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Abstract: Worldwide, 19.3 million new cancer cases and almost 10.0 million cancer deaths occur each
year. Recently, much attention has been paid to the ocean, the largest biosphere of the earth that
harbors a great many different organisms and natural products, to identify novel drugs and drug
candidates to fight against malignant neoplasms. The marine compounds show potent anticancer
activity in vitro and in vivo, and relatively few drugs have been approved by the U.S. Food and Drug
Administration for the treatment of metastatic malignant lymphoma, breast cancer, or Hodgkin′s
disease. This review provides a summary of the anticancer effects and mechanisms of action of
selected marine compounds, including cytarabine, eribulin, marizomib, plitidepsin, trabectedin,
zalypsis, adcetris, and OKI-179. The future development of anticancer marine drugs requires
innovative biochemical biology approaches and introduction of novel therapeutic targets, as well as
efficient isolation and synthesis of marine-derived natural compounds and derivatives.
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1. Introduction

With its great biodiversity and unique chemical diversity, the marine environment
is a huge treasury of medicinal resources [1–3]. There are 17 clinically available drugs
that were based on marine natural products or their derivatives, and 28 drugs that are
currently being tested in phase I–III clinical trials [4,5]. Cancer has been the second leading
cause of mortality worldwide, causing approximately 10 million deaths in 2020 [6]. In the
past decades, substantial efforts have been made to unveil the pathogenesis of cancers
and new anticancer drugs have been developed [7–10]. Here, we review the original
resources, anticancer effects, mechanisms, and clinical applications of selected marine-
derived compounds including cytarabine (the first approved marine-derived anticancer
drug), eribulin (a microtubule-depolymerizing drug), marizomib (a proteasome inhibitor),
plitidepsin (a DNA synthesis inhibitor), trabectedin (a nucleotide drug), adcetris (an
antibody drug conjugate), zalypsis (a new DNA binding alkaloid), and the largazole
analogue OKI-179 (an HDAC inhibitor) (Table 1).
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Table 1. Selected marine natural compounds or derivatives that have been approved or entered into clinical trials in the
past decades.

Compound Source Indications Mechanisms Clinical Trial

Cytarabine Cryptotethia crypta AML DNA synthesis inhibition Approved

Eribulin Halichondria okadai Breast cancer, liposarcoma Prevention the formation of spindles and EMT,
apoptosis induction Approved

Marizomib Salinispora tropica MM Selectively inhibiting 20S proteasome Approved
Plitidepsin Aplidium albican Solid tumor, MM Cell cycle arrest, apoptosis induction Approved

Trabectedin Ecteinascidia turbinata Liposarcoma,
leiomyosarcoma

Binding to guanine residues in the DNA groove to
form protein adducts Approved

Adcetris Dolabella auricularia Hodgkin’s lymphoma Inhibiting tubulin formation, apoptosis induction Approved

Zalypsis Joruna funebris Urothelial carcinoma,
cervical carcinoma, MM

rendering DNA double strand breaks, cell cycle
arrest, apoptosis induction Phase II

OKI-179 Cyanobacterium,
Symploca Advanced solid tumors Class I HDAC inhibition Phase I

Abbreviations: HDAC: Histone Deacetylase; AML: Acute Myeloid Leukemia; EMT: Epithelial-Mesenchymal Transition; MM: Multiple
Myeloma; MMPs: Matrix Metalloproteinases.

2. Cytarabine/Ara-C

Cytarabine (Figure 1), based on a lead compound from marine sponge was synthesized
in 1959 by Walwick at the University of California, Berkeley. Cytarabine was the first
clinically used marine anticancer drug to be approved in 1969 by the US Food and Drug
Administration (FDA), mainly for treating acute leukemia [11,12]. Cytarabine is a cytosine
base-containing pyrimidine nucleoside. It is converted from 1-β-d-arabinofuranosyluracil
through the acylation of its hydroxyl group and conversion of the 4-carbonyl group in the
pyrimidine ring into a thiocarbonyl group. Subsequently, the thiol group was replaced
by an amino group and the acetyl group was hydrolyzed to obtain the final pyrimidine
structure. The difference between the synthetic cytarabine and the naturally occurring
cytarabine is that in the latter, there is a hydroxyl group in the 2’-β configuration of the
sugar moiety. The resulting arabinose binds to the replicating DNA chain and inhibits the
initiation and extension of the chain, resulting in the production of erroneous DNA.

