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Abstract: This study investigated the effects of collagen hydrolysates (CH) on language cognitive
function and brain structure. In this open-label study, 5 g CH was administered once a day for
4 weeks to 30 healthy participants aged 49–63 years. The primary outcome measures were the brain
healthcare quotients based on gray matter volume (GM-BHQ) and fractional anisotropy (FA-BHQ).
The secondary outcome measures were changes in scores between week 0 and week 4 for word list
memory (WLM) and standard verbal paired associate learning (S-PA) tests as well as changes in the
physical, mental, and role/social component summary scores of the Short Form-36(SF-36) quality of
life instrument. CH ingestion resulted in significant improvements in FA-BHQ (p = 0.0095), a measure
of brain structure, as well in scores for the WLM (p = 0.0046) and S-PA (p = 0.0007) tests, which
measure cognitive function. There were moderate correlations between the change in WLM score
and the change in GM-BHQ (r = 0.4448; Spearman’s rank correlation) and between the change in
S-PA score and the change in FA-BHQ (r = 0.4645). Daily ingestion of CH changed brain structure
and improved language cognitive function.

Keywords: collagen hydrolysate; cognitive health; magnetic resonance imaging; gray matter
volume-brain healthcare quotient; fractional anisotropy-brain healthcare quotient; word list memory
test; standard verbal paired-associate learning test

1. Introduction

Dementia is an important health concern. The substantial increase in the proportion of the
population aged over 65 years in Japan has been associated with an increase in the prevalence of
dementia, including Alzheimer’s disease [1]. The global incidence of dementia was 46.8 million in
2015, and it is expected to increase to 74.7 million by 2030 and 131.5 million by 2050 [2]. Therapeutic
interventions to target the modifiable risk factors of dementia are critical in the context of this increased
prevalence of dementia. One major modifiable risk factor is diabetes mellitus, which is an attractive
target for the development of such interventions. At the 2017 International Conference of Alzheimer’s
Disease, the following risk factors were identified as modifiable factors in dementia: depression,
obesity, diabetes mellitus, decreased social interaction, and low levels of physical activity [3].

It is now widely accepted that the state of the brain is shown by the cytoarchitecture of the gray
matter (GM) and white matter (WM). Dendritic expanses and increases in neuronal synapses are signs
of good brain health, and it is thought that these result in high plasticity of the synapses in the GM
and so are indicators of flexibility in future learning [4,5]. Thus, the volume of the GM reflects the
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health condition of the brain [6]. WM plasticity is influenced by factors such as changes in fibrous
tissue, myelinogenesis, myelin remodeling, the numbers of oligodendrocytes and astrocytes, and
vascularization. [7]. The transmission efficiency of the network between brain domains for axonal
fraction anisotropy can be measured by diffusion tensor imaging [8].

A review by Biessels et al. [9] concluded that the incidence of any type of dementia was
higher in individuals with diabetes than in those without diabetes, with seven of the 10 reviewed
studies reporting this outcome. This suggests it may be possible to manage cognitive function
by managing diabetes. Intriguingly, collagen hydrolysates (CH) have recently be shown to
provide benefits for patients with type 2 diabetes mellitus (T2DM), including the promotion of
glucagon—like peptide 1 (GLP-1) secretion and the inhibition of dipeptidyl peptidase IV activity [10,11].
Furthermore, functional studies in humans have demonstrated that, following the oral ingestion of
CH, its three bioactive peptides, prolyl-hydroxyproline (Pro-Hyp), hydroxyprolyl-glycine (Hyp-Gly),
and glutamyl-hydroxyprolyl-glycine (Glu-Hyp-Gly), were quickly absorbed into the plasma, where
they remained for a long period until being excreted into the urine [12–16]. It has been reported that
Pro-Hyp concentrations were lower in individuals with diabetes [17], and that Pro-Hyp was a true
inhibitor of tripeptides [18]. In addition, ingesting 5 or 10 g of CH daily for 4–12 weeks has been
reported to have beneficial effects for the skin and joints [19–21].

