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Abstract

Background: microRNAs (miRs) are small non-coding RNAs involved in the fine regulation of several cellular
processes by inhibiting their target genes at post-transcriptional level. Osteosarcoma (OS) is a tumor thought to be
related to a molecular blockade of the normal process of osteoblast differentiation. The current paper explores
temporal transcriptional modifications comparing an osteosarcoma cell line, Saos-2, and clones stably transfected
with CD99, a molecule which was found to drive OS cells to terminally differentiate.

Methods: Parental cell line and CD99 transfectants were cultured up to 14 days in differentiating medium. In this
setting, OS cells were profiled by gene and miRNA expression arrays. Integration of gene and miRNA profiling was
performed by both sequence complementarity and expression correlation. Further enrichment and network analyses
were carried out to focus on the modulated pathways and on the interactions between transcriptome and miRNome.
To track the temporal transcriptional modification, a PCA analysis with differentiated human MSC was performed.

Results: We identified a strong (about 80 %) gene down-modulation where reversion towards the osteoblast-like
phenotype matches significant enrichment in TGFbeta signaling players like AKT1 and SMADs. In parallel, we
observed the modulation of several cancer-related microRNAs like miR-34a, miR-26b or miR-378. To decipher their
impact on the modified transcriptional program in CD99 cells, we correlated gene and microRNA time-series data
miR-34a, in particular, was found to regulate a distinct subnetwork of genes with respect to the rest of the other
differentially expressed miRs and it appeared to be the main mediator of several TGFbeta signaling genes at initial
and middle phases of differentiation. Integration studies further highlighted the involvement of TGFbeta pathway
in the differentiation of OS cells towards osteoblasts and its regulation by microRNAs.

Conclusions: These data underline that the expression of miR-34a and down-modulation of TGFbeta signaling
emerge as pivotal events to drive CD99-mediated reversal of malignancy and activation of differentiation in OS
cells. Our results describe crucial and specific interacting actors providing and supporting their relevance as
potential targets for therapeutic differentiative strategies.
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Background
MicroRNAs (miRNAs) are small non-coding RNAs that
act as gene regulators at post-transcriptional level. At
present, it is largely established that they have a central
role in both physiological and pathological conditions. In
particular, miRNAs have a central role in cancer as key
regulators of a multitude of processes [1], like cell differ-
entiation [2], cell proliferation, and apoptosis [3]. Their
mechanism of action is exerted through the binding of
their 6–7 nt seed sequence to 3’UTR of target mRNAs
which thus lead to degradation or transcriptional repres-
sion, depending on partial or perfect sequence match.
Currently, more than 2.5 thousand mature miRNAs have
been discovered in humans (miRbase v.20); if we consider
the small matching miRNA-target sequence, the entire
transcriptome could be a putative target of miRNAs. Sev-
eral predicting target algorithms, like TargetScan, mi-
Randa, PicTar and Diana MicroT [4–7] are now a routine
start point to target definition. However, determination of
miRNA-mRNA interactions still remain a difficult task, as
these algorithms introduce a very high number of false
positives [8]. Furthermore, microRNAs have also been de-
scribed as positive regulators at transcriptional level of
mRNA expression [9–11], with a strict dependency on the
cellular context [12]. New methods together with new
computational approaches are continuously being devel-
oped. Among high-throughput methods, a strategy fo-
cused on expression correlation between genes and
miRNAs microarrays has been defined [13, 14], based on
the evidence that degradation of a mRNA target is pre-
ferred to inhibition of its translation [15, 16]. In specific
contexts like time-series experiments, integration of
miRNA-mRNA expression may add valuable information
on dynamic changes in gene regulation with respect to
data focused on a single time point. Analysis of differentia-
tive processes by integration of gene and miRNA time-
series data may thus result particularly helpful in identify-
ing the set of regulatory interactions at different time-
points, and assignment of different microRNAs to specific
differentiative phases or processes.
Sarcomas are rare tumors caused by disruptions of mes-

enchymal cell differentiation [17–19]. In particular, osteo-
sarcoma (OS) is a bone cancer caused by multiple and
complex genetic alterations that ultimately result in a
blockage of osteoblast differentiation. Although several
pathways and genes related to development, such as Wnt
signaling [20, 21], TGFbeta signaling [22], Notch signaling
[23], Hedgehog signaling [24], have been found to be fre-
quently dysregulated in this sarcoma, a more comprehen-
sive view of the processes that are aberrantly modified
during OS differentiation is still missing. Highly regulated
expression of genes accomplishes the process of normal
osteoblastogenesis during differentiation and development
[25]. Considering that OS cells appear to be somehow
‘frozen’ in a state of incomplete osteogenic differentiation
[26–28], a better insight into specific gene regulation dur-
ing OS differentiation may help remove this block and
may have therapeutic value. In this paper we investigated
integration of time-series miRNome and transcriptome to
provide a better comprehension of the potential role that
miRNAs may have in reprogramming genome activity
coupled with OS differentiation. Recently we found that
re-expression of CD99, a cell surface molecule present in
osteoblasts but generally lost in OS [29], can inhibit malig-
nancy [29, 30] and reactivate terminal differentiation [28]
of OS cells. We took advantage of this experimental
model and compared miRNAs-mRNAs interactions of the
parental Saos-2 OS cells and osteoblast differentiation-
prone Sa/CD99 cell variants at basal and differentiating
conditions. Multiple bioinformatics approaches were used:
integration of target prediction and expression correlation
methods identified modulated genes and pathways that
are directly or indirectly under control of miRNAs repro-
gramming; network visualization clarified differential pro-
cesses where modulated miRNAs act at each time point;
PCA analysis described temporal transcriptional reversion
of OS cells towards the osteoblastic phenotype.