Cytarabine is metabolized in vivo and transformed into its active form “ara-CTP”.
The entire process involves three steps [13]. First, cytarabine is converted to the inactive
form arabinouridine (Ara-U) after deamination and only small amount of cytarabine subse-
quently enters into the cell. Cytarabine is catalyzed into Ara-CMP via deoxycytidine kinase
(DCK) in the cytoplasm. Second, Ara-CMP is transformed into Ara-CDP by pyrimidine
nucleoside kinase. Third, the Ara-CDP is metabolized into Ara-CTP. Ara-CTP may be
incorporated into the nucleotide chain of ribonucleic acid (DNA), which prevents chain
elongation and causes chain breaks. By affecting the replication of the chain, the drug
inhibits the proliferation of tumor cells. Studies have shown that Ara-CTP can bind to the
topoisomerase complex limiting its activity by inhibiting DNA synthesis (Figure 1) [14].

The anticancer effect of cytarabine depends on the dosage. When cytarabine at low
dosage enters into the structure of oligonucleotides, it reduces the binding capacity of
transcription factors with their respective DNA binding elements and the transduction of
new messenger RNA. At high doses, it exhibits a significant antitumor effect by inducing
cell cycle arrest at the G0 and G1 phases. While cytarabine at medium and small doses
can induce S phase cell cycle arrest. DNA fragmentation analysis shows that cytarabine
induces cellular apoptosis in a dose-dependent manner (Figure 1) [15].

In the clinic, high and medium dosages of cytarabine are usually applied to treat
acute myeloid leukemia (AML) [15]. However, serious side effects, such as bone marrow
suppression, which will lead to anemia, leukopenia, thrombocytopenia, infection, and
musculoskeletal and connective tissue abnormalities have limited its clinical use [16–18].
Therefore, combination medication becomes an alternative which can avoid serious ad-
verse effects. Although decitabine combined with low-dose of Ara-C has a higher risk
of bone marrow suppression and infection in the initial stage of treatment, patients can
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tolerate it and with the extension of the treatment course, the adverse reactions gradually
decreased [19].
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Drug resistance has always been a major problem in the clinical application of cytara-
bine. In recent years, research on drug resistance of cytarabine has gradually increased
and studies have shown that drug resistance is related to biological factors, proteins, and
gene mutations [20,21]. Cytarabine induces apoptosis of HL60 cells and activates nuclear
factor-κB (NF-κB), which may cause early resistance of leukemia cells to cytarabine. It has
been reported that NF-κB plays an important role in anti-apoptosis [22–25]. Deoxycytidine
kinase (DCK) protein, one of the most critical proteins identified in research reports, is the
key rate-limiting enzyme for the phosphorylation of cytarabine in the body. It has been
found that DCK is down-regulated and mutated in drug-resistant mouse AML cell lines.
As a result, the first phosphorylation of cytarabine in the body is restricted, affecting the
activation and the therapeutic effect of cytarabine in the body [26].

