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Abstract: In this short review (Perspective), we identify key features of the performance of biocata-
lysts developed by the immobilization of enzymes on the supports containing magnetic nanoparticles
(NPs), analyzing the scientific literature for the last five years. A clear advantage of magnetic sup-
ports is their easy separation due to the magnetic attraction between magnetic NPs and an external
magnetic field, facilitating the biocatalyst reuse. This allows for savings of materials and energy in
the biocatalytic process. Commonly, magnetic NPs are isolated from enzymes either by polymers,
silica, or some other protective layer. However, in those cases when iron oxide NPs are in close
proximity to the enzyme, the biocatalyst may display a fascinating behavior, allowing for synergy
of the performance due to the enzyme-like properties shown in iron oxides. Another important
parameter which is discussed in this review is the magnetic support porosity, especially in hierar-
chical porous supports. In the case of comparatively large pores, which can freely accommodate
enzyme molecules without jeopardizing their conformation, the enzyme surface ordering may create
an optimal crowding on the support, enhancing the biocatalytic performance. Other factors such as
surface-modifying agents or special enzyme reactor designs can be also influential in the performance
of magnetic NP based immobilized enzymes.

Keywords: metal oxide; nanoparticle; magnetic; immobilized enzymes; biocatalyst

1. Introduction

Magnetic nanoparticle (NP)-containing supports for catalytic and biocatalytic sys-
tems have received considerable attention as they allow for significant improvements in
process intensification, as well as savings in both energy and materials due to magnetic
recovery [1–13]. In batch processes, magnetic separation affords easy separation of the
catalyst and further reuse. In flow processes, a magnetic catalyst can be fixed in the reactor
with an applied magnetic field, or can be washed off when the magnetic field is turned
off [14,15]. In this review, we are focusing on biocatalysts, i.e., immobilized enzymes, sup-
ported on magnetic carriers, although the relationship between the catalyst properties and
the characteristics of the magnetic support could be quite general for both conventional
catalysts and biocatalysts. The first reviews on immobilized enzymes were published
by several groups in the early and late seventies [16–19], with Chibata giving definition
to immobilized enzymes as biocatalysts [16]. Since then, numerous studies have been
reported on the applications of immobilized enzymes in the catalysis of organic reactions
as biosensors, for wastewater treatment, for enzyme essays, etc. [20–23]. To the best of our
knowledge, the first enzyme immobilization on magnetic NPs was reported by de Cuyper
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in 1992 [24]. From 2003, magnetic NP supports for the immobilization of enzymes have
been widely utilized [25–27], with a growing sophistication of biocatalytic systems [28–30].

Clearly, for all these systems, magnetic recovery is a straightforward advantage which
is commonly discussed in literature due to the facilitated biocatalyst reuse. Two major
design features of magnetic biocatalysts are reported. In one case, magnetic NPs are isolated
from the biocatalytic species. In the other case, they are in the vicinity of enzyme molecules.
The latter design feature could become a crucial factor if the bioactivity of immobilized
enzymes is influenced by the presence of magnetic NPs, normally consisting of metal
oxide or ferrite. In this case, however, attention needs to be paid to the pH of the reaction
solution because metal oxide or ferrite NPs are digested by acids, so the biocatalyst will lose
its magnetic character. Finally, we will discuss other important parameters which could
significantly influence the biocatalytic performance, whether magnetic NPs are isolated
from enzymes (by a silica shell, polymer, etc.), or exposed to the reactants. One of the most
influential parameters is hierarchical porosity, where pore sizes can vary from micropores
to macropores, providing both efficient mass transfer in the biocatalytic reaction, and a
proper positioning of enzymes inside the pore for maximized activity. The parameters,
such as an addition of surface-modifying agents or utilizing special enzyme reactor designs,
can be also crucial for the performance of magnetic NP-based immobilized enzymes.

