
heterogeneity between included studies [11-13]. Ac-
cording to the Cochrane guide, it is not appropriate to
simply combine the results of articles with significant
heterogeneity [14]. Although some authors have recog-
nized this issue in their studies, the limited number of
included studies prevented them from quantitatively
testing the sources of heterogeneity [11, 12]. In the past
several years, more studies have been conducted to esti-
mate the association between maternal PM, 5 exposure
and preterm birth, which provides an opportunity to
quantitatively explore the sources of heterogeneity be-
tween previous studies and meta-analyses.

In this study, we collected previously published studies
that assessed the association between PM, s exposure
during pregnancy and preterm birth, and employed a
meta-analysis model to quantitatively evaluate the effects
of PM, 5 exposure during different phases of pregnancy
on preterm birth. We further explored the modification
of exposure measurement methods, study settings and
study designs on the meta-estimates of PM, 5.

Methods
The methods for the analysis and inclusion criteria were
specified in advance and documented in a protocol.

Literature search

We searched for all publications indexed in the MED-
LINE, PUBMED and EMBASE databases as well as the
China Biological Medicine and Wanfang databases dur-
ing November and December 2014. The search strat-
egies used combinations of the following key words: “air
pollution”, “particulate matter”, “fine particulate matter”,
“fine particles”, “PM”, “PM,5”, “PM ,5”, “premature
birth”, “preterm birth”, “PTB”, “preterm delivery”, “PTD”
and “prematurity”. We also manually searched the refer-
ences of every primary study for additional publications.
Further publications were also identified from review
articles. Only publications in English or Chinese were
considered.

Inclusion and exclusion criteria

We initially screened the titles and abstracts of all studies.
Studies were excluded if they were not related to fine par-
ticulate matter and preterm birth. The remaining studies
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were noted as potentially eligible studies and were further
viewed by two independent authors. The studies were
included in this meta-analysis if they met the following
criteria: (a) studies included PM, 5 exposure during preg-
nancy and preterm birth that was defined as a live birth
before gestational week 37; (b) studies presented sample
sizes and odds ratios (OR) with 95 % confidence intervals
(CI) or information that could be used to infer these re-
sults; (c) if more than one study was identified for the
same population, only the study that included the most re-
cent population or the most information was selected.
Studies that did not meet the above criteria were excluded.
The process of study selection is presented in detail in
Fig. 1.

Data extraction

The following information was extracted from each
study: authors, year and source of publication, study
period, study setting, study design, PM, 5 exposure as-
sessment methods, data sources, sample size, PM, 5 ex-
posure windows, exposure range, and ORs and 95 %
Cls. If a study provided associations between preterm
birth and PM, 5 exposure during the entire pregnancy
and trimester-specific periods, all estimates were ex-
tracted. Several studies assessed PM, 5 exposure based
on monitoring network data and remote sensing data;
we preferentially chose estimates based on monitoring
network data because this assessment method was
more common across all studies, which could poten-
tially reduce the heterogeneity between studies in this
meta-analysis. In addition, because there is considerable
co-linearity between pollutants originating from the
same sources and not all studies adjusted for air pollut-
ants other than PM, 5, we extracted estimates only from
single pollutant models fully adjusted for other covari-
ates. Eligibility assessment and all data extraction were
conducted by two authors using a standard form, and
discrepancies were resolved by discussion between au-
thors. The authors adhered to PRISMA guidelines for
meta syntheses. Ethical approval was not required for
this meta analysis. We employed the New Castle
Ottawa scale to assess the quality of all included studies
[15]. For the retrospective studies, the quality assess-
ment was based on participant selection, comparability
and exposure assessment; For the prospective studies,
the quality assessment was based on participant selec-
tion, comparability and outcome.