3. Eribulin/E7389

Eribulin (Figure 2) is a derivative of halichondrin B which was isolated from
Halichondria okadai [27,28]. Eribulin was approved by FDA for treatment of breast cancer
and liposarcoma in 2010 and 2016, respectively [29]. The synthesis of eribulin is compli-
cated and difficult [30]. Eribulin is a microtubule-depolymerizing drug, which interferes
with the mitotic phase of cell cycle. Eribulin mainly binds with high affinity to the ends
of positive microtubules, preventing the polymerization of tubulin. Eribulin can also
bind to soluble α- or β-tubulin, decreasing the effectiveness of subunit polymerization
and inducing cell cycle arrest at the G2/M phase and apoptosis through mitochondrial
obstruction (Figure 2) [31]. In preclinical studies, eribulin has shown antitumor activity
in various types of cancer, including colon cancer, glioblastoma, head and neck cancer,
melanoma, non-small cell lung cancer (NSCLC), ovarian cancer, pancreatic cancer, and
small cell lung cancer [32].
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Eribulin can inhibit tumor metastasis by inhibiting epithelial-mesenchymal transition
(EMT) and inducing mesenchymal-epithelial transition (MET). Yoshida et al. found that
treatment of triple negative breast cancer (TNBC) cells with eribulin led to MET [33].
Eribulin treatment decreases expression of mesenchymal marker genes and increases the
expression of epithelial markers. Funahashi et al. reported that eribulin remodels tumor
vasculature in human breast cancer xenograft models by increasing microvessel density
and decreasing mean vascular areas and branched vessels in tumor tissues [34]. Further, the
authors reported that eribulin affects the expression of genes involved in the angiogenesis
signaling pathway and the EMT pathway, and was posited to be related to the decrease
in hypoxia. Clinical studies support the use of eribulin in the treatment of advanced or
metastatic breast cancer, and also indicate that eribulin may treat solid tumors that are
resistant to other types of microtubule kinetic inhibitors. In addition, the combination
of eribulin and paclitaxel exerts a synergistic anti-proliferative effect on TNBC cells by
increasing the expression of E-cadherin and decreasing the expression of cell mesenchymal
markers [35].

4. Marizomib/NPI-0052

Proteasome degradation plays a critical role in the survival of malignant tumor cells.
The increase of proteasome has been observed in various types of tumor cells, indicating
that the survival and growth of tumor cells rely on the proteasome [36]. In the late stage
of plasma cell differentiation, proteasome activity decreases with the accumulation of
immunoglobulin, leading to the accumulation of ubiquitinated protein [37]. Marizomib
(NPI-0052), a natural compound isolated from marine Salinispora tropica [38], possessing a
γ-lactam-β-lactone fragment is a proteasome inhibitor. Studies have shown that marizomib
induces loss of mitochondrial membrane potential, increases ROS production, cytochrome
C/Smac release and activation of caspases, leading to multiple myeloma cell apoptosis [39].
Marizomib may also exert antitumor activity through the inner mitochondrial apoptotic
pathway and death receptor pathway (Figure 3) [40–42]. Inhibition of the proteasome
by marizomib is generally considered to be the result of inhibiting the NF-κB pathway.
Proteasome inhibition increases the level of IκBα, thereby inhibiting the NF-κB pathway,
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resulting in a decrease in the production of anti-apoptotic factors, angiogenic factors
and inhibition of apoptosis [43]. Proteasome inhibition leads to an imbalance in the self-
regulation of cyclins, cyclin-dependent kinases and other cell cycle regulatory proteins and
this can disrupt cell division.
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Chauhan et al. found that intravenous injection of single or multiple doses of mari-
zomib (0.15 mg/kg) into mice can inhibit proteasome activity in peripheral organs, but
not in the brain [39]. Marizomib is rapidly distributed to various organs and tumors
from the vascular compartment, and clearly inhibits the caspase-like, trypsin-like, and
chymotrypsin-like activity of proteasomes. Marizomib synergizes with the immunosup-
pressive agent pomalidomide in treatment of multiple myeloma by inducing apoptosis by
activation of caspases and downregulation of CRBN, MYC, IRF4, and MCL1 [44].

Clinical studies have shown that Marizomib is effective in treating neoplastic ma-
lignancies including multiple myeloma, brain tumor, and glioma, and was approved by
FDA in 2013 and the European Medicines Agency (EMA) in 2014 for treatment of mul-
tiple myeloma [45–47]. Marizomib is well tolerated, and adverse events include nausea,
neutropenia, pneumonia, anemia, thrombocytopenia, and febrile neutropenia. Marizomib
also causes central nervous system toxicity, such as cognitive changes, expressive aphasia,
visual or auditory hallucinations, disorientation, and unstable gait, which can be relieved
after ceasing the drug [48].