Results
By Affymetrix GeneChip and miRNA Agilent arrays we
compared gene and miRNA expression profiles of CD99-
transfected clones versus the respective parental cell line;
four samples at each time point (two samples for Sa/CD99
and two for Saos-2) were profiled at basal conditions and
after 7 and 14 days in osteoblast differentiation medium.
A flowchart of the analyses is shown in Fig. 1 and match-
ing numbers of each phase are resumed in Table 1.

CD99 over-expression fosters a massive down-regulation
in gene expression of osteosarcoma cells and modulates
specific pathways
Gene expression analysis identified 250 to 317 probes differ-
entially expressed, depending on the time point (Additional
file 1: Table S1). Differentially expressed genes are pointed
out in a volcano plot in Additional file 2: Figure S1a. Inter-
estingly, we observed a marked and time-constant down-
regulation in gene expression when CD99 is re-expressed
and cells are prone to terminal differentiation. From 78 % to
89 % of genes resulted under expressed (|logFC| ≥ 0.585 and
p-value ≤ 0.05) with respect to the more aggressive and less
differentiated parental cell line. Enrichment analysis showed
a significant modulation of 32 pathways at day 0, 54 at day
7, and 17 at day 14 (Additional file 3: Table S2 for the 30
most significant pathways). Among the most significant
modulated pathways we observed: “TGF-beta dependent in-
duction of EMT via SMADs” (p-value = 3.78 E-08) and
“Regulation of epithelial to mesenchymal transition” (p-value
2.78 E-06) (Fig. 2). TGF-beta dependent induction of EMT



Fig. 1 Flowchart of bioinformatic analyses. Gene and miRNA profiling of differentially expressed genes/miRs were initially integrated by correlation
score of expression data or by prediction target databases. The two approaches were subsequently integrated to identify most significant miRNAs
targets (d.e. = differentially expressed; FC = fold change of absolute values; p = p-value; r = Pearson’s product moment correlation coefficient; D0, D7,
D14 = respectively day 0, day 7 and day 14)

Grilli et al. BMC Medical Genomics  (2015) 8:34 Page 3 of 15
via SMADs pathway increased its significance during differ-
entiation, with, over time, an increase of down-regulated
genes (i.e., occludin, fibronectin). Genes involved in the
apoptotic mechanism were constantly enriched but with
wider involvement at initial phases (days 0 and 7), while en-
richment in genes regulating the cell cycle (“regulation of
G1/S transition” p-value = 1.8 E-08) was found only at day 0,
in keeping with the functional role of these pathways in the
reversion of malignancy and induction of differentiation.
Considering single genes, a total of 64 genes were constantly
modulated across all differentiative process and all but two
constantly down-modulated. These genes were involved in
several cellular processes like protection from apoptosis or
survival (AKT1, TOX3, SMAD2, BAG5), chemoresistance,



Table 1 Numbers of bioinformatics analyses for each step are resumed

Genes differentially expressed

Day 0 Day 7 Day 14 Total

Probes 250 317 246 536

Probes up-regulated (%) 19 (7.6) 52 (16.4) 29 (11.8) 79 (20.1)

Probes down-regulated (%) 231 (92.4) 265 (83.6) 217 (88.2) 315 (79.9)

Annotated genes 159 215 184 350

Genes up-regulated (%) 17 (10.7) 46 (21.4) 24 (13.0) 67 (19.1)

Genes down-regulated (%) 142 (89.3) 169 (78.6) 160 (87.0) 267 (80.9)

miRs differentially expressed

Day 0 Day 7 Day 14 Total

miRs modulated 7 4 16 22

miRs up-regulated (%) 6 (85.6) 1 (25) 14 (87.5) 16 + 3a

miRs down-regulated (%) 1 (14.3) 3 (75) 2 (12.5) 3 + 3a

Correlation and prediction methods

Day 0 Day 7 Day 14 Total

Total correlations 1750 1268 3936 6954

Significant correlations (%) 159 (9.1) 136 (10.7) 215 (5.5) 510 (7.3)

Negative correlations (%) 119 (74.8) 106 (77.9) 70 (32.6) 295 (57.8)

Positive correlations (%) 40 (25.2) 30 (22.1) 145 (67.4) 215 (42.2)

miRs differentially expressed with predicted targets in at least 1 database 7 4 12 18

Total predictions at probe level 96 181 461 738

Total predictions at gene level 55 88 148 216

Merge of correlation and prediction methods

Day 0 Day 7 Day 14 Total

miRs 2 2 6 9

Genes 11 22 32 50

Significant couples miR-gene 11 22 36 61
a3 miRs change their modulation across time points
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(MGST1), Notch pathway (HEY2, and HES1), histone modi-
fications (SNCA) and transcriptional regulation (SMAD4,
PAX3). To define network hubs of CD99-mediated differen-
tiation on the 64 genes constantly modulated, a network
analysis by GeneGO was performed: 16 genes out of 64
were found to have a direct modulation, with a changeless
cascade signaling involving SMAD2 and SMAD4 genes with
AKT1 (Fig. 3). Interestingly, there is a variable sequence of
gene patterns that interacts with this core network
(Additional file 4: Figure S2): (i) at day 0, THEM4, PPP2R5C
and C13orf15 (alias RGC32) (ii) at day 7, GAB2, BCL2,
GRB10, JAK1 (iii) at day 14, MAPKAPK2, LYN ICAM1,
LIF, FN1, HMGA2, VDR, ID1.
PCA meta-analysis with human mesenchymal stem

cells (hMSCs) expression data was performed to see
CD99 impact on the program of transcriptional differ-
entiation. Due to array platform type and comparable
experimental conditions limitations, we only recovered
a single dataset of 3 human osteoblast cell lines [31];
these cells were derived from bone marrow hMSCs ob-
tained from iliac crest and directed to osteoblast differ-
entiation [32]. Expression profile of genes differentially
expressed at basal (day 0, Fig. 4a and Additional file 5:
Table S3) or in differentiative conditions (day 14, Fig. 4b)
shows that OS cells prone to have a terminally differen-
tiated phenotype (Sa/CD99 cells) tend to converge to
osteoblasts cells. This confirms that our model may
reflect a physiological process, thus providing valuable
information on reversion toward an osteoblast-like
phenotype of OS transfected cells.