Meta-analysis and statistical analysis

Prior to performing the meta-analysis, we converted all
ORs to a common exposure unit of 10 pg/m?® increase in
PM, 5 exposure, which allowed us to quantitatively pool
estimates from different studies. Firstly, all ORs and
their 95%Cls were converted by logarithms (In), which
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1,014 potentially relevant articles were identified and screened

A 4

936 studies were excluded after the

initial screening

A 4

78 potentially eligible studies were identified

A 4

51 studies were excluded on the basis of the
title or abstract, because

7 were systematic reviews and meta-analyses
44 were related to other air pollutants, and/or

other pregnancy outcomes

A 4

27 potentially eligible studies were retrieved for more detailed assessment

A 4

9 studies were excluded on the basis of the
whole paper, because

1 had a different definition of preterm birth

4 did not
relationship between PM,; s
preterm birth

1 assessed only the sources of PM, 5

3 were repeated studies

provide the dose-response

exposure and

A 4

18 studies were ultimately included in this meta-analysis

Fig. 1 Flow chart of the study selection process

were used to calculate the partial regression coefficients
(B) and their standard errors (se). Then the OR, (ad-
justed OR) for each 10 pg/m? increase in PM, 5 exposure
can be computed by the following formula:

OR, = EXP(B x 10/x)

Where x (ug/m?®) is the exposure dose for OR reported
in each included study. Similarly, the 95%CI of OR,
could also be calculated. We then conducted several
meta-analyses of the identified studies to quantitatively
estimate the associations of PM, 5 exposure during the
entire pregnancy and trimester-specific exposure dura-
tions with preterm birth risks. Several secondary ana-
lyses were also conducted to estimate the pooled-effects
of PM, 5 exposure during the entire pregnancy on pre-
term birth in subgroups with different exposure meas-
urement methods, study designs, and study settings.
These subgroup analyses aimed to explore the modifica-
tion effects of these characteristics on the estimates of
PM, 5 exposure on preterm birth and to further test their
impacts on the heterogeneity in the reported associations.

Three exposure measurement methods were identified in
the included studies: individual-level, semi-individual-
level, and regional-level exposure assessment. All these
three assessment methods were based on residential level.
Individual-level exposure was assessed using complicated
dispersion models based on traffic, meteorology, roadway
geometry, vehicle emission, air quality monitoring, and
land use databases [16, 17]. These models could estimate
each subject’s daily PM, 5 exposure level with high accur-
acy. Semi-individual exposure was estimated using the
daily PM,5 concentration from the monitoring station
nearest to the individual’s residence [7, 8]. Regional-level
exposure was calculated using the average PM, 5 concen-
tration in a region or a grid with low resolution. This
method did not consider the variation in PM, 5 concentra-
tion within a region, and assumed that all subjects in this
region had the same PM, 5 exposure concentration. The
PM,5 data usually had been obtained from monitoring
networks and remote sensing [18]. The study designs of
all of the included studies were divided into two categories:
retrospective and prospective. In addition, several meta re-
gression analyses were further employed to assess the
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impacts of study characteristics on the associations
between PM, 5 exposure and preterm birth risks.

To explore the possible heterogeneity of study results,
we hypothesized that effect size may differ according to
the methodological quality of the studies. The hetero-
geneity of the included studies was assessed using the
Q statistic and I? statistic. Cochran’s Q statistic was cal-
culated by summing the squared deviations of each
study’s estimate from the overall meta-analysis estimate
weighted by each study’s contribution. A p-value was
obtained by comparing the Q statistic with a chi-square
distribution with k-1° of freedom, where k is the num-
ber of included studies [19]. If the p-value was <0.05,
then a random-effects model would be selected, other-
wise a fixed-effects model would be selected [20, 21].
The I? statistic [I* = (Q - df)/Q x 100] describes the per-
centage of variation across studies that is due to hetero-
geneity rather than chance. I> > 50 % demonstrated that
there is a statistically significant heterogeneity [19]. We
also used funnel plot asymmetry to detect potential publi-
cation bias. Egger’s regression was applied to test the fun-
nel plot symmetry, with the inverse of the standard error
as the independent variable and the standardized estimate
of size effect as the dependent variable [22].