5. Plitidepsin/Aplidine

Plitidepsin (aplidine), a natural compound isolated from Aplidium albican [49], is a
cyclic depsipeptide whose structure is similar to that of bisbenzophenone [50]. Plitidepsin
has strong antitumor activity with low toxicity and was approved by FDA in 2004 to treat
multiple myeloma [51].

The mechanism of plitidepsin in treating multiple tumors has been thoroughly in-
vestigated. Plitidepsin exhibits anticancer effects by inhibiting tumor cell proliferation
and inducing cell apoptosis in multiple myeloma (MM), plasmacytoma, prostate cancer,



Mar. Drugs 2021, 19, 488 6 of 19

pancreatic cancer, and ovarian cancer [52,53]. Plitidepsin treatment resulted in oxidative
stress, rapid activation of Rac1 GTPase, and continuous activation of c-Jun N-terminal
kinase (JNK) and p38 mitogen-activated protein kinase (p38/MAPK), leading to caspase
activation and cell apoptosis (Figure 4) [54]. Recent studies have found that the translation
elongation factor eEF1A2 is the primary target of plitidepsin, which can bind to eEF1A2 at
the interface between domains 1 and 2 of this protein in the GTP conformation [51,55,56].
It has been further reported that plitidepsin also inhibits the activation and subsequent
destruction of aggregates in lysosomes, which accumulate excessive misfolded proteins
in cells, thereby triggering apoptosis. In chronic lymphocytic leukemia (CLL), plitidepsin
affects the viability of leukemic cells through direct and indirect pathways. It inhibits the
malignant B-CLL clone directly and restrains tumor growth by indirect modification of
the micro-environment [53]. A recent study showed that plitidepsin analogs PM01215 and
PM02781 inhibit angiogenesis in vitro and in vivo [57].
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6. Trabectedin/ET-743

Trabectedin (ET-743) is a tetrahydroisoquinoline alkaloid derivative which was ap-
proved to treat liposarcoma and leiomyosarcoma by EMA and FDA in 2007 and 2015,
respectively [58,59]. Trabectedin is isolated from extracts of Ecteinascidia turbinata and
described as able to prevent oncogenic transcription factors from binding to the target
promoters [60]. Trabectedin contains three fused tetrahydroisoquinoline rings (A, B, and C
rings) [61]. The A and B rings form a rigid five-ring skeleton, which is connected to the C
ring through a 10-membered lactone bridge. Ring A and B insert into deoxyribonucleic
acid (DNA) by interacting with DNA minor grooves through hydrogen bonds and Van
der Waals forces to promote the alkylation of adjacent nucleotides in the same or opposite
strands of DNA [62]. The N2 of guanine in the 5′-CGG, TGG, GGC, AGC sequence is
the alkylation site [63]. In addition, protonated amines are involved in the production
of reactive imine ions (N2) that catalyze DNA binding [64]. The carbon ring protrudes
from the deoxyribonucleic acid backbone and interferes with the deoxyribonucleic acid
binding protein, while traditional alkylating agent drugs usually bind at the N-terminal or
O-terminal. In addition, trabectedin inhibits transcription by binding to transcription RNA
polymerase II (Pol II) and blocking its activity [65], leading to degradation of Pol II enzyme
(Figure 5) [66].
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Studies in vivo and in vitro have shown that trabectedin can reduce tumor growth and
regulate the tumor micro-environment. In addition to the approved treatment of soft tissue
sarcoma and ovarian cancer, trabectedin is undergoing clinical evaluation with other cancer
types, including breast cancer, bone cancer, and prostate cancer [60]. Trabectedin inhibits
transcription by reducing the transactivation ability of the chimeric protein, achieving some
success in myxoid liposarcoma and Ewing′s sarcoma and other sarcoma subtypes, and
ultimately leading to adipocyte differentiation and apoptosis [67]. The clinical application
of trabectedin was first applied to soft tissue sarcoma (STS). A number of clinical phase
I studies have found that it has a good effect on ovarian cancer when used alone or in
combination with other chemotherapeutic drugs, such as cisplatin [68–70]. Phase II and III
clinical studies have shown that trabectedin alone or in combination with other anticancer
drugs is effective in soft tissue tumors, especially liposarcoma and leiomyosarcoma, and
prolongs the survival time of the patients [30,71–73].