Several studies have investigated the effects of CH on the brain. It has been reported that the
ingestion of CH may help recovery from brain injury by promoting angiogenesis [22], and that CH
exerts neuroprotective action by suppressing inflammatory effects [23]. A study of aged mice reported
that marine CH promoted learning and memory [24]. However, potential beneficial effects on structural
changes in the human brain have not previously been reported. It is possible that the ingestion of CH
may change brain structure and improve cognitive function, potentially helping patients to recover
from brain damage.

In this study, therefore, we investigated the impact of oral CH ingestion on structural changes in
the brain, as well as cognitive function, in a clinical pilot study that involved healthy individuals. This
is the first clinical study to investigate changes in language cognitive function with CH intake.

2. Materials and Methods

2.1. Collagen Hydrolysates

CH from porcine gelatin (average molecular weight, 1200 Da; Nitta Gelatin Inc., Osaka, Japan)
were used for the investigation. The participants took 5 g CH once daily for 4 weeks. This was ingested
orally with any type of drink at any time of the day. The participants recorded their daily CH ingestion
in a diary throughout the study period.

2.2. Study Design

This open-label study was conducted between October 20 and November 21, 2016 at the Kyoto
University Future Research Center. The study was conducted in accordance with the principles of the
World Medical Association’s Declaration of Helsinki. The study design and protocol were reviewed
and approved by the Institutional Review Board of the Unit for Advanced Research on Human
Minds (Approval Number: 27-P-13). The participants provided their written informed consent prior
to participation.

No control group was used because we considered that the placebo effect would be unlikely to
affect the MRI (magnetic resonance imaging) analysis of structural changes in the brain. In addition,
this was a pilot study to examine CH intake levels, materials, and participants. The dosage used in this
study was that shown by our previous clinical studies to have effects such as moisturizing the skin,
improving its elasticity, and reducing joint pain.

The primary outcome measures were changes in brain healthcare quotients for the GM volume
(GM-BHQ) and fractional anisotropy (FA-BHQ) between baseline and the end of the regular ingestion
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of CH for 4 weeks. The secondary outcome measures were changes over the same period in scores
for word list memory (WLM) and standard verbal paired associate learning (S-PA) tests, as well as
changes in the physical, mental, and role/social component summary scores (PCS, MCS, and RCS,
respectively) of the SF-36 tool (described below), as indicators of changes in quality of life.

2.3. Participants

The study enrolled 30 healthy participants aged 49–63 years (mean age, 56.1 ± 3.6 years; 26 men
and four women), recruited internally at Nitta Gelatin Inc. The participants were unpaid. The following
exclusion criteria were applied: ingestion of CH or gelatin during the month prior to enrollment in the
study; a history of allergies to gelatin or other foods; a diagnosis of a neurological or mental disorder,
such as cerebral infarction or dementia; and the inability to undergo functional magnetic resonance
imaging (fMRI) or to receive contrast agents.

2.4. Evaluation Methods

2.4.1. MRI Acquisition

MRI scans for the study were acquired at week 0 before the start of the study (between 20 October
2016 and 24 October 2016) and again at week 4 (between 18 November 2016 and 20 November 2016),
at the Kyoto University Future Research Center.

GM-BHQ and FA-BHQ scores, developed by the ImPACT Program for monitoring brain health,
were used as the primary outcome measures. Data for these MRI-based quotients were collected
using a 3-T scanner, either a Verio (Siemens Medical Solutions, Erlangen, Germany) or a MAGNETOM
Prisma (Siemens, Munich, Germany), with a 32-channel head array coil. In brief, a high-resolution
structural image was acquired using a three-dimensional T1-weighted magnetization prepared rapid
gradient-echo pulse sequence. The parameters were as follows: repetition time, 1900 ms; echo time,
2.52 ms; inversion time, 900 ms; flip angle, 9◦; matrix size, 256 × 256; field of view, 256 mm; and slice
thickness, 1 mm. Diffusion tensor imaging data were collected with spin-echo echo-planar imaging
using generalized autocalibrating partially parallel acquisitions. The image slices were parallel to
the orbitomeatal line. The parameters were as follows: repetition time, 14,100 ms; echo time, 81 ms,
flip angle, 90◦; matrix size, 114 × 114; field of view, 224 mm; and slice thickness, 2 mm. A baseline
image (b = 0 s/mm2) and 30 different diffusion orientations with a b value of 1000 s/mm2 were acquired.

