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Vascular endothelial growth factor-A (VEGF) signals vascular development and angiogen-
esis mainly by binding to VEGF receptor family member 2 (VEGFR-2). Adaptor proteins 
mediate many VEGFR-2’s functions in the development of blood vessels. Cancer cells 
secrete VEGF to activate VEGFR-2 pathway in their neighboring endothelial cells in the 
process of cancer-related angiogenesis. Interestingly, activation of VEGFR-2 signaling 
is found in breast cancer cells, but its role and regulation are not clear. We highlighted 
research advances of VEGFR-2, with a focus on VEGFR-2’s regulation by mutant p53 in 
breast cancer. In addition, we reviewed recent Food and Drug Administration-approved 
tyrosine kinase inhibitor drugs that can inhibit the function of VEGFR-2. Ongoing preclin-
ical and clinical studies might prove that pharmaceutically targeting VEGFR-2 could be 
an effective therapeutic strategy in treating triple-negative breast cancer.
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iNTRODUCTiON

Vascular endothelial growth factor-A (VEGF-A, also known as vascular permeability factor) is 
a major factor in regulating functions of endothelial cells in vasculogenesis and angiogenesis (1, 
2). VEGF family consists of five members, VEGF-A, VEGF-B, VEGF-C, VEGF-D, and placenta 
growth factor (3). This review focuses exclusively on VEGF-A since this isoform of VEGF is the 
most extensively studied, and hereafter, VEGF refers only to VEGF-A. The importance of VEGF in 
endothelial cells has been demonstrated by mouse models in which both VEGF-A−/− and VEGF-A+/− 
are embryonic lethal, and the mouse embryos died at embryonic day E9.5 and E11, respectively (4, 
5). Solid tumors secrete VEGF to induce endothelial cells forming blood vessels in order to gain 
adequate blood supply for tumors (6). Blood vessel formations further stimulate tumor prolifera-
tion and metastasis (7–10). In breast cancer, the expression of VEGF correlates well with decreased 
overall survival and disease-free survival (8).

Current data reveal many facets of VEGF function diversity in both normal and cancer cells, and 
some of these VEGF functions in promoting breast cancer are depicted in Figure 1. Apart from its 
well-known role in angiogenesis, VEGF plays a critical role in stem cell maintenance. VEGF has 
been shown to be important for stem cells in hemopoietic, endothelial, muscle, cardiac, neuronal, 
and adipose tissues (3, 11–17). Recently, VEGF was found to regulate cancer stem cells (CSCs) 
self-renewal in brain, lung, and breast tumors (18, 19).

Vascular endothelial growth factor, as a ligand, executes its functions through VEGF receptors. In 
humans, there are at least three VEGF receptors, VEGFR-1 (20, 21), VEGFR-2 (22), and VEGFR-3 
(6, 23). VEGFR-2 is the principal VEGFR in humans (24). It is abundantly expressed in vascular 
endothelial cells and lymphatic endothelial cells (25). VEGFR-2 is also expressed in neuronal cells, 
megakaryocytes, hematopoietic stem cells, and different cancer cells (26–30). This review discusses 

http://www.frontiersin.org/Endocrinology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fendo.2015.00159&domain=pdf&date_stamp=2015-10-09
http://www.frontiersin.org/Endocrinology/archive
http://www.frontiersin.org/Endocrinology/editorialboard
http://www.frontiersin.org/Endocrinology/editorialboard
http://dx.doi.org/10.3389/fendo.2015.00159
http://www.frontiersin.org/Endocrinology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:wz2313@columbia.edu
http://dx.doi.org/10.3389/fendo.2015.00159
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00159/abstract
http://www.frontiersin.org/Journal/10.3389/fendo.2015.00159/abstract
http://loop.frontiersin.org/people/166939/overview
http://loop.frontiersin.org/people/145010/overview


October 2015 | Volume 6 | Article 1592

Zhu and Zhou VEGFR-2 in breast cancer

Frontiers in Endocrinology | www.frontiersin.org

the relevance of VEGFR-2 in breast cancer, particularly in breast 
cancer CSCs. We further discuss the mechanism through which 
mutant p53 activates VEGFR-2 gene expression in breast cancer. 
The therapeutic implications of these findings for breast cancer 
are also discussed.