miRNAs modulation during differentiation emerges as a
specific mechanism to define changes in gene profiling
Considering that widespread gene down-modulation was ob-
served at all time points in consequence of the re-expression
of CD99, we evaluated involvement of miRNAs as a possible
epigenetic mechanism of gene regulation. We thus analyzed
miRNAs profile in transfectants versus parental cells and



Fig. 2 Enrichment analysis of biologically modulated pathways. Analysis first shows a significant enrichment in TGFbeta signaling modulated by
SMAD proteins: as the majority of genes are down-regulated, we have inhibition of this pathway in Saos clones, with an effect that increases over
time. Other important and significantly modulated are the EMT and Apoptotic pathways. (min (p-value) = most significant p-value among the 3
time points after multiple correction test)
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identified 7, 4, and 16 miRs with a significant differential
expression at days 0, 7, and 14 respectively (Table 2 for
miRNAs modulation and Additional file 2: Figure S1b
for corresponding volcano plot). At days 0 and 14, the
majority of miRs showed an up-regulation (respectively 6/7
and 14/16), in line with the hypothesis that gene expression
down-regulation could at least partially be controlled
by miRNAs. On the contrary, miR up-regulation is not
evident at day 7, maybe because of the lower number of sig-
nificant miRs. In basal conditions (day 0), up-regulated miR-
NAs were: miR-1225-3p, miR-1305, miR-1238, miR-425,
miR-191* and miR-34a, while miR-378 was the only down-
regulated miR. This profile is therefore associated with a less
aggressive phenotype more prone to differentiation. Among
these miRs only miR-1305 was maintained significantly
modulated over osteoblast-like differentiation. Increased



Fig. 3 Network analysis of differentially expressed genes at all time
points. Among the 64 genes significantly modulated at both basal
and differentiative conditions, 16 have direct biological interaction
according to literature (positive or activation, in green, negative or
inhibition, in red, or unspecified effects, in gray) and participate in
the network. All drawn genes are down-regulated
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expression of miR-34a was significantly up-regulated at days
0 and 7, in keeping with the oncosuppressive role of this
miR that negatively regulates cell proliferation while increas-
ing apoptosis [33]. When Sa/CD99 cells are terminally dif-
ferentiated (day 14) [28], we observed a modulation of a
different set of miRs: miR-342-3p was the most down-
Saos-2 Sa/CD99

A

Fig. 4 Meta-analysis with human osteoblast cells. Meta-analysis including e
entiated from bone marrow hMSCs (BM-MSCs) at day 0 (a) and day 14 (b).
towards a less aggressive and more osteoblast-like phenotype (day 14)
regulated, while miR-139-3p, miR-1288 and miR-1914* were
the most up-regulated.
Dynamic interactions between mRNA and miRNA profiles
defines miR-34a as a leading player of TGFbeta signaling
in CD99 cells
As suggested in recent papers, different high-throughput
methods may reduce the number of false positives in
miRNA target definition [34]. Thus, we first integrated
expression data of genes and microRNAs expression by
Pearson’s correlation, then we defined putative target re-
gions in the 3’ UTR of target genes by miRNA-mRNA se-
quence comparison. For expression correlations, both
negative and positive r scores were considered. We finally
integrated expression correlations and miRNAs target in-
formation approaches to identify the most interesting tar-
gets of differentially expressed miRs. We only used genes
and miRNAs significantly modulated by CD99 transfection
instead of calculating correlations or predictions for all or
for moderately modulated probe:miRNA couples in arrays
[35], since we considered these genes and miRNAs as the
most informative for the differentiative program.
Previous expression analysis defined a total of 536 probes

and 22 miRs differentially modulated in at least one out of
three time points. To determine the putative target genes
for each microRNA, we merged the predictions from 4 dif-
ferent prediction target algorithms: Diana MicroT, TargetS-
can, PicTar and miRanda. We obtained 96, 181, and 461
predicted targets at the 3 time points (Additional file 6:
Table S4). There is at least one putative target for each
microRNA at days 0 and 7, instead only 12 out of 16 miRs
have predicted targets at day 14, because 4 miRs (miR-
1181, miR-1288, miR-1914, miR-1469) are missing in the
Osteoblasts from BM-MSC

B

xpression profile of Saos-2, Sa/CD99 cells and human osteoblasts differ-
Transfected Sa/CD99 cells progressively shift from an OS profile (day 0)



Table 2 Significantly modulated miRNAs in Sa/CD99 vs Saos-2 cells. For each day, log fold change and significance are shown