GM-BHQ and FA-BHQ values were calculated using the T1-weighted, T2-weighted, diffusion
tensor, and resting-state fMRI images. GM-BHQ provides an assessment of the GM, which includes a
wide variety of types of neuron and represents the plasticity of information processing in the brain.
FA-BHQ evaluates nerve fibers in the WM and is considered to represent the efficiency of information
transmission in the brain [25]. Functional MRI has rapidly become a vital methodology in basic as well
as applied neuroscience research. In clinical practice, it has become an established tool for presurgical
functional brain mapping [26]. The fMRI data analysis can be viewed at ITU-T H.861.1 Series H:
Audiovisual and Multimedia System.

2.4.2. Word List Memory Test

Mild cognitive impairment presents as declining cognitive function with no effect on activities
of daily living [27]. It is used internationally and has been widely validated for assessing cognitive
function. The WLM test used in this study was developed by Millenia corporation as the first Japanese
version of the test [28].

The WLM test is based on the 10-word recall test of the psychological test batteries CERAD
(Consortium to Establish a Registry for Alzheimer’s Disease) and ADAS-Cog (Alzheimer’s Disease
Assessment Scale-cognitive subscale). The objective evaluation of cognitive function is achieved using
a specific evaluation protocol and algorithm. First, the examiner said 10 words out loud and the
participant repeated these immediately three times. Second, the participant picked up the excluded
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animal a group of three animals 10 times. Third, without help from the examiner, the participant again
repeated the initial 10 words; these were recorded by the examiner.

Following a comprehensive assessment, which included the order of the words and answering
speed, a memory performance index value for the participant was calculated based on parameters
including his or her sex, age, years of learning, ethnicity, and response to the test using algorithms
and databases. The resultant patterns were compared with those of participants of the same age and
demographic characteristics for the objective evaluation. Testing at week 0 did not affect the test at
4 weeks because the words in the two tests were completely different.

2.4.3. Standard Verbal Paired Associate Learning Test

The S-PA test was developed by the Japan Advanced Brain Dysfunction Society to assess linguistic
memory. It comprises 10 pairs of related or unrelated words that are presented to the participant.
The examiner read a combination of 10 semantically related words or 10 irrelevant words with no
semantic relation, which were memorized by the subject. Next, the examiner presented the first word,
and the subject answered with the pair of the word orally. The number of correct answers was scored
using a combination sheet of related/unrelated words, and the subjects were tested at weeks 0 and
4. The same set of 10 pairs was used in three trials and the score on the final trial was taken as the
outcome measure. Testing at week 0 did not affect the test at 4 weeks because the presentation was
completely different.

2.4.4. Measurement of Quality of Life

We used the second Japanese version of SF-36® (iHope International), which has been demonstrated
to be reliable and validated [29]. This includes measures of health-related quality of life that can
measure subjective outcomes. The PCS, MCS, and RCS scores in this scale were measured at weeks 0
and 4.

2.5. Statistical Analyses

The statistical analyses were performed using the medical statistical software STAT Mate III. Data
are presented as the mean ± standard deviation (SD). Intragroup comparisons were conducted using
the Wilcoxon signed-rank test, with a significance level of 0.05. Correlations between the changes in
GM-BHQ and FA-BHQ scores between weeks 0 and 4 and the changes in language cognitive functional
scores were evaluated by Spearman’s rank analysis, using the mean changes in each secondary outcome
score. The correlation coefficients were interpreted as follows: <0.2, no correlation; 0.2–0.4, weak
correlation; 0.4–0.7, moderate correlation; and 0.7–1.0 strong correlation.