Finally, a series of sensitivity analyses was performed
to test the robustness of our results. Because some sub-
group analyses included very few studies, we conducted
sensitivity analyses only overall and in sub-groups analyses
that included more than five studies. For each sensitivity
analysis, we individually removed a single study with the
largest OR, the smallest OR, the largest standard error,
and the smallest standard error from the meta-analyses.

All statistical tests were two-sided, and P <0.05 was
considered statistically significant. We used R software
(version 2.15.2; R Development Core Team 2012,
www.R-project.org) to analyze the data.

Results

Search results and study characteristics

Twenty-seven potentially eligible studies were identified
and assessed for full text. A total of nine studies were
excluded for the following reasons: having a different
definition of preterm birth (n = 1) [23], not providing the
dose-response relationship between PM, 5 exposure and
preterm birth (n =4) [24—27], only assessing the sources
of PM,5 (n=1) [28], and duplication of studies whose
primary results had already been included in other stud-
ies (n=3) [29-31]. Eighteen studies were ultimately in-
cluded in this meta-analysis, containing a total of more
than 3,000 000 subjects with more than 299,000 preterm
births [7-10, 16—18, 32—42]. Most studies (12/18) were
conducted in the USA [7, 16, 18, 32, 34-40, 42]. There
were 12 retrospective and six prospective studies. There
were two studies assessing maternal PM, 5 exposure at
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individual, ten at semi-individual, and two at regional
levels. The other four studies used two methods to as-
sess PM,s exposure. The average Newcastle-Ottawa
quality score is 8. Detailed information about the in-
cluded studies is presented in Table 1.

The pooled effects of PM, 5 exposure in different
trimesters of pregnancy on preterm birth

We estimated a significant increase of preterm birth risk
associated with overall PM, 5 exposure (per 10 ug/m3 in-
crement) during pregnancy across all 13 included studies
(OR=1.13,95 % CI =1.03-1.24) (Table 2 and Fig. 2). The
pooled OR values of PM, 5 exposure in the first, second
and third trimester were 1.08 (95 % CI =0.92-1.26), 1.09
(95 % CI=0.82-1.44) and 1.08 (95 % CI=0.99-1.17), re-
spectively. We did not find any significant effects of PM, 5
exposure in either the first month (OR =1.10, 95 % CI =
0.92-1.30) or the last month of gestation (OR = 1.05, 95 %
CI=0.97-1.13) (Table 2 and Fig. 2).

Subgroup analyses on the effects of exposure assessment
methods, study designs and study settings on the
associations between PM, 5 exposure during the entire
pregnancy and preterm birth

We found numerically similar pooled associations be-
tween preterm birth risk and PM, 5 exposure in studies
using different exposure assessment methods. The
pooled ORs in the studies that assessed PM, 5 exposure
at individual, semi-individual and regional levels were
1.11 (95 % CI=0.89-1.37), 1.14 (95 % CI=0.97-1.35)
and 1.07 (95 % CI = 0.94—1.23), respectively (Table 2 and
Fig. 2).

We observed significant pooled estimates of PM, 5 on
preterm in studies that used a retrospective (OR =1.10,
95 % CI=1.01-1.21) or prospective study design (OR =
1.42, 95 % CI = 1.08-1.85). Furthermore, the latter meta-
estimate of PM, 5 was larger than the former (Table 2
and Fig. 2).

The pooled estimate of the association between PM, 5
exposure and preterm birth was statistically significant
for studies that were conducted in the USA (OR =1.16,
95 % CI=1.05-1.29), but the pooled estimate was not
significant for studies that were conducted in other
countries (OR =0.98, 95 % CI=0.95-1.01) (Table 2 and
Fig. 2).