microRNA Genomic
position

Log fold change Significance

Day 0 Day 7 Day 14 Day 0 Day 7 Day 14

hsa-miR-378 Ch5q32 −0.938 −0.323 0.109 0.00015 ns ns

hsa-miR-34a Ch1p36 0.777 0.781 0.327 0.00177 0.00171 ns

hsa-miR-1225-3p Ch16p13 1.206 0.142 0.050 0.00193 ns ns

hsa-miR-1305 Ch4q34 0.757 −0.965 1.750 0.00466 0.00108 0.00001

hsa-miR-1238 Ch19p13 0.969 0.627 −0.302 0.00593 ns ns

hsa-miR-425* Ch3p21 0.910 0.537 −0.199 000841 ns ns

hsa-miR-191* Ch3p21 1.027 0.553 −0.216 0.00859 ns ns

hsa-miR-892b ChXq27 0.176 −1.047 0.999 ns 0.00006 0.00008

hsa-miR-139-3p Ch11q13 0.024 −1.562 1.013 ns 0.00017 0.00289

hsa-miR-500 ChXp11 0.008 −0.249 0.818 ns ns 0.00066

hsa-miR-760 Ch1p22 −0.058 −0.251 0.737 ns ns 0.00199

hsa-miR-1299 Ch9q21 −0.040 −0.260 0.778 ns ns 0.00234

hsa-miR-342-3p Ch14q32 −0.834 −0.808 −1.018 ns ns 0.00428

hsa-miR-1181 Ch19p13 0.045 0.385 0.672 ns ns 0.00473

hsa-miR-516a-5p Ch19q13 −0.001 −0.049 0.512 ns ns 0.00529

hsa-miR-1288 Ch17p11 0.575 −0.866 1.269 ns ns 0.00547

hsa-miR-150* Ch19q13 0.177 0.113 0.784 ns ns 0.00663

hsa-miR-1914* Ch20q13 0.276 −0.230 1.040 ns ns 0.00669

hsa-miR-26b Ch2q35 −0.433 −0.443 −0.687 ns ns 0.00809

hsa-miR-520e Ch19q13 0.036 0.231 0.610 ns ns 0.00809

hsa-miR-202 Ch10q26 0.007 −0.255 0.607 ns ns 0.00882

hsa-miR-1469 Ch15q26 −0.032 −0.146 0.579 ns ns 0.00892

ns = not significant
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prediction target databases. The analysis showed that mir-
34a has the highest number of predicted targets, respect-
ively 44 and 73 genes at days 0 and 7. As expected, several
genes are predicted targets of multiple microRNAs. A path-
way enrichment analysis by GeneGO on predicted targets
was performed to identify the putatively regulated biological
pathways. We confirmed in this way the significant enrich-
ment of genes related to TGF-Beta signaling pathway
(Additional file 7: Figure S3). Several microRNAs seem to
regulate multiple genes of the TGFbeta pathway, like miR-
760: SMAD4/SMURF1, miR-378: SMAD2/SMAD4/SOS1,
miR-26b: SMAD2/4, miR-520e: AKT1/SMAD4. miR-34a
in particular shows a target site on the majority of these
(SMAD2, SMAD4, AKT1, SMURF1).
Associations between miRNAs/mRNA were subse-

quently analyzed by correlative expression analysis. We
plotted the frequency distribution of the global correla-
tions across the 3 time points (Additional file 8: Figure
S4). Notably, the 3 distributions have 3 distinct shapes
and basically deviate from a normal distribution but re-
lated frequencies of p-values are in line with previously
published studies [36]. On a total number of 6954 corre-
lations, 510 (7.3 %) are significant (|r| ≥ 0.7 and p-value
<0.05) (Additional file 9: Table S5), including both the
positive and negative (see Table 1 for details of positive
and negative percentages at the 3 time points). Since the
analysis was performed at probe level, a total of 52 sig-
nificant correlations of miRNA:gene were predicted
more than once. In detail, we identified 159, 136, and
215 significant correlations at days 0, 7, and 14. The
number of significant correlations for each microRNA is
strongly heterogeneous (range: 4–207, mean: 23, median:
9). miR-34a show the highest number of negatively cor-
related probes (n = 70). Positive and significant correla-
tions are 25.2 % and 22.1 % at days 0 and 7 respectively,
while this percentage almost triplicates at day 14
(67.4 %) where a single miR, miR-26b, holds the majority
of positive correlations (86/145) (Additional file 10:
Figure S5). Among negative and significant correlations
(70/215), we observed a strong correlation (−0.903)
between ID1, one of the main down-stream targets of
TGFbeta signaling [37], and miR-520e, a microRNA be-
longing to the miR-373/520 family: its over-expression
has been recently described to have a tumor suppressive
role in breast cancer, also by down-regulation of the
TGFbeta signaling [38]. To further define interactions



Fig. 5 Network representation of significantly correlated miRNA: gene couples. At initial (day 0) and middle (day 7) phases of differentiation miR-34a shows
the highest number of correlated probes, instead miR-26b shows the highest number at an advanced stage of differentiation (day 14). Interestingly, miR-34a
in particular seems to have a distinct action because of the completely separated network compared to the other miRs
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Table 3 Couples miRNA:gene after intersection of correlation and prediction approaches. There are 62 couples, where miR-34a
shows the highest number of putative negatively correlated genes. When multiple probes per gene are significant, the most
correlated is shown