veGFR-2 SiGNALiNG iN  
eNDOTHeLiAL CeLLS

Vascular endothelial growth factor receptor-2 is a receptor tyros-
ine kinase and a master node in VEGF signaling. VEGFR-2 has 
an extracellular portion consisting of seven immunoglobulin-like 
domains, a transmembrane domain, and an intracellular portion 
containing two tyrosine kinase domains (31). A kinase-insert 
domain splits its two tyrosine kinase domains. VEGF binds to 
and triggers two VEGFR-2 monomers to dimerize and to be 
autophosphorylated (3, 32, 33). A major phosphorylation site 
Y951 is in the kinase-insert domain (34). Four other major sites 
are Y1054/Y1059 in the tyrosine kinase domain and Y1175/
Y1214 in the C-terminus (35, 36). Properly phosphorylated 
tyrosine residues serve as a binding surface for SRC homology 2 
(SH2)-domain-containing adaptor proteins, as discussed below 
and depicted in Figure 2.

veGF-Receptor-Associated 
Proteins/T-Cell-Specific Adapter Molecule
In human umbilical vein endothelial cell models, VEGF stimula-
tion triggers VEGFR-2 phosphorylation at Y951 and subsequent 
recruitment of VEGF-receptor-associated proteins (VRAPs; also 
known as T-cell-specific adapter molecule, TSAd) (37). VRAP 
contains an SH2 domain and a C-terminal proline-rich motif. 

FiGURe 1 | vascular endothelial growth factor-A in endothelial cells and breast cancer stem cells promote breast cancer progression and 
metastasis. VEGF receptors are expressed in both endothelial cells and breast cancer stem cells. Endothelial cells form endothelium with tight cell–cell junction. 
Effects of VEGF on endothelial cells include cell survival, permeability, cell proliferation, and cell migration. VEGF also plays an important role in breast cancer cell 
migration and cancer stem cell self-renewal. These functions converge on promoting breast cancer progression and metastasis. Endothelial cells will be attracted 
and activated by high levels of VEGF proteins in the tumor-stromal niche. After endothelial cells form new blood vessels surrounding tumor cells, tumor cells will be 
stimulated by the cytokines in the blood supply. Tumor cells go through epithelial-to-mesenchymal transition, intravasation, circulation, extravasation, and finally form 
distal metastases.

VRAP is constitutively associated with SRC and phosphati-
dylinositol 3-kinase (PI3K) (Figure  2). SRC is a non-receptor 
tyrosine kinase regulating cytoskeleton reorganization, metas-
tasis, and proliferation (38). VRAP recruits and activates PI3K 
either directly or through SRC. PI3K then phosphorylates 
membrane-bound phosphatidylinositol-3,4-bisphosphate (PIP2) 
to phosphatidylinositol-3,4,5-triphosphate (PIP3). The binding 
of PIP3 to the pleckstrin homology domain of Akt leads to Akt 
activation. Akt has numerous and diverse biological effects by 
phosphorylating a variety of substrates. These effects include 
involvement in metabolism, protein synthesis, apoptosis path-
ways, transcription factor regulation, and cell cycle regulation 
(39–41). The overall effect of Akt activation is antiapoptosis or 
cell survival. In conclusion, VEGFR-2 cross talks with SRC or 
PI3K/Akt are mediated by VRAP/TSAd, and these cross talks are 
important to VEGF-induced cytoskeletal reorganization, migra-
tion, cell survival, and proliferation (34).