In addition, several meta regression analyses were
employed to further evaluate the impacts of study char-
acteristics on the associations between PM, 5 exposure
and preterm birth risks (Additional file 1: Figure S1).
We observed similar results with the subgroup analyses.
For instance, the combined estimate of PM, 5 exposure
during the entire pregnancy were higher in prospective
studies than in retrospective studies ( = 0.25, P = 0.120).
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Table 1 Characteristics of the studies included in the meta-analysis

Authors Study setting Study Study design  Exposure assessment  Data source No. of No. of Exposure  Exposure range Quiality
period level participants cases  period (mean (IQR) ug/m?)  score®
Wilhelm et al. [39]  California, USA 1999-2000 Retrospective Semi-individual level Monitoring network data 106,483 9268 TS 21.0 (NA) 8
Huynh et al. [7] California, USA 1999-2000 Retrospective Semi-individual level ~ Monitoring network data 42,692 10673 WP and TS 180 (87) 8
Jalaludin et al. [33]  Sydney, Australia 1998-2000 Retrospective Regional level and Monitoring network data 123,840 6011 TS 9.0 (4.5) 8
semi-individual level
Ritz et al. [37] California, USA 2003 Prospective  Semi-individual level ~ Monitoring network data 58316 5924 TS 20.0 (NA) 7
Brauer et al. [8] Vancouver, Canada 1999-2002 Prospective  Semi-individual level Monitoring network data 70,249 3748 WP 5.1 (1.1) 7
Wu et al. [16] California, USA 1997-2006  Retrospective Individual level Monitoring network data 81,186 6712 WP 1.8 (14) 9
Gehring etal. [17] ~ North, west, and center  1996-1997  Prospective  Individual level Monitoring network data and 3853 165 WP and TS 20.1 (4.6) 7
of the Netherlands land use regression model
Rudra et al. [38] Washington, USA 1996-2006 Retrospective Semi-individual level ~ Monitoring network data 3509 369 TS 10.1 (NA) 9
Kloog et al. [34] Massachusetts, USA 2000-2008  Retrospective Semi-individual level Remote sensing data 634,244 61,972 WP 96 (5.3) 9
Lee et al. [35] Pittsburgh, USA 1997-2002 Prospective  Semi-individual level Monitoring network data 34,705 1940 TS 15.6 (4.0) 7
Chang et al. 2015 Atlanta, USA 1999-2005 Retrospective Semi-individual level ~ Monitoring network data 175,891 18648 WP and TS 173 (3.1) 8
Fleischer et al. [10] 22 countries 2004-2008  Retrospective Regional level Remote sensing data 192,900 13,379 WP 1.4-98.1 (NA) 7
Nannam et al. 2014  Northwest England 2004-2008 Retrospective Semi-individual level Monitoring network data 265613 38608 WPand TS 22.1 (4.6) 9
[41] and individual level
Ha et al. [42] Florida, USA 2004-2005 Retrospective Regional level and Monitoring network data 423,719 39,082 WPand TS 99 (2.0) 8
semi-individual level
Hyder et al. [18] Connecticut and 2000-2006  Retrospective Regional level and Monitoring network data and 647,942 41868 WPandTS 119 (24) 8
Massachusetts, USA semi-individual level remote sensing data
Gray et al. [32] North Carolina, USA 2002-2006  Retrospective Regional level Monitoring network data 457,642 40,746 WP 13.6 (2.0) 8
Pereira et al. [9] Connecticut, USA 2000-2006  Prospective  Semi-individual level Monitoring network data 61,688 - WP and TS 124 (2.3) 9
Pereira et al. [56] Perth, Australia 1997-2007  Prospective  Semi-individual level Monitoring network data 31,567 - WPand TS 86 (2.2) 9

NA: Data not available

“ Newcastle-Ottawa quality score
-: The number of cases was not available because these studies were longitudinal studies that assessed the effects of PM, s on preterm birth across successive pregnancies. NA: Data not available
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Table 2 Pooled associations between PM, s exposure (per 10 pug/m? increment) during pregnancy and preterm birth risks in different