Correlation Correlation

miR name Gene symbol Day 0 Day 7 Day 14 miR name Gene symbol Day 0 Day 7 Day 14

hsa-miR-1305 ID1 ns ns −0.886 hsa-miR-26b ADAMTSL1 ns ns −0.929

hsa-miR-202 CBFA2T3 ns ns 0.931 hsa-miR-26b ADNP2 ns ns 0.94

hsa-miR-34a AKT3 ns −0.909 ns hsa-miR-26b ARHGAP29 ns ns 0.924

hsa-miR-34a ARHGAP29 ns −0.927 ns hsa-miR-26b C18orf25 ns ns 0.918

hsa-miR-34a C18orf25 −0.945 −0.917 ns hsa-miR-26b CDH2 ns ns 0.968

hsa-miR-34a C1orf74 0.827 0.827 ns hsa-miR-26b CNR1 ns ns 0.844

hsa-miR-34a CD40 0.945 ns ns hsa-miR-26b DTNA ns ns 0.908

hsa-miR-34a DOK6 −0.885 −0.885 ns hsa-miR-26b ELAVL2 ns ns 0.885

hsa-miR-34a DTNA −0.892 ns ns hsa-miR-26b HES1 ns ns 0.909

hsa-miR-34a GALM ns 0.815 ns hsa-miR-26b HEY2 ns ns 0.94

hsa-miR-34a GRB10 ns −0.842 ns hsa-miR-26b JAM2 ns ns 0.9

hsa-miR-34a KCTD12 ns −0.87 ns hsa-miR-26b KIAA1468 ns ns 0.917

hsa-miR-34a KCTD21 ns 0.813 ns hsa-miR-26b MEX3C ns ns 0.99

hsa-miR-34a LMAN1 −0.884 −0.88 ns hsa-miR-26b NEDD4L ns ns 0.883

hsa-miR-34a MEX3C −0.938 −0.938 ns hsa-miR-26b NTNG1 ns ns 0.907

hsa-miR-34a NTNG1 −0.856 −0.856 ns hsa-miR-26b PLEKHA7 ns ns 0.863

hsa-miR-34a NTNG1 ns −0.856 ns hsa-miR-26b RNF138 ns ns 0.829

hsa-miR-34a PEG10 ns −0.941 ns hsa-miR-26b SMAD2 ns ns 0.816

hsa-miR-34a RPRD1A ns −0.877 ns hsa-miR-26b SMAD4 ns ns 0.933

hsa-miR-34a SMAD4 −0.904 −0.904 ns hsa-miR-26b STX6 ns ns −0.858

hsa-miR-34a SOCS6 −0.982 −0.994 ns hsa-miR-26b TECPR2 ns ns 0.885

hsa-miR-34a TMEM164 ns 0.88 ns hsa-miR-26b VPS4B ns ns 0.864

hsa-miR-34a TNFRSF9 ns 0.882 ns hsa-miR-342-3p BARD1 ns ns 0.835

hsa-miR-34a TXNL1 ns −0.931 ns hsa-miR-342-3p C18orf25 ns ns 0.934

hsa-miR-34a ZFYVE21 ns −0.878 ns hsa-miR-342-3p EFNB2 ns ns 0.866

hsa-miR-34a ZNF3 ns 0.823 ns hsa-miR-342-3p IGFBP5 ns ns 0.897

hsa-miR-378 KIF26A 0.848 ns ns hsa-miR-342-3p KCTD12 ns ns 0.923

hsa-miR-500 NEBL ns ns −0.903 hsa-miR-342-3p KIAA1468 ns ns 0.834

hsa-miR-520e C18orf25 ns ns −0.823 hsa-miR-342-3p KIFAP3 ns ns −0.903

hsa-miR-520e EFNB2 ns ns −0.813 hsa-miR-342-3p LPPR4 ns ns 0.872

hsa-miR-892b BACH2 ns 0.813 ns hsa-miR-342-3p MEGF6 ns ns 0.951

ns = not significant
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among miRNAs and related targets, we represented the
resulting network of miRNA:gene by Cytoscape. At basal
condition, we observed two main distinct subnetworks
(Fig. 5) where part of the genes (56, 68 %) show a perfect
star topology with miR-34a (network centralization = 1).
The rest of genes are principally interconnected across 5
of 6 remaining miRs (network centralization = 0.552). To
verify that the two separate networks were only partially
related to the parameters we used for correlation, we
tested less stringent combinations of Pearson’s score and
p-value (data not shown). However, due to the very
limited overlap between the two networks (7.5 % at the
most) and the consequent increase in the number of
false positives, we maintained the initial thresholds to
optimize information. The presence of two separated
subnetworks suggests a separate mechanism of action of
miR-34a respect to the other miRs. miR-34a centrality is
more evident at day 7, where almost all correlations con-
centrate on miR-34a itself. At advanced differentiation
stages we observed a more interconnected mesh-like
network, although miR-26b polarizes the majority of
correlations.
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Finally, to define the most interesting couples miR:target,
intersection of prediction and correlation approaches were
used, identifying 62 couples miR:gene (Table 3). This ana-
lysis strongly reduced the number of miRs with a potential
to regulate the system, only 9 out of the 22 differentially
expressed microRNAs have at least one target significantly
predicted and correlated. Five miRs have one single target
gene (miR-202: CBFA2T3, miR-500: NEBL, miR-378: KIF
26A, miR-892b: BACH2, miR-1305:ID1), with a restricted
impact on gene expression modulation. Among the
remaining 4 miRs (miR-26b, miR-34a, miR-342-3p,
miR-520e), attention still points to miR-34a, which has
the highest number (24) of predicted and correlated
genes. Most correlations are negative (17/24) and, as ex-
pected, involve genes of TGFbeta pathway, such as
SMAD4 (r = −0.904), AKT3 (r = −0.909) and GRB10
(r = −0.842). In contrast, the most down-regulated miR-
NAs, miR-342-3p and miR-26b, showed a prevalence of
positive correlations with their targets (respectively 8/9
and 20/22), which indicate a more complex and possible
indirect relationship with the regulated genes.

Discussion
Etiology of OS still remains unclear although recent pa-
pers have related this tumor to a molecular blockade of
the normal process of osteoblast differentiation [18]. OS
cells are thought to derive from mesenchymal stem cells
already committed towards osteblast differentiation and
thus displaying features of osteo-progenitors [26]. Trans-
formation hampers progression of malignant cells towards
terminal osteoblastic differentiation while maintaining cell
proliferation.
High-throughput screening techniques appear the most

refined tool to identify pivotal players in complex bio-
logical processes: combination of different approaches to
integrate several platforms can help better explore their
fine tuning activity. Some authors have recently integrated
a considerable number of high-throughput data from OS
cell lines, either by miRNA vs mRNA expression profiles
[39, 40] or vs CGH arrays [41] or by protein arrays [42],
identifying miR-17/92 cluster [39] or TGFbeta pathway
[42] as crucial mediators. However, all these studies focal-
ized on the events at basal conditions and their expression
during the differentiative process was not explored.
Besides alterations in Rb, p53 [18], and oncogene MET