Phospholipase C-γ
In porcine aortic endothelial cell models and human umbilical 
vein endothelial cell models, VEGFR-2 pY1175 recruits and 
activates phospholipase C-γ (PLC-γ), which is essential for gen-
erating inositol phosphates (35, 42). PLC-γ hydrolyzes PIP2 to 
release second messengers 1,2-diacylglycerol (DAG) and inositol 
1,4,5-trisphosphate (IP3). DAG is an activator of protein kinase 
C (PKC). PKC activates extracellular signal regulated kinases 
1/2 (ERK1/2), which result in cell survival (Figure 2). IP3 binds 
to its receptor IP3R in endoplasmic reticulum to release Ca2+ 
from endoplasmic reticulum to cytoplasm. Ca2+ activates calmo-
dulin, which further activates calcineurin. Calcineurin facilitates 
calcium-sensitive nuclear factor of activated T-cells (NFAT) to 
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FiGURe 2 | Cross talks between veGFR-2 and other signaling pathways in endothelial cells. VEGFR-2 is presented in a typical receptor tyrosine kinase 
scheme with an extracellular domain, a juxtaposed transmembrane domain and intracellular kinase domains. Extracellular domain of VEGFR-2 is composed of 
seven IgG-like domains to bind to its cognate ligand VEGF. Intracellular domain has two tyrosine kinase domains, which are split by a kinase-insert domain of 70 
amino acids. Five major phosphorylation residues Y951, Y1054, Y1059, Y1175, and Y1214 are labeled. SH2 domain-containing adaptor proteins are recruited by 
these phosphorylated tyrosine residues, including VRAP/TSAd, PLC-γ, SHB, and NCK. These adaptors mediate the downstream effects of VEGFR-2, including cell 
proliferation, permeability, cell survival, and cell migration.
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promote cell proliferation. Aforementioned VEGFR-2 adaptor 
VRAP can also activate PLC-γ. Moreover, the essential in vivo role 
of PLC-γ in vasculogenesis has been verified in a mutant Vegfr-2 
Y1173F knock-in mouse model (murine Y1173 corresponding to 
Y1175 in human VEGFR-2). Vegfr-2 Y1173F mice died between 
embryonic days 8.5 and 9.5 without any organized blood vessels 
or yolk sac blood islands, and hematopoietic progenitors were 
severely reduced, phenotypically mimicking Vegf2−/− mice (43).

SH2 Domain-Containing Adaptor Protein B
In pig aortic endothelial cells expressing human VEGFR-2 mol-
ecules, VEGF stimulation induces VEGFR-2 phosphorylation 
at Y1175, and pY1175 recruits SH2 domain-containing adaptor 
protein B (SHB) (44). SHB activates focal adhesion kinase (FAK), 
which is a highly conserved tyrosine kinase regulating focal adhe-
sions (Figure 2). FAK activates small Rho GTPase RAC1, which 
drives actin polymerization, forms lamellipodia, and promotes 
cell migration (45, 46). Furthermore, Shb−/− mouse model has 
revealed the essential in vivo role of SHB in vasculogenesis. Shb−/− 
mice have abnormal endothelial ultrastructures in liver sinusoids 
and heart capillaries (47).

Neuronal CDK
In porcine aortic endothelial cell models and human umbilical 
vein endothelial models, VEGFR-2 pY1214 recruits SH2/SH3 
adaptor protein neuronal CDK (NCK) (48, 49). NCK activates 
SRC family kinase FYN (36). FYN activates p21-activated protein 
kinase-2 (PAK-2), and PAK-2 activates CDC42 (36). CDC42 
subsequently activates p38 mitogen-activated protein kinase 
(MAPK) (50). p38 MAPK is a stress-activated protein kinase, and 
its activation is known to promote VEGF-triggered stress fiber 

formation and endothelial cell migration in human umbilical 
vein endothelial cells (51). To conclude, VEGFR2 recruits NCK/
FYN to activate p38, which promotes stress fiber formation and 
cell migration (Figure 2).

The knowledge of VEGFR-2 signaling gained from endothelial 
cell model may be applied to VEGFR-2 signaling in cancer cells. 
For example, PLC-γ activating mutant R707Q is observed in 
human primary cardiac angiosarcoma. PLC-γ R707Q leads to a 
hyperactive VEGFR-2 signaling and increases apoptotic resist-
ance in cancer cells (52). Furthermore, Shb−/− mice have impaired 
tumor growth (47).