Due to the above advantages, studies of magnetic NP-based biocatalytic systems have
enjoyed an intense growth in the last decade. From 2016 to date, 523 papers have been
published which show the publication profile displayed in Figure 1; although the number
of publications in 2020, and even in 2021, could be misleading because of the COVID-19
pandemic, accompanied by a slowing of scientific research.
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In this review, we will discuss magnetic NP-containing supports for immobilized
enzymes from the viewpoint of magnetic separation, and an enhancement of the biocatalytic
activity due to the presence of oxide or ferrite NPs, surface modifiers, etc., following these
trends from 2016 through to July of 2021.

2. Magnetic Recovery as a Major Advantage

The magnetic recovery of immobilized enzymes is normally realized by tethering en-
zymes to magnetic NPs via some linkers such as polymers, difunctional molecules, etc. [31–37].
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To create an appreciable magnetic moment for a successful separation, magnetic NPs are
often organized into clusters [34,38], imbedded in gels [36], other polymer or inorganic
matrices [13,39–41], or self-assembled into larger structures [42,43]. This creates interparti-
cle interactions and increases magnetic attraction between magnetic NPs and an external
magnetic field. In the case of polymers utilized in the biocatalyst development, NPs can be
formed separately and then mixed with the polymers, as is most frequently done for cellu-
lose, because of its limited solubility [33]. The other avenue in the magnetic NP-polymer
composites is realized when macromolecules form a brush tethered to the NP surface [34]
or a polymer shell using in situ polymerization [44]. For a thermoresponsive polymer
brush [34], the terminal functionality of macromolecules has been employed to attach an
enzyme, while the responsive character of the brush allowed for control of enzymatic
activity (Figure 2). Clustering of the NPs surrounded by the thermoresponsive polymer
allows for easy magnetic separation.
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Finally, the formation of magnetic NPs in the presence of polymers is often preferred
because it simplifies the biocatalyst preparation process [30,45].

3. Enhancement of Enzymatic Activity

The enhancement of enzymatic activity in magnetic biocatalysts can be achieved in
several ways, including due to magnetic NPs or organic modifiers [15,46]. An especially
fascinating enhancement of the enzyme activity was observed when both enzyme and iron
oxide NPs were located in the vicinity of each other. The comparison of the activities of
glucose oxidase (GOx) immobilized in porous silica (SiO2), alumina (Al2O3), and zirconia
(ZrO2), or in the same supports but containing magnetite NPs in the support pores (Fe3O4-
SiO2, Fe3O4-Al2O3, Fe3O4-ZrO2), revealed that biocatalysts based on magnetic supports
are noticeably more active than those based on non-magnetic supports [13,41]. Figure 3
shows a trend for ZrO2 and Fe3O4-ZrO2 supports [41]. This effect was assigned to the
inherent enzyme-like activity of iron oxide NPs [47–49], which leads to an enhancement of
the activity of immobilized GOx due to a synergetic effect. In this case, Fe3O4 serves as a
co-catalyst for the enzyme, increasing its activity [50].

Suo et al. reported a considerable increase of the activity of the lipase based magnetic
biocatalyst due to ionic liquids, whose presence improved the microenvironment of the
immobilized lipase by decreasing the support hydrophobicity [37]. Furthermore, it modi-
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fied the secondary lipase structure and allowed for the exposure of the enzyme active site.
Crosslinking of the chitosan-magnetic NP support with immobilized xylanase and filter
paper-ase using genipin allowed for a significant enhancement of activity compared to a
non-crosslinked biocatalyst [31]. This was attributed to a higher local concentration of the
substrate in the confined space, resulting in a boosted number of interactions between the
substrates and immobilized enzymes.
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Figure 3. Relative activity of GOx immobilized on ZrO2 or Fe3O4-ZrO2 in reuse. IO stands for Fe3O4 
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4. Porosity Influence on the Biocatalyst Performance