subgroups
Subgroups No. of Heterogeneity test Summary OR Hypothesis test 5 Egger’s test
studies Q—P (95 % Cl) # (%) ﬁ
Exposure during the entire pregnancy 13 80.51 <0.001 1.13* (1.03-1.24) 259 0.010 914 2.20 0.051
Specific trimester
First trimester exposure 10 89.14 <0.001 1.08 (0.92-1.26) 0.96 0.334 913 0.68 0.517
Second trimester exposure 5 13869 <0.001 1.09 (0.82-1.44) 0.60 0.548 98.7 0311 0.776
Third trimester exposure 9 4483 <0.001 1.08** (0.99-1.17) 1.70 0.089 92.1 1.58 0.157
First month of gestation 3 22.03 <0.001 1.10 (0.92-1.30) 1.03 0.301 91.0 0.58 0.666
Within one month before birth 6 5149 <0.001 1.01 (0.86-1.19) 0.09 0.926 96.8 0.03 0.980
Exposure assessment method?
Individual exposure 3 494 0.085 1.11 (0.89-1.37) 0.93 0352 613 1.74 0332
Semi-individual exposure 9 55.86 <0.001 1.14 (0.97-1.35) 1.56 0.119 93.0 035 0.737
Regional level 4 46.19 <0.001 1.07 (0.94-1.23) 1.00 0319 93.8 0.11 0921
Study design?
Retrospective studies 9 70.98 <0.001 1.10% (1.01-1.21) 212 0.034 933 231 0.055
Prospective studies 4 464 0.201 1.42% (1.08-1.85) 252 0012 395 0.10 0927
Study setting®
USA 8 5049 <0.001 1.16* (1.05-1.29) 273 0.006 90.6 1.80 0.121
Others 5 7.90 0.095 0.98 (0.95-1.01) mm 0.268 0.1 1.62 0.205

2 All of these subgroup analyses were conducted for the studies that assessed the association between PM, s exposure during the entire pregnancy and preterm
birth. All of these estimates were ORs for each 10 pug/m? increment of PM, s exposure during the entire pregnancy

* p<0.05
**:005<p<0.10

Sensitivity analyses on the associations between PM, 5
exposure and preterm birth

In the meta-analysis that included studies assessing PM, 5
exposure at the semi-individual level, the PM,5; meta-
estimate became significant after excluding a single study
with the smallest effect size. Beyond that, we did not find
any significant change in the PM,5 meta-estimates in
other meta-analyses after excluding a single study with the
largest effect size, the smallest effect size, the largest
standard error, or the smallest standard error (Fig. 3).

Heterogeneity and publication bias

We observed significant heterogeneities in most of the
meta-analyses. However, in some subgroup analyses,
such as the subgroup of prospective studies, there were
no significant heterogeneities between studies. These
findings indicate that the three characteristics that we
took into account in this study were important sources
of heterogeneities between studies. We did not find any
statistically significant publication bias in any of the
meta-analyses (Table 2 and Fig. 4).

Discussion

In this meta-analysis, we quantitatively assessed the
association between maternal PM, 5 exposure during preg-
nancy and preterm birth risk. We observed a clearly

significant association between PM,5 exposure during
pregnancy and preterm birth risk, which is consistent with
the results of previous meta-analyses [11, 13]. Sapkota et
al. estimated a pooled OR of 1.15 (95 % CI=1.14-1.16)
for preterm birth per 10 ug/m3 increment in PM, 5 expos-
ure during the entire pregnancy [11]. Zhu et al. reported
that a 10 pug/m? increase in PM, 5 exposure over the entire
pregnancy was positively associated with a 10 % (95
CI % =3.0-18 %) increase in preterm birth risk [11] Stieb
et al’s meta-analysis also found a positive but non-
significant association between PM, 5 exposure and pre-
term birth (OR =1.05, 95 CI % =0.98-1.13). The lack of
statistical significance may be due to the small quantity of
included studies (z=4) [12]. These results further
demonstrate the adverse effect of PM, 5 exposure during
pregnancy on preterm birth. Air pollution is ubiquitous,
and all populations are exposed to it at some level. Imma-
ture fetuses are more susceptible to air pollution [43].
Therefore, these results are important for policy makers
and public health practitioners worldwide.