pathways, CD99 transmembrane antigen was also found to
regulate differentiation of OS cells [26, 28]. In this paper we
used CD99 transfected OS cells to explore the temporal
transcriptional changes that couple with malignancy rever-
sal and modulation of differentiation. CD99 is generally lost
in OS cells and, when its expression is restored, the
molecule switches cells from proliferation status to cell
cycle withdrawal, favoring the achievement of a terminally
osteoblast-differentiated phenotype, thus resembling the
fate of mature osteoblasts [28]. This phenotype is con-
firmed by PCA meta-analysis, which shows the shift of
Saos-2 cell genetic profile towards normal osteoblasts when
CD99 is re-expressed. Gene expression analysis indicated
that CD99 forced expression induced broad gene expres-
sion down-regulation: almost 80 % of genes showed de-
creased expression in CD99 transfected cells. Enrichment
analysis revealed a significant modulation in Epithelial to
Mesenchymal Transition (EMT), apoptosis and TGFbeta
signaling pathways.
EMT has received considerable attention in the last

years as a paradigm to explain invasive and metastatic be-
havior of cancer cells. Firstly described in carcinomas, the
hallmarks of this program are the disruption of cell adhe-
sion structures between adjacent cells, a dramatic remod-
eling of the cytoskeleton, and the acquisition of a
mesenchymal phenotype. Reduced expression of epithelial
markers, such as E-cadherin, and a simultaneous increase
in mesenchymal marker expression, such as N-cadherin
and vimentin characterize EMT, whose master regulators,
SNAIL1 and SNAIL2 are direct transcriptional targets of
the TGFbeta pathway SMADs mediators [43]. OS is char-
acterized by the expression of EMT-related transcription
factors, which are involved in the complex pathogenesis of
the tumor [44]. Over-expression of CD99 determines a
down-regulation of mesenchymal markers, such as fibro-
nectin, and the transcription factor snail1. In keeping with
the less malignant behavior, Sa/CD99 OS cells also exhib-
ited down-modulation in genes belonging to TGFbeta
signaling, a pathway that plays fundamental roles in car-
cinogenesis. TGFbeta, one of the most abundant growth
factors stored and released by bone, is known to regulate a
broad range of biological processes, including cell prolifera-
tion, cell survival, cell differentiation, cell migration, pro-
duction of extracellular matrix molecules and regulation of
cell stemness [45]. The combined actions of these cellular
responses mediate the global effects of TGF-beta pathway
on cancer, immune responses, angiogenesis, wound healing,
development, and bone formation. In cancer, several studies
have clearly demonstrated that TGFbeta signaling pathway
can either foster or suppress tumor progression [46, 47]:
depending on the cellular context and the type of TGF-beta
signaling pathway that is initiated (Smad-dependent or
Smad-independent pathway), the cell is directed to undergo
either proliferation, differentiation or apoptosis. In the bone
environment TGFbeta signaling is reported to inhibit osteo-
blast differentiation [48] while inducing proliferation and
migration in OS cells [49, 50]. Together with hypoxia,
TGFbeta has also been shown as an important element that
prompts OS cells toward cancer stem cell phenotype [51].
In addition, Yang and Franchi et al. also found higher
TGFbeta1 expression in the patients with high-grade
osteosarcoma and lung metastasis [52, 53], indicating
that TGF-beta signaling promoted the chemoresistance,
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tumorigenicity, and metastatic potential of OS. Decreased
expression of genes belonging to TGFbeta signaling in the
Sa/CD99 OS, which are reverted in malignancy and prone
to differentiation, is thus consistent with the potential value
of therapies targeting TGFbeta signaling. Reversing the
tumorigenicity of OS cells and placing them back on the
road to normal osteoblasts differentiation means not only
the induction of progressive loss of proliferative capacities
but generation of apoptosis, which is part of the program
cell fate toward terminal osteoblast differentiation to osteo-
cytes. According to these processes, network analysis of
genes modulated in Sa/CD99 cells identified two core hubs
composed of AKT1 and SMAD 2/4 proteins. In particular,
SMAD4, one of the leading mediators of TGFbeta signaling
[54], resulted to be the main hub with the highest number
of connected genes (8/16). This protein has been found to
have an oncogenic role in sarcomas [55] and in glioblast-
oma [56], while SMAD4 silencing induced growth inhib-
ition and apoptosis in rhabdomyosarcoma cells [57].
Observation of the network analysis depicted a changeable
entourage of important mediators that act at different
stages. In particular, silencing of ID1, which interacts dir-
ectly with SMAD4 at day 14, is essential for activation of
terminal differentiation [37], while SMAD2, a partner of
SMAD4 in TGFbeta signaling, enhances SMAD4 expres-
sion and suppresses osteocalcin [58], a marker of late
osteoblast differentiation. SMAD2 is also expressed in the
majority (85 %) of OS clinical samples [59], and its repres-
sion by microRNA mimics inhibits proliferation and inva-
sion in OS cells [50]. The other component of the hub,
AKT1 plays an important role in proliferation, survival,
migration and metastatization of many cancers including
OS [60]. Its widespread activation has been observed in
OS patients with pulmonary metastatic disease [60], and
AKT1 inhibition by Akt-siRNA or allosteric specific inhib-
itors was found to decrease cell migration and/or inhibit
proliferation in several OS experimental models [61, 62],
supporting the therapeutic attractiveness of AKT-targeted
inhibitors. Besides direct activation, multiple studies have
also suggested the existence of indirect mechanisms for
TGFbeta activation of PI3K/AKT, where TGFbeta may act
in concert with other stimuli. On the other hand, PI3K/
AKT antagonizes TGFbeta-induced cytostatic responses
and causes the shift in TGFbeta/SMAD signaling to its
tumor-promoting mode during malignant tumor progres-
sion, thus indicating the existence of a signaling interplay
between TGFbeta and PI3K/AKT pathways.
Taken together, annotation analysis of Sa/CD99 gene