Clinical application of trabectedin is gradually expanding. It is reported that trabecte-
din could regulate the tumor micro-environment (TME) by decreasing the concentration of
immune cells, such as monocytes and tumor-associated macrophages, and indirectly reduc-
ing the production of inflammatory mediators, such as interleukin-6, interleukin-8 and vas-
cular endothelial growth factor, and affecting the expression of extracellular matrix-related
genes [74]. Trabectedin could also inhibit genes and pathways related to the phenotype of
cancer stem cells [75,76]. Moreover, trabectedin-induced DNA damage in an RNA-DNA
hybrid-dependent manner in Hela cells has been observed. This RNA-DNA hybrid is also
called R-loop, and high level of R-loops sensitizes tumor cells to trabectedin. [77].

7. Adcetris/Brentuximab Vedotin

Adcetris, or Brentuximab Vedotin is an antibody drug conjugate which couples a
CD30 antibody and a tubulin targeted compound, monomethyl auristatin E (MMAE).
Compound MMAE is a derivative of natural compound dolastatin 10 isolated from
Dolabella auricularia [78–80]. Adcetris was approved in 2011 to treat Hodgkin’s lymphoma
(HL) and systemic anaplastic large cell lymphoma (ALCL) [81]. Adcetris consists of three
parts: a monoclonal antibody with a targeting function, which can guide adcetris to its
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target cells; an effective cytotoxic compound called the payload or warhead, which has the
pharmacological effect of killing tumor cells; and a central part composed of hexanoic acid
and maleimide that has a linking function. It can covalently connect the first two parts
and be further responsible for releasing payloads and linkers in the target cells [82–85].
Brentuximab is a monoclonal antibody that locates tumor cells by searching for the tumor
marker CD30 membrane protein. Vedotin is the second part of the conjugate, including the
linker and the cytotoxic principle MMAE. To meet the requirements, the main ingredient
of linker in adcetris is cathepsin-cleavable valine-citrulline, which can be cut precisely to
release a cytotoxic compound. Adcetris exerts its anticancer activity in a few steps in vivo.
First, the recognition of brentuximab antibody by CD30 protein leads to the decomposition
of adcetris. Then, the selective proteolytic cleavage of adcetris promoted by lysosomal
cysteine protease releases vedotin. Second, vedotin releases MMAE in cytoplasm. When
free MMAE reaches its goal, it prevents cell division in G2/M by disrupting microtubule
dynamics, and ultimately induces cell death (Figure 6) [85,86].
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Adcetris is used in the clinic as a consolidation therapy after autologous stem cell
transplantation (ASCT). Some studies have evaluated the efficacy of adcetris as a consolida-
tion therapy for adult patients with Hodgkin′s lymphoma at risk of relapse or progression
after receiving ASCT through a randomized, double-blind, Phase 3 trial [87]. During
the 30-month follow-up, in the main independent retrospective analysis, treatment with
adcetris, compared with placebo, significantly prolonged progression-free survival (PFS;
42.9 months vs. 24.1 months). Adcetris has a certain effect on other CD30-positive lym-
phomas. The efficacy of adcetris on B-cell lymphoma was evaluated in a phase II trial. The
study included 65 patients with CD30-positive relapsed or refractory B-cell lymphoma
who were given 1.8 mg/kg of adcetris. Among 48 evaluable basal cell carcinoma patients,
eight and thirteen patients achieved complete and partial remission, respectively [88].

Adcetris has attracted great attention because of its excellent antitumor activity and
its acceptable side effects. The successful development of adcetris indicates that CD30
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can be used as a therapeutic target for HL and ALCL, which leads to the development of
more CD30-targeting agents. Currently, more than 80 active phase I–III clinical trials have
been carried out to evaluate the efficacies of adcetris in cancers, but drug resistance has
been reported in patients treated with adcetris. Strategies to overcome drug resistance and
combinatory regimens to achieve maximal efficacy are being tested in lymphoma [89].