veGFR-2 SiGNALiNG iN BReAST  
CANCeR CeLLS

The Regulation of veGFR-2 expression in 
Breast Cancer
Vascular endothelial growth factor receptor-2’s regulatory role 
for cancer development is largely unknown. Pfister et al. recently 
identified that mutant p53 activates VEGFR-2 gene expression 
(53). Mutant p53 and histone remodeling complex switch/
sucrose non-fermentable (SWI/SNF) colocalize to the VEGFR-2 
promoter. SWI/SNF remodels the VEGFR-2 promoter and keeps 
the promoter at an “open” configuration (Figure 3, bottom left). 
Pfister et al. also revealed an interesting aspect of the relationship 
between SWI/SNF and mutant p53 from RNA-seq analyses. The 
results showed that more than 40% of mutant p53-regulated genes 
are also under the regulation of SWI/SNF (53). It is inconclusive 
whether SWI/SNF coactivates all types of mutant p53s due to lim-
ited cell lines and mutation types assayed in this study. This study 
is important because it identifies SWI/SNF as a general cofactor 
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FiGURe 3 | The regulation of veGFR-2 in breast cancer cells. After the binding of VEGF to its cognate receptor VEGFR-2, VEGFR-2 activates STAT3 dimer 
formation. STAT3 dimer activates STAT3-response element (SRE)-containing genes, including MYC and SOX2 (top and lower right). MYC and SOX2 are embryonic 
stem cell transcription factors (ES-TF). They will affect many downstream EMT-related genes, such as up-regulating SNAIL, SLUG, ZEB1, and ZEB2 and down-
regulating CDH1. These genes will endow the breast cancer cells the capability of cell motility and cancer stem cell self-renewal. Another exciting advance found 
that mutant p53, together with SWI/SNF histone remodeling complex, will be recruited to the VEGFR-2 promoter to activate VEGFR-2 in triple-negative breast 
cancer cell lines (lower left).
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of p53 mutants. Disrupting the mutant p53-SWI/SNF interaction 
would be an effective strategy in treating triple-negative breast 
cancer.

More importantly, Pfister et  al. showed that VEGFR-2’s 
expression is critical for mutant p53-containing breast cancer 
cell growth and migration (53). The results should be appreciated 
because Pfister et al. extensively used mammosphere assay and 
other three-dimensional (3D) culture techniques (53). These 3D 
techniques are commonly accepted as a good indicator for clini-
cal response. These in vitro data support that targeting VEGFR-2 
might be beneficial as a cancer stem cell therapy.

The Role of veGFR-2 Signaling in Breast 
Cancer Stem Cells
Interestingly, Zhao et al. explored the role of VEGFR-2 in CSCs 
using established triple-negative breast cancer cell lines, dis-
sociated primary breast tumor cells, and mice xenograft models 
(19). Zhao et al. found that VEGF-triggered VEGFR-2 activation 
increases mammospheres and aldehyde dehydrogenase activity 
in triple-negative breast cancer lines and dissociated primary 
cancers in vitro. EMT generates cancer cells with stem cell prop-
erties (54). Next, Zhao et al. focused on the role of VEGFR-2 in 
CSC populations and found that VEGFR-2 increases breast can-
cer CSCs, orthotopic tumors, and metastasis in vivo (19). More 
importantly, Zhao et al. delineated the downstream signaling of 
VEGFR-2 in CSCs (19). Zhao et al. found that VEGFR-2 recruits 
Janus-family tyrosine kinase 2/signal transducers and activators 
of transcription 3 (JAK2/STAT3) and STAT3 dimer induces MYC 
and SOX2 expression (Figure  3, top and bottom right). Meta-
analysis of over a thousand primary breast cancers showed that 

high VEGF expression is strongly associated with STAT3 and 
MYC expression, supporting the link between VEGFR-2 and 
CSC self-renewal (19).

The regulation of breast cancer CSCs by VEGFR-2 is an 
important finding, which further supports preclinical investiga-
tion of anti-VEGFR-2 in breast cancer treatments. Targeting 
CSC-addicted signaling pathways is attractive. Increasing evi-
dence suggests that cells within a tumor can exhibit heterogeneity 
and cancer originates from CSCs (55, 56). CSCs are thought to 
be responsible for many attributes of cancer, including radiation 
resistance/chemoresistance, metastasis, and relapse of disease 
(57, 58). Targeting VEGFR-2 and/or downstream JAK2 or STAT3 
might overcome the radiation resistance and chemoresistance in 
triple-negative breast cancer by eliminating CSCs.

iMPLiCATiONS OF TARGeTiNG veGFR-2 
FOR TReATiNG BReAST CANCeR

Breast cancer is the most frequent cancer and the second-most 
common cause of death from cancer in women worldwide (59). 
Two thirds of new breast cancers express estrogen receptor α 
(ER) protein, and the growth of these primary tumors is pre-
dominantly depend on estrogen (60). Till date, Food and Drug 
Administration (FDA) has proved three selective ER modulators 
(SERMs)  –  raloxifene, toremifene, and tamoxifen  –  and three 
aromatase inhibitors (AIs) – anastrozole, letrozole, and exemes-
tane (61). Although patients with ER-positive breast cancers can 
be treated with these drugs successfully, it is in the treatment 
of triple-negative (ER−, PR−, Her2−) breast cancer where there 
is a clear demand for the development of new therapies (62). 
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Triple-negative breast cancers commonly cause mortality when 
these tumors metastasize to distant organs including lung and 
brain. Bone metastasis can cause significant morbidity.