Although the mechanisms of PM, 5 leading to preterm
birth are not well understood, inhaled PM, 5 can penetrate
the gas exchange region of the lungs and enter the blood-
stream. Toxic chemicals such as carcinogenic polycyclic
aromatic hydrocarbons and harmful metals could cause
systemic oxidative stress, oxidative stress-induced DNA
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other countries

Fig. 2 Forest plots for the pooled ORs for the association between PM, 5 exposure (per 10 ug/m? increment) during the pregnancy and preterm
birth. a: In studies that assessed PM, s exposure during the entire pregnancy. b: In studies that assessed PM, s exposure in the first trimester. ¢: In
studies that assessed PM, 5 exposure in the second trimester. d: In studies that assessed PM, s exposure in the third trimester. e: In studies that
assessed PM, s exposure in the first month of gestation. f: In studies that assessed PM, 5 exposure within one month before birth. g: In studies
that assessed PM, s exposure at individual level. h: In studies that assessed PM, s exposure at semi-individual level. i: In studies that assessed PM, s
exposure at regional level. j: In retrospective studies. k: In prospective studies. I: In studies conducted in the USA. m: In studies conducted in

damage, pulmonary and placental inflammation, blood
coagulation, endothelial dis-function, and hemodynamic
changes [44]. These responses could interfere with the
transplacental oxygen and nutrient transport from
mothers to fetuses, and has the potential to negatively
impact fetal growth and development, particularly during
critical periods of organogenesis [43, 45, 46]. In addition,
The early activation of cytokines favoring inflammation
may play an important role in the PM,s-preterm link,
because inflammatory mediators such as interleukin 1-f
(IL-1pB) and tumor necrosis factor-a (TNF-a) can trigger
the premature onset of labor [46].

The question of which gestational windows are more
susceptible to air pollution has been explored in several
previous studies. Although some studies supported early
pregnancy (the first month or first trimester) [7, 35, 37],
other studies supported later pregnancy (the third tri-
mester, the last month, or the last week) [33, 39] as the
window of susceptibility. A meta-analysis also observed
a pronounced association between PM, ;5 exposure dur-
ing the third trimester and preterm risk [11]. It was
debated that PM, 5 exposure during the later pregnancy
might induce early activation of cytokines favoring in-
flammation, and trigger the premature onset of labor
[46]. By contrast, the implantation of the fetus and the
formation of the placenta occur during the first trimes-
ter, and higher PM, 5 exposure during this time period
might cause genetic mutations, and hence increase the
risks of fetal malformation, miscarriage and even death
[47]. These serious harmful effects might attenuate the
association between PM, s exposure in early pregnancy
and preterm outcome. However, in this study we observed
nearly identical pooled estimates of PM, 5 exposure during
the first, second and third trimester, which indicates that
more studies are needed in the future to explore which
gestational windows are more susceptible to air pollution.

Exposure assessment is an important issue in studies
estimating the effects of ambient air pollution on health.
In this meta-analysis, we selected studies that assessed
PM, 5 exposure at the individual, semi-individual or re-
gional level. Using monitoring data for nearby areas or
regional average PM,s concentrations measured at
monitoring stations may provide a misrepresentation of
exposure because this method does not take into ac-
count the spatial misalignment between an individual’s

residence and monitoring sites, and ignores the fact that
individuals have different activity models (indoor and out-
door activity time) and could have changed their residen-
tial address during pregnancy [8, 48, 49]. Some recent
studies used complicated dispersion models to quantita-
tively assess individual PM,5 exposure [16, 17]. These
models included data on several variables including traffic,
meteorology, roadway geometry, vehicle emission, air
quality, and land use. However, the accessibility of these
datasets usually limits the wide employment of these dis-
persion models, particularly in some developing countries
where the information on land use, traffic and vehicle
emission is limited. In recent years, some studies used per-
sonal monitors to assess maternal exposure to air pollut-
ants in different trimesters [50, 51]. These methods could
theoretically reduce the bias in exposure assessment. In
this study, although we observed stronger pooled associa-
tions between PM, 5 exposure and preterm birth in studies
that assessed PM, 5 exposure at the individual and semi-
individual levels than for studies that used regional-level
methods, the lack of significant associations indicate that
more studies are needed in the future, especially studies
assessing PM,5 exposure at the individual level. For
example, we only included three studies that used the
individual-level assessment method, and their pooled esti-
mate was dominated by a single study.