3. Results

3.1. Overall Outcomes

During the study period, one participant discontinued the study as he was unable to arrive at the
hospital because of a personal reason. We were unable to assess the S-PA score for five participants
because of a lack of time due to their work commitments; however, they completed all the remaining
examinations. Thus, the total number of participants was 29, with 24 undergoing the S-PA test
according to the protocol (Table 1). No adverse events were observed during the study period.
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Table 1. Mean ages of the participant groups.

N Age, Year

Baseline 30 56.10 ± 3.57
Post 29 56.10 ± 3.63
S-PA 24 56.08 ± 3.82

Data are presented as means ± standard deviation. Post, end of the study period (during which one participant
dropped out); S-PA, the participants who underwent the standard verbal paired associate learning test.

3.2. Brain Structural Changes

There was a significant improvement in the FA-BHQ score at the end of the study period, compared
with the baseline, but no significant change in the GM-BHQ score during the same period (Table 2).

Table 2. Changes in the brain healthcare quotient scores based on gray matter volume and
fractional anisotropy.

N Baseline Post ∆ p (versus Baseline) *

GM-BHQ 29 93.42 ± 5.90 93.00 ± 5.92 −0.42 ± 1.53 0.1415
FA-BHQ 29 94.82 ± 4.81 95.73 ± 4.46 0.91 ± 1.51 0.0095

Data are expressed as means ± standard deviation. * Wilcoxon signed-rank test. GM-BHQ, brain healthcare quotient
based on gray matter volume; FA-BHQ, brain healthcare quotient based on fractional anisotropy; Post, week 4.

3.3. WLM and S-PA Test Scores

There were significant improvements in both WLM and S-PA test scores compared to the baseline
(Table 3).

Table 3. Changes in the word list memory and standard verbal paired associate learning scores.

N Baseline Post ∆ p (versus Baseline) *

WLM Score 29 67.83 ± 6.47 71.06 ± 6.39 3.23 ± 5.79 0.0046
S-PA Score 24 13.71 ± 6.72 19.29 ± 6.63 5.58 ± 6.18 0.0007

Data are presented as means ± standard deviation. * Wilcoxon signed-rank test. WLM, word list memory test; S-PA,
standard verbal paired associate learning test.

3.4. Quality of Life Parameters

There were no significant improvements in any of the quality of life parameters (PCS, MCS, or
RCS scores) at the end of the study period compared to the baseline values (Table 4).

Table 4. Changes in the quality of life scores.

N Baseline Post ∆ p (versus Baseline) *

PCS 29 48.98 ± 7.84 51.24 ± 7.55 2.25 ± 7.44 0.1145
MCS 29 50.17 ± 11.43 52.49 ± 9.80 2.31 ± 6.30 0.0799
RCS 29 50.91 ± 12.04 51.35 ± 7.35 0.44 ± 10.76 0.8457

Data are presented as means ± standard deviation. * Wilcoxon signed-rank test. PCS, physical component summary;
MCS, mental component summary; RCS, role/social component summary.

3.5. Correlations Between Brain Structure Scores and Cognitive and Quality of Life Scores

Table 5 presents the correlations among the primary and secondary outcome measures of the
study. The changes in GM-BHQ showed a moderate correlation with the changes in WLM scores, and
the changes in FA-BHQ showed a moderate correlation with the changes in S-PA scores (Figure 1).
There were no other significant correlations.
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Table 5. Correlations among the primary and secondary outcome measures.