8. Zalypsis/M00104

Zalypsis, an alkaloid newly isolated from Joruna funebris, is a tetrahydroisoquinolone
alkaloid that is structurally similar to ascidianin and nephromycin [90]. It binds covalently
to guanine residues in for example, the AGG, GGC, AGC, CGG, and TGG groups to form
a DNA-zalypsis adduct, leading to early transcription inhibition and a double-stranded
DNA break, affecting cell proliferation and development (Figure 7) [91,92]. Zalypsis shows
antitumor activity against cell lines of bladder cancer, gastric cancer, liver cancer, prostate
cancer, pancreatic cancer, thyroid cancer, sarcoma, leukemia, and lymphoma [91,93–96]. In
multiple myeloma, zalypsis in combination with bortezomib and dexamethasone exerts
enhanced efficacy with acceptable toxicity in vitro and in vivo [97]. Phase II and Phase III
clinical trials have shown that zalypsis is effective in treating Ewing’s sarcoma, urothelial
cancer, multiple myeloma, endometrial cancer, and cervical cancer [91,98].
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9. Largazole and Its Analogues

HDACs are responsible for the deacetylation of lysine residues in histone and non-
histone proteins, leading to chromatin condensation and transcriptional repression [99].
To date, eighteen human HDACs have been identified, and they are divided into four
classes (I–IV). HDACs, especially class I HDACs, are overexpressed in various cancer cell
types [100,101] and contribute to tumor development and progression [102,103]. Thus,
HDACs have been validated as valuable anticancer targets, and four HDAC inhibitors, in-
cluding vorinostat, romidepsin, belinostat, and panobinostat, have been approved by FDA
for the treatment of hematologic malignancies including T-cell lymphoma and multiple
myeloma. Selective HDAC inhibitors are highly desirable since they can not only serve
as pharmacological tools to help elucidate the biological roles of specific HDAC class or
isoforms, but also as therapeutic agents with potentially reduced side effects commonly
existing in the pan-HDAC inhibitors [104,105].