Anti-VEGF therapy in metastatic breast cancer was initially 
embraced with great enthusiasm. Two commonly used reagents 
are bevacizumab (Avastin) (27), an anti-VEGF monoclonal anti-
body, and its antibody derivative ranibizumab (Lucentis) (63). 
However, anti-VEGF therapy for breast cancer has been a “veri-
table roller coaster of results” (64). Bevacizumab, initially on FDA 
“fast track” for metastatic breast cancer, was revoked of approval 
in breast cancer in 2011 (65). The efficacy of bevacizumab in 
breast cancer is unclear. Bevacizumab delayed metastatic breast 
progression in early trials with paclitaxel, whereas subsequent 
trials showed no increase in overall survival (66). Moreover, other 
preclinical studies suggested that bevacizumab promotes more 
aggressive metastatic behavior in surviving cells (67, 68). Causes 
of resistance to bevacizumab are that bevacizumab reduces tumor 
vessel supply, decreases drug penetration, and increases hypoxia 
to stimulate even greater VEGF production to overcome drug 
effects (69).

To overcome drug resistance to bevacizumab, chemical inhibi-
tor drugs against VEGFR-2 may be proven effective. Indeed, FDA 
has proved several small compound drugs inhibiting VEGFR-2, 
including sunitinib (Sutent) (70–72), sorafenib (Nexavar) 
(73–75), axitinib (Inlyta) (76), and pazopanib (Votrient) (77, 
78). The development of these VEGFR-2 inhibitors supports 
the further investigation of their clinical benefits for a selective 
subset of breast cancer patients whose mutant p53 activates 
VEGFR-2. At present, the benefit of sunitinib in breast cancer is 
undefined. Sunitinib had shown single-agent activity in the treat-
ment of metastatic breast cancer (79). In other trials, sunitinib 
has failed to demonstrate therapeutic benefit in either first-line 
or refractory breast cancer (80, 81). The clinical experience with 
sorafenib in breast cancer is limited, with only a recently com-
pleted phase I/II trial of combination of sorafenib and anastrozole 

(NCT00217399). Axitinib has significant benefits only in patients 
who have previously received paclitaxel (NCT00076024), which 
suggested anti-VEGFR-2 therapy might best work on patients 
receiving prior paclitaxel (82). Similar to axitinib, pazopanib 
showed additional benefits to paclitaxel treatment in breast can-
cer from a recent clinical trial (NCT01644825). Pazopanib plus 
paclitaxel group has a significant longer progression-free survival 
than the paclitaxel only group [median, 6.35 months (95% CI, 
5.36–11.02) versus 3.49  months (2.01–5.66); hazard ratio, 0.42 
(95% CI, 0.25–0.69); p = 0.0002] (83). To reduce the complexity 
of drug response, it is of particular interest to identify the sub-
groups of breast cancer patients who will preferentially benefit 
from anti-VEGFR-2 therapy with combinations of biomarkers. 
Mutant p53 could be one of the predictive biomarkers.

CONCLUSiON

Much progress has been made in understanding the biology of 
VEGFR-2 in breast cancer. One breakthrough is that mutant p53 
recruits SWI/SNF to activate VEGFR-2 expression (53). This 
finding suggests compounds disrupting mutant p53–SWI/SNF 
interaction might be effective in treating breast cancer. Another 
interesting study found that VEGFR-2 recruits JAK2/STAT3 
to activate embryonic stem cell transcription factors MYC and 
SOX2 in breast cancer CSCs (19). This finding offers another 
possibility that VEGFR-2 inhibitor and/or JAK2/STAT3 inhibi-
tors could be used as a cancer stem cell-targeted therapy in breast 
cancer.
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