N
∆GM-BHQ ∆FA-BHQ

r r

∆WLM 29 0.4448 # −0.0502
∆S-PA 24 0.2438 0.4645 #
∆PCS 29 −0.1340 0.1754
∆MCS 29 0.1286 −0.1557
∆RCS 29 0.2660 −0.0256
∆FA-BHQ 29 0.0567 −

The data are Spearman’s rank correlation coefficients. # p < 0.05. GM-BHQ, brain healthcare quotient based on gray
matter volume; FA-BHQ, brain healthcare quotient based on fractional anisotropy; WLM, word list memory test
scores; S-PA, standard verbal paired associate learning test scores; PCS, physical component summary; MCS, mental
component summary; RCS, role/social component summary.
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4. Discussion

The major findings of this study were that, following the daily ingestion of CH over a four-week
period, there were significant changes in the participants’ brain structure, as well as improved cognitive
function. The results suggested that FA-BHQ, which reflects brain structure, and WLM and S-PA test
scores, which reflect cognitive function, were improved by the ingestion of CH. Furthermore, there was
a moderate correlation between the changes in FA-BHQ and the changes in S-PA scores, suggesting
that CH ingestion resulted in an increase in FA-BHQ, thereby increasing the S-PA score. However, we
cannot explain the pattern of the two brain structure measures, GM-BHQ did not show a significant
change but the change in that score correlates with the change in one of the memory tests, and the
significant change in the other structure measure (FA-BHQ) correlated highly with change in the other
memory test.

Furthermore, the mechanism underlying this beneficial effect is unknown. Syouji et al. [30]
reported an increase in the expression of brain-derived neurotrophic factor (BDNF) in the hippocampal
formation by CH in vitro, and a significant increase in passive avoidance learning. In another study,
the oral administration of oyster hydrolytic peptides in normal mice enhanced their spatial learning
and memory capacity, accompanied by the upregulated expression of BDNF and neural cell adhesion
molecules [31]. These findings in animal models suggest that the ingestion of CH might contribute to
the change of brain structure and improvement in language cognitive function through the upregulation
of BDNF expression in the brain.
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T2DM is associated with cognitive dysfunction and an increased risk of dementia, and T2DM
in all age groups has been shown to be associated with a significant increase in the prevalence of
diabetes-related cognitive dysfunction [32]. Even in the absence of T2DM, there is a risk of cognitive
decline with decreasing insulin sensitivity in elderly individuals [33]. In a clinical trial in which CH was
administered to patients with T2DM, we previously demonstrated reductions in the levels of serum
hemoglobin A1c (an indicator of diabetes mellitus), fasting blood glucose, and HOMA-IR, indicating
improved insulin resistance [11]. It has been reported that T2DM is associated with an increase in
amyloid beta accumulation in the brain, with increased insulin resistance shown to increase amyloid β

protein accumulation in neurons [34]. It has also been suggested that diabetes mellitus accelerates
cognitive dysfunction via cerebrovascular inflammation and amyloid β protein deposition [35].
Importantly, given that T2DM is a risk factor for cognitive decline and dementia, a GLP-1 analog
has been reported to exhibit neuroprotective properties and to be a promising therapeutic agent
for Alzheimer’s disease [36]. It has been reported that CH promotes GLP-1 secretion and inhibits
dipeptidyl peptidase 4 activity in vitro [10].

The participants in the present study were healthy people, without diabetes or cognitive decline.
Because of this, it is difficult to judge from the results whether CH improves cognitive ability through
changes to insulin secretion. Further consideration is needed to yield any findings to obtain knowledge
from improvement of dementia and diabetes by CH intake. No previous studies have investigated the
relationship between changes in S-PA and WLM scores and changes in brain structure; this should be
explored in future brain function studies. In addition, there was the potential for evaluation bias in the
present study because of unblinded testing. Other limitations of this study were that the participants
were limited to healthy individuals, only a small amount of data were collected, and the sample size
was low.

Future studies are planned to conduct a placebo-controlled, double-blind clinical trial on the
effect of CH and to determine the correlations between S-PA and WLM test scores and brain structure.
Additional studies are needed to elucidate the mechanism underlying the beneficial effects of CH on
brain health.

5. Conclusions

The findings of this study suggested that an intervention involving the regular ingestion of CH
may have a positive effect on brain structure and may improve cognitive language ability.
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