Largazole, 1, a cyclic depsipeptide, was isolated from marine cyanobacterium Sym-
ploca sp. in 2008 by Luesch et al. [106]. This research group firstly revealed the robust
potency of largazole against HDAC1 in the low nanomolar range and with selectivity over
HDAC6 [107,108]. Subsequently, largazole was found to strongly inhibit HDAC1, HDAC2
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and HDAC3 in the picomolar range in a biological assay developed by Williams et al. [109].
Studies suggests that largazole possesses a wide range of pharmacological activities, such as
anti-inflammation [110], anti-liver fibrosis [111], anti-virus [112], osteogenic activity [113],
and anticancer activity [114]. Largazole has received much attention due to its potent
anti-proliferative activity against various cancer cells and substantial potency as a class I
histone deacetylase (HDAC1) inhibitor. Wu et al. reported that largazole could potently
and selectively suppress lung cancer cell proliferation and colony formation activity with
no obvious cytotoxicity against normal bronchial epithelial cells [115]. Largazole induce
a G1 cell cycle arrest via upregulation of p21 and down-regulation of E2F1. Liu et al.
found that largazole showed stronger inhibition of colon cancer cell lines than of other
type of cancer cells by screening the National Cancer Institute’s 60 cancer cell lines [116].
Largazole exerted its anti-colon cancer effects by inducing cell cycle arrest, cell apoptosis,
and down-regulation of insulin receptor substrate 1 in vitro and in vivo [116]. Law et al.
reported that largazole and glucocorticoid dexamethasone cooperate to induce E-cadherin
(E-cad) localization to the plasma membrane of triple-negative breast cancer cells, leading
to inhibition of cell invasion [117]. Michelle et al. designed a multidimensional screening
platform and found largazole was an inhibitor of oncogenic Kirsten ras (KRAS) and the
hypoxia inducible factor (HIF) pathway which could inhibit colon cancer proliferation
and angiogenesis [118]. Gilson et al. performed RNA sequencing to identify altered gene
expression upon largazole treatment [119]. Their results demonstrated that largazole could
particularly decrease RNA polymerase II accumulation at super-enhancers and inhibit
oncogene activities in cancer cells induced by super-enhancers. Recently, largazole was
also found to inhibit proliferation of glioblastoma multiforme (GBM) cell lines in vitro
at nanomolar concentrations [120]. More importantly, it was shown to be highly brain-
penetrant and, therefore, could achieve therapeutically relevant doses in mouse brain
which led to upregulation of neuroprotective genes, including Bdnf and Pax6. Wang et al.
revealed that largazole markedly suppressed cell proliferation and induced apoptosis in
non-small cell lung cancer (NSCLC) and chronic myeloid leukemia (CML) by decreasing
the expression of oncogenic protein Musashi-2 (MSI2) [121]. The anticancer mechanisms of
largazole are summarized in Figure 8.
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These excellent properties of largazole have prompted extensive structural modifi-
cations and structure-activity relationship (SAR) studies with the aim of searching for
more potent and selective HDAC inhibitors [122–124]. Structurally, largazole is a prodrug
which can be converted to the free thiol form (2) through removal of the octanoyl group by
esterases or lipases [109]. As is shown in the co-crystal structure of HDAC8 complexed with
largazole thiol (2), the free sulfhydryl group of 2 as a warhead chelates Zn2+ in the active
site of the HDACs [125]. The octanoyl group makes largazole more cell-permeant and
allows facile liberation of the free thiol within the cell [109]. The 16-membered depsipep-
tide ring system acts as a surface recognition group which interacts with the surrounding
hydrophobic residues on the outer rim of the enzyme, contributing to enzyme potency and
selectivity. The four-atom length of linker connecting the Zn2+-binding group (ZBG) to the
depsipeptide ring occupies the narrow hydrophobic channel [125]. The structural modifi-
cations of largazole are mainly focused on the linker, ZBG and depsipeptide ring system
(mainly focusing on the L-valine residue and the 4-methylthiazoline–thiazole subunit).

Initial SAR studies suggested that largazole analogues with a four-atom linker, a
trans-form alkene attached to the macrocyclic ring and an S-configured C-17 are critical
for HDAC inhibitory activity and antiproliferative effect against cancer cells [108,126,127].
Introduction of an aromatic group in the linker region results in complete loss of HDAC
inhibitory activity [128]. In order to fully ascertain the role of the metal-binding domain
in HDAC inhibition, a series of largazole analogues with various ZBGs were prepared.
Analogues 3 and 4 with an α-thioamide or mercaptosulfide, respectively, and analogues
5 and 6 which added a second heteroatom for multiple heteroatomic chelation with Zn2+