Magnetic porous supports were prepared by combining magnetic NPs and inor-
ganic [13,41,51], polymeric [51,52] or carbon [53] porous materials. Magnetite NPs com-
bined with reduced graphene oxide (rGO) plates were utilized as precursors for spray
pyrolysis fabrication of nearly spherical porous magnetic supports for high efficiency
enzyme immobilization [53]. Among porous polymers, thermoresponsive polymers re-
ceived considerable attention [52,54]. Shen et al. designed a controllable thermoresponsive
membrane formed by a block copolymer with imbedded magnetite NPs and immobi-
lized enzymes, whose performance was tested at varying temperatures between 25 and
39 ◦C [52]. A swollen hydrophilic state at the high temperature allowed for better inter-
actions of the substrate with the enzyme, thus allowing high biocatalytic activity of the
enzyme reactor (Figure 4).

In many cases, magnetic porous supports are created by placing a porous shell on a
magnetic core [55–59], allowing for the isolation of magnetic NPs from the part of the porous
shell where enzymes are immobilized. This is also a traditional path to prevent magnetic
NP aggregation, or their influence, on the enzymatic behavior. An original approach was
realized in creating pod-like 1D structures by self-assembly of core-shell Fe3O4-SiO2 NPs
under an applied magnetic field followed by the formation of mesoporous silica in the
presence of a surfactant—cetyltrimethylammonium bromide (CTAB) (Figure 5) [60]. The
material is characterized by a tunable hollow space and vertical pores of 8.2 nm, exceeding
the size (4 nm) of the immobilized lipase. This design allowed a high loading capacity and
enhanced catalytic activity.
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Across numerous studies, hierarchical porosity of biocatalyst supports has been shown
to be crucial in influencing the biocatalyst performance [57,58,61–66]. The advantages of
hierarchical porosity are threefold: (i) small pores (micropores) provide structural integrity
of the support, (ii) large pores (large meso- and macropores) allow an improved mass
transfer of the substrate, (iii) while the medium-sized pores (mesopores, which are larger
than the enzyme size) can result in optimal self-assembly of enzyme molecules inside the
pores, resembling the degree of crowding realized in cells. This factor could profoundly
increase the activity of immobilized enzymes [67]. Below we discuss a few examples of
magnetic biocatalysts with hierarchical porosity.

Magnetic microspheres with hierarchical porosity (PFMMs) were fabricated using a
non-conventional precursor—a novel rigid-flexible dendrimer synthesized by interfacial
polymerization of trimesoyl chloride (TMC) and 1,6-hexanediamine (HDA) (Figure 6) [66].

PFMMs possess pore sizes in the range of 5–75 nm and excellent loading capacity
for covalent immobilization of Pseudomonas fluorescens lipase (PFL). The increased rigidity
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of this support compared to that of the support based on fully flexible dendrimers also
allowed an improved reusability of the immobilized PFL.