expression with respect to parental cells clearly identifies
in down-regulation of TGFbeta/Smad4/Akt signaling a
crucial event in the reversion of OS malignancy. Inter-
estingly, miRNAs expression profiling also indicated a
modulation of miRNAs that converge on TGFbeta path-
way. A general miRNA up-regulation was observed after
CD99 transfection. A signature of 22 modulated miR-
NAs was defined and their expression correlated with
significantly modulated genes to detect important associ-
ations at each phase of cell differentiation. Network ana-
lysis identified in miR-34a and miR-26b the two main
regulators in early (day 0 and day 7) or in late (day 14)
phases of differentiation. These two miRs exhibit an op-
posite mechanism in regulating their respective targets:
miR-26 mainly shows a direct correlation, which intro-
duces to an indirect and difficult to unravel mechanism
of regulation, whereas miR-34a displays a canonical
down-regulation of its targets.
Enrichment analysis on predicted targets of significantly

modulated miRNAs confirmed that TGFbeta signaling
and apoptosis-related mechanisms could be miRNA-
driven. In particular, miR-34a emerges as the main puta-
tive modulator of several genes of TGFbeta signaling. In
our model, SMAD4 resulted to be the best candidate tar-
get at transcriptional level, in line with regulation of
SMAD4 by miR-34a that has been recently shown in glio-
blastoma [56]. miR-34a is a well-known oncosuppressor
miRNA found to induce cell-cycle arrest and apoptosis
thorough negative regulation of proteins directly involved
in the regulation of cell proliferation and/or cell death,
such as E2F, cyclin D1, CDK4, CDK6, cyclin E2, and bcl-2
[63, 64]. miR-34, whose expression is generally reduced in
most tumors [33] including OS [65], also displays a role in
osteogenic differentiation [66]. Our results further support
these evidences, indicating miR-34a as a leader player in
the reversal of malignancy and reactivation of differenti-
ation of OS cells by TGFbeta signaling down-modulation.
Complexity of the genetic landscape in OS cells to-

gether with its rarity make any targeted therapy difficult
to be defined. In this context, the multiple approaches
here adopted may represent a powerful tool to unravel
and better characterize the genetic background associ-
ated with malignant phenotype of this tumor, thus offer-
ing identification of critical hubs for the design of
differentiative therapeutic strategies.

Conclusions
Our intent was to define the transcriptional modifications
that characterize reversion of malignancy and induction of
terminal osteoblast differentiation in OS. A global gene
down-regulation was observed across the 14 days of in vitro
differentiation and down-modulation of the TGFbeta sig-
naling pathway, together with involvement of several im-
portant mediators like AKT1 and SMADs proteins, were
defined as crucial events. The use of multiple analyses sup-
ported the interactions between miRNome and transcrip-
tome and helped to define miRNAs impact on gene down-
modulation. miR-34a was clearly identified as key regulator
at initial and middle phases of OS differentiation toward
osteoblast. To our knowledge, this is the first study where
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deciphering of the miRNAs role in the differentiative block
of OS is tracked in time. miR-34a up-regulation followed
by TGFbeta/SMAD4 signaling inhibition appeared as two
crucial players able to induce malignant reversion and
osteogenic differentiation of OS cells. These new insights
could drive future efforts to investigate the relevance of
miR-34a and TGFbeta signaling as potential targets for in-
novative therapeutic strategies against OS.

Methods
Cell lines
OS cell line Saos-2 was obtained from American Type
Culture Collection (Manassas, VA, Rockville, MD). Stable
transfectants expressing CD99 were obtained from Saos-2
cell line (Sa/CD99wt22, Sa/CD99wt36) by using calcium-
phosphate transfection method [28] and tested for myco-
plasma contamination every three months (last control
September 2014) by PCR Mycoplasma detection Set
(Takara Bio Inc., Shiga, Japan).
Cells were routinely cultured in Iscove’s modified Dul-

becco’s medium (IMDM), supplemented with 100 U/ml
penicillin, 100 μg/ml streptomycin, and 10 % inactivated
fetal bovine serum (FBS) and maintained at 37 °C in a
humidified 5 % CO2 atmosphere. Transfectants were se-
lected in IMDM containing 10 % FBS and 500 μg/ml
neomycin.

Osteoblast differentiation
Four days after seeding cells were exposed to specific osteo-
genic medium, IMDM supplemented with 2 % FBS, 5 mM
β-glycerophosphate and 50 μg/mL ascorbic acid (Sigma-Al-
drich, St. Louis, MO) and maintained in differentiative con-
ditions up to 14 days. Medium was renewed every 4 days.
Cultures were harvested at various time points to collect
RNA. Total RNA was extracted by the TRIzol extraction kit
(Life Technologies, Grand Island, NY). Quality and quantity
of RNA samples were assessed with NanoDrop analysis
(NanoDrop Technologies). Expression of CD99 was verified
by real-time PCR at basal and differentiative conditions in
all profiled samples (Additional file 11: Figure S6).