showed reduced inhibitory activity (Figure 9). However, these compounds conferred
selectivity inhibition on HDAC6 or HDAC10 over HDAC1 [129–131]. In addition, our
group identified an analogue 7 with an octyldisulfide side chain which confers a significant
selectivity on HDAC1 over HDAC7 [132]. Together, these studies indicated that ZBGs have
profound effects on HDAC inhibitory potency and isoform selectivity.
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Many largazole analogues with a modified L-valine unit have been reported. Different
amino acid residues, such as Ala, Gly, Phe, Tyr, Asp, His, Leu, 1-naphthylmethylglycine,
and 1-allylglycine were introduced into largazole at the C2 position and these modifi-
cations were well tolerated, albeit with a minimal loss in inhibitory activity or isoform
selectivity [108,127,128,133,134]. Recently, Lei et al. reported a promising analogue (8)
(Figure 10) that had an S-Me L-cysteine (MeS) substitution at the C2 position [135]. This
compound showed a more potent inhibitory activity on HDAC1 than largazole thiol (2),
and exhibited a comparable selectivity for HDAC1 over HDAC6.
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A few largazole analogues with modified thiazole-thiazoline groups have been re-
ported. The elimination or replacement of the methyl group of 4-methylthiazoline with
an ethyl or a benzyl group is tolerated, indicating that 4-methylthiazoline moiety is
not necessary for HDAC inhibition [136,137]. Based on this assumption, our group re-
ported the largazole analogue (9) with a more hydrophobic tetrazole group in place of
the 4-methylthiazoline, which showed potent inhibition of HDAC1, HDAC2, and HDAC3
(HDAC1, IC50 = 100 nM; HDAC2, IC50 = 224 nM; and HDAC3, IC50 = 31 nM) and better
selectivity for HDAC1 over HDAC9 than largazole [138]. Based on the largazole analogue
(10) discovered by our group, which contains an unsaturated dehydrobutyrine (Dhb) in
place of 4-methylthiazoline, we replaced the L-valine region of 10 with different amino
acid residues, such as glycine, butyrine, leucine, t-butylglycine and methionine [139,140].
Among these, compound 11 with L-alanine in place of L-valine showed the most potent and
selective inhibitory effects on HDAC1-3 (HDAC1, IC50 = 1.3 nM; HDAC2, IC50 = 1.6 nM;
and HDAC3, IC50 = 3.2 nM), and promising anti-proliferative activity against cancer cell
lines Molt-4 and A549 (Molt-4, GI50 = 2.1 nM; A549, GI50 = 7.5 nM). This compound showed
desirable antitumor efficacy in a PC3 xenograft model with no apparent toxicity [140].

Analogue 12 was obtained by replacing the 4-methylthiazoline group with a simplified
α-aminoisobutyric acid residue, which showed a 20-fold reduced nanomolar HDAC inhibi-
tion compared to largazole thiol [133]. Recently, Nan and coworkers identified a bisthiazole-
based HDAC inhibitor (13) through structural simplification of largazole skeleton. This
compound exhibited potent nanomolar HDAC inhibition (HDAC1, IC50 = 3.64 nM; HDAC2,
IC50 = 3.02 nM; and HDAC3, IC50 = 4.96 nM) and strong antiproliferative activity against
NCI-N87 (IC50 = 28 nM) and T47D cells (IC50 = 40 nM). Furthermore, 13 showed good
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antitumor efficacy in the HT-29 xenograft model with good oral bioavailability and safety
profile [124,141].

Among these largazole analogues, a compound named OKI-179 was identified as a can-
didate drug which has entered phase I clinical study to treat advanced solid tumors [142,143].
OKI-179 was discovered by Liu et al. who were aiming to improve the physiochemical
properties and simplify the synthesis of largazole [144]. The results of in vitro enzyme ac-
tivities assay indicated that OKI-179 displays significant inhibition towards class I, IIb, and
IV HDACs. Wang et al. reported that compound OKI-179 could sensitize PD1 blockade-
resistant B cell lymphomas to PD1 antibody treatment [145]. Treatment with OKI-179 leads
to cell-cycle arrest, apoptosis, and growth inhibition in tumors. According to the mecha-
nism of action of OKI-179, MHC proteins are downregulated in PD1 blockade-resistant B
cell lymphomas (G1XP lymphomas). Upon OKI-179 treatment, MHCs including class I
and II are up-regulated. Furthermore, MHC knockout attenuates OKI-179 induced tumor
growth inhibition. OKI-179 and OKI-179/anti-PD1 treatment activates tumor-infiltrating
lymphocytes (TILs) in G1XP lymphomas. These results displayed that OKI-179 sensitizes
lymphomas to PD1-blockade by enhancing tumor immunogenicity.

10. Conclusions and Prospect

Terrestrial animals and plants have always been important sources of natural products.
Humans began to extract active ingredients from terrestrial plants and animals to treat
diseases thousands of years ago. With the progress of drug discovery, it is increasingly
difficult to develop new molecular entity drugs from terrestrial animals and plants, which
cannot cope with the increasing threat to human life and health. Therefore, "asking
for drugs from the sea" has become a key to find new drug sources. The continuous
innovation of deep-sea mining technology, extraction and separation technology, molecular
modification technology, genetic engineering technology, and organic synthesis technology
provide hope and new opportunities for the development of marine anticancer drugs.
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