It is well known that the toxicity and health impacts of
PM, s may vary by geographic area [52]. Therefore, it is
reasonable to conduct subgroup meta-analyses to test
the variation in PM, 5 estimates between regions. In this
study, because most of the included studies were con-
ducted in the USA, we divided all studies into two
groups (USA and other countries). However, we found a
significant meta-estimate of PM, 5 exposure only for the
US studies. This discrepancy may be partially related to
the small number (# =5) of studies in the second group,
which indicates that more studies in countries other
than the USA are needed, especially in middle or low in-
come countries with higher levels of air pollution. For
example, only one study has been found that assessed
the association between PM, s exposure and preterm
birth in China and India. These two countries have the
most severe PM, 5 pollution [53], and the largest num-
ber of preterm births worldwide [1]. Studies in these
countries could provide important information for policy
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PM, 5 exposure in the first trimester and preterm birth. Chart Ill: In studies that assessed the association between PM, 5 exposure in the third
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makers and public health practitioners to reduce the
health impacts of air pollution.

Although this meta-analysis estimated the pooled effects
of PM, 5 concentrations on preterm birth risks, the limited
number of studies restricted us from further exploring the
effects of the chemical components of PM, 5 on preterm
birth. PM, 5 is a mixture of multiple inorganic and organic
components, and its health effects can vary based on com-
ponents and origins [54, 55]. Only two of the included
studies assessed the association between the components
and sources of PM, 5 and preterm birth. Pereira et al.

observed that preterm birth in Connecticut, USA was as-
sociated with increased exposure to dust, motor vehicle
emissions, oil combustion and regional sulfur PM,5
sources during the entire pregnancy [56]. Darrow et al’s
study in Atlanta, USA found that preterm birth was sig-
nificantly associated with sulfates and water-soluble metals
in PM, 5, but not associated with other components [30].
These results demonstrate that studies on the association
between PM,5; components and sources and preterm
birth are still limited, and more studies are needed in the
future.
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Another factor affecting the heterogeneity between
studies is the way that the studies controlled for con-
founders [57]. All of the studies included in this meta-
analysis provided adjusted estimates of PM,s exposure.
Some common confounders, such as maternal age, race/
ethnicity, income, education, smoking status during preg-
nancy, infant sex, parity, and birth season, were adjusted

for in most studies. However, almost all of the maternal
and infant information was from public records, such as
birth certificates, which limited the ability to control for
other important confounders, such as maternal stress, ac-
tivity level, nutrition, indoor pollution, and factors that
varied spatially [36, 50, 51]. Therefore, improving the data
quality of public records is one way to improve related
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studies. Future longitudinal studies that collect more
detailed information at the individual level would be
beneficial.

With reference to the limitations of this meta-
analysis, we found high heterogeneity between included
studies. Therefore, we used a random-effects model to
quantitatively combine the individual estimate in stud-
ies with high heterogeneities. We also employed sub-
group analyses and meta-regression analyses to explore
the sources of heterogeneity. The results showed that
although exposure assessment methods, study designs
and study settings partially explained the heterogeneity,
significant heterogeneities were still found in most sub-
group analyses. These findings indicate that the hetero-
geneity across the included studies may also have been
affected by other factors that we did not consider in
this study, such as socioeconomic status and chemical
constituents of PM, 5, due to the limited quantity of re-
lated studies. Therefore, further studies are needed to
explore the sources of heterogeneity in the future.

Conclusions

In summary, this meta-analysis observed a clear associ-
ation between PM, 5 exposure during pregnancy and pre-
term birth risk. However, a significant heterogeneity was
found between included studies. The exposure assessment
method, study design and study setting might be import-
ant sources of the heterogeneity, and should be taken into
account in future meta-analyses. This study extends our
understanding of the effects of maternal PM, 5 exposure
on preterm birth, and highlights that it is crucial to reduce
ambient PM, 5 pollution and reduce maternal PM, 5 ex-
posure during pregnancy to improve birth outcomes.
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