Microarray hybridization
Gene expression of Saos-2 and Sa/CD99 cells was pro-
filed by Affymetrix (Santa Clara, CA, USA) GeneChip
Human Genome U133A plus 2 according to manufac-
turer’s instructions and scanned by Affymetrix Scanner
3000 7G to obtain raw data. miRNAs profile was ana-
lyzed by Agilent (Santa Clara, CA, USA) Human miRNA
microarray platform (v.3) according to manufacturer’s
instructions, scanned with Agilent Scanner G2505 and
analyzed by Feature Extraction (v10.5) software to obtain
raw data. All raw data were inspected for visual and
technical artifacts by Bioconductor (v 2.9) packages (sim-
pleaffy [67], affyPLM and AgiMicroRNA [68] for miRNA
data) on R (v. 2.15) and were considered of good quality.
(see Additional file 12: Figure S7 for density plots of
both gene and miRNA expression data, and Additional
file 13: Table S6 for gene expression quality metrics).
Two samples for Saos-2 and two for Sa/CD99 cells were
profiled for each time point, for a total of 12 samples for
either gene or miRNA expression profiling.
mRNA and miRNA expression profiling
All microarray analyses were performed by Bioconductor
packages on R. Gene expression data were quantified and
normalized by rma [69] algorithm and log2 transformed.
Probes with low expression (signal intensity of the probe ≤
100 of absolute values in at least 75 % of samples) and
low IQR, Inter-Quartile Range (IQR of log2 signals ≤me-
dian of IQR across all samples) were filtered out. Differen-
tially expressed genes between Sa/CD99 vs Saos-2 were
detected using limma [70] package and corrected by FDR
according to Benjamini and Hochberg multiple test cor-
rection. Genes were considered significant when logFC ≥
0.585 (logFC, log fold change of absolute normalized
values), corresponding to a fold change of 1.5, and
p-value ≤ 0.05 after multiple test correction. Only probes
matching well annotated genes according to Affymetrix
HG_U133 Plus 2.0 array annotation and recovered by
hgu133plus2.db Bioconductor package were preserved.
MicroRNA expression data were quantified, log2 trans-
formed and normalized in R using AgiMicroRna package
[68], that uses an adaptation of rma method for micro-
RNA data. Low or not expressed miRs were filtered out
and remaining probes were tested for differential expres-
sion using limma modified t-test: miR was considered sig-
nificant when logFC ≥ 0.485, corresponding to a fold
change of 1.4, and p-value ≤ 0.01 in transfected vs parental
cell lines. Microarray data are available at GEO database
with SuperSeries accession number GSE61930.
Correlations between miRNAs and genes profiling
Correlation was calculated between expression of miRNAs
vs gene probes differentially expressed in at least 1 on 3
time points. Analysis was performed on normalized log2
expression data and considered significant when: |r| ≥ 0.7
and p ≤ 0.05, where r is the score according to Pearson’s
correlation and p is the asymptotic p-value. Calculation
was performed by R scripts using library Hmisc. For gene
expression data, correlation was preserved at probe level,
thus multiple significant correlations per gene may exist.
Both positive and negative correlations were considered
with putative biological relevance [10]. No multiple test
correction was performed; to control type I error without
reducing statistical power we opted for the use of an high
Pearson’s r score.
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miRNA target prediction
Genes were considered putative target of microRNA when
reported in at least 1 of the following databases: Targets-
can (v. 6.0), miRanda (v. 3.0), Diana MicroT (v. 3.0), Pic-
Tar (v. 4-way). All predictions were downloaded from
their respective web sites except for PicTar from UCSC
genome browser (v. NCBI35/hg17). Only differentially
expressed genes and miRs were taken into account for
microRNA target prediction analysis. No score threshold
was used for target prediction.

Enrichment and network analyses
Enrichment analysis of pathways was performed using
MetaCore in GeneGO (Thomson Reuters, New York, NY,
USA) program. Biological pathways were defined according
to “GeneGO Pathway Maps” manually curated database.
Pathways were tested for significance by modified Fisher’s
Exact Test and were corrected by FDR multiple test correc-
tion according to the Benjamini and Hochberg method,
considered significant when the corrected p-value of en-
richment was ≤ 0.1. Network analysis of biologically-related
terms was performed with the direct interaction method in
GeneGO, were an edge connecting two genes indicates
their direct biological relation according to MetaCore
database, which includes manually-curated database of
human gene and protein interactions, built according to
published literature. Network analysis was performed on
genes differentially expressed at all time points. Back-
ground for statistical analysis by GeneGO is composed of
the array gene list. Graphical representation of miRNA-
gene from correlation and prediction analyses was per-
formed using Cytoscape (v.3.0) [71].

Meta-analysis
Expression data of human osteoblast derived from bone
marrow hMSCs were recovered in GEO database with ID
GSE9451 [31]. Expression data from osteosarcoma and mes-
enchymal cell lines were rma normalized together and log2
transformed before analysis. No further batch correction was
performed. Meta-analysis was performed using made4 pack-
age [72] on R. Expression data of differentially expressed
genes in Sa/CD99 vs Saos-2 at day 0 or day 14 was used for
PCA analysis for day 0 or day 14 respectively. The “pca”
method for “ord” (ordination method) function and default
settings as frommade4 introduction file were used.
Additional files

Additional file 1: Table S1. Genes differentially expressed in Sa/CD99
vs. Saos-2 cells in at least one time point.

Additional file 2: Figure S1. Volcano plot of gene (a) and miRNA (b)
expression data: for both experiments, we marked out genes and miRNA
differentially expressed in Sa/CD99 vs Saos-2 at day 0 (red), day 7 (green)
and day 14 (blu).
Additional file 3: Table S2. Thirty most significant pathways after
enrichment analysis on differentially expressed genes.

Additional file 4: Figure S2. Network analysis of differentially
expressed genes at each single time point. Genes from the core network
(Fig. 3) are circled in red.

Additional file 5: Table S3. Euclidean distances of the eigenvector
from PCA analysis for Sa/CD99 transfectants, Saos-2 parental and
Osteoblast from BM-MSC cells. Distance is calculated on the mean of
eigenvectors for each cell type.

Additional file 6: Table S4. Couples of significant gene-miR from
prediction approach.

Additional file 7: Figure S3. Enrichment analysis of biologically
modulated pathways on modulated predicted targets.

Additional file 8: Figure S4. Frequency histogram of Pearson’s
correlation scores (on left) and of related p-values (on right) at the three
time points for differentially expressed genes and miRNAs. Dashed lines
indicate the threshold (|r| ≥ 0.7 and p-value ≤ 0.05) used to consider
significant a correlation.

Additional file 9: Table S5. Couples of significant gene-miR from
correlation approach.

Additional file 10: Figure S5. Percentage of negative and positive
correlations at each time point and at all time points.

Additional file 11: Figure S6. Expression levels of CD99 were verified
by real-time PCR in parental Saos-2 and both clones for all three days
analyzed by expression profiling.

Additional file 12: Figure S7. Density plots of gene and miRNA
expression data for all arrays, used for quality control.

Additional file 13: Table S6. Quality control parameters of gene
expression arrays are shown. All values respect suggestion of Affymetrix
quality control (for details see simple affy package vignettes).
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