Magnetic metal-organic frameworks (MOFs) containing micro-, meso-, or even macro-
pores demonstrated a promise as supports for enzyme immobilization due to a combination
of porosity, magnetic separation, and pore ordering, thus allowing for more ordering in
the enzyme positioning [68,69]. Usually in hierarchical MOFs, mesopores are formed
in microporous frameworks and, thus, larger pores are connected by micropore chan-
nels, impeding accessibility for large substrates. Lu et al. used a different approach,
i.e., forming microporous MOFs in continuous mesoporous tunnels [70]. In the case of
the magnetic imidazolate framework (ZIF-8) containing a highly ordered macroporous
structure, catalase molecules were immobilized both outside and inside of macropores
(due to an average pore size of 69 nm), and allowed a three-fold increase of the enzyme
loading capacity compared to conventional ZIF-8 (consisting of solely micropores) as well
as a much higher stability [68]. Hierarchically porous Fe-MOFs were grown on the sur-
face of Fe3O4 NPs using a solvothermal method, and employed for immobilization of
chloroperoxidase or horseradish peroxidase [57]. The behavior of these biocatalysts in the
degradation of organic toxins revealed that decreased diffusion resistance of substrates
(due to their concentration on the hierarchically porous support near enzymes) enhances
the biocatalyst efficiency.
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Another novel magnetic hierarchically porous MOF was prepared via a modulator-
induced defect-formation strategy (Figure 7) [63]. Polydopamine (PDA) was utilized as a
source of amino groups to coordinate Zr4+, followed by the removal of dodecanoic acid (DA,
a competitive ligand) using HCl, to form comparatively large mesopores. The resultant
material exhibits a well-defined core-shell structure, hierarchical porosity (micropores and
mesopores), and strong magnetic responsiveness. After immobilization of amidase with
a high loading on this magnetic carrier, the biocatalyst showed higher efficiency, thermal
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stability, stability upon storage, reusability, etc. compared to the native enzyme or the
analogous catalyst without hierarchical porosity.
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(red); and (e) magnetic hysteresis loops of F3O4, PDA coated F3O4 and hierarchical F3O4@MOF, inset
is the photographs of the magnetic responsiveness. Reproduced with permission from [63], the Royal
Society of Chemistry, 2019.

5. Surface Modifying Agents

The surface modification depends on the method of the magnetic support prepara-
tion and on the components of the biocatalyst [30]. There are two major objectives in
modifying the surface of magnetic supports. One is focused on the functionalization of
the supports with such groups as aldehyde, amine, diimide, carboxyl, hydroxyl, etc., for
further attachment of enzymes and other modifying molecules [71–79]. Functional groups
can be provided via the attachment of difunctional molecules, polymers, dendrimers, or
oligomers (aptamers) [80–83]. An interesting strategy has been proposed by Song et al.
using toehold-mediated DNA strand displacement for the immobilization of enzymes on
the magnetic support [84]. To accomplish this, the enzyme was conjugated with a target
DNA to replace the captured DNA, modifying the magnetic support. This results in the
protection of the enzyme from denaturation and leakage after multiple uses. A combination
of the polyamidoamine dendrimer and DNA directed immobilization of the trypsin and
created a biocatalyst with high reusability and stability [80].

A polyhistidine-tag (His-tag) has been utilized for modifying the surface of “sea-
urchin” shaped NPs composed of the Ni silicate shell and the magnetite core [59]. Such
a modification was possible due to the high affinity of His-tag to Ni ions. At the same
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time, His-tag easily attached tobacco etch virus (TEV) protease, enhancing compatibility
between the support and the enzyme (Figure 8).
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The other objective of the surface modification deals with tuning the hydrophobicity–
hydrophilicity balance for better compatibility of the enzyme, support, and the sub-
strate [73,76,77,83,85,86]. Lipase is a typical enzyme requiring surface modification due
to its high affinity to hydrophobic molecules. In some cases, an enzyme (not a support)
is modified, as has been reported for porcine pancreas lipase (PPL) [76]. PPL was func-
tionalized with dodecyl aldehyde and combined with a magnetic support, resulting in the
enzyme immobilization loading of about 100% and the biocatalyst efficiency of ~80%. In a
reverse strategy, magnetic NPs coated with polymers containing long alkyl chains (octyl
or hexadecyl) have been utilized for immobilization of Candida rugosa lipase (CRL) [82].
Hexadecyl tails allowed for higher loading of the enzyme and its binding in the open
conformation, promoting enzyme performance. On the other hand, very hydrophobic
multiwall carbon nanotubes containing magnetic Co NPs required an additional functional-
ization with aminated polydopamine for immobilization of CRL via a covalent attachment
with glutaraldehyde [75]. This biocatalyst displayed high efficiency, stability in a wide
pH and temperature range, and enhanced reusability. Here, mere hydrophobicity without
functionality was not sufficient for CRL immobilization.

Functional ionic liquids have been reported as modifying agents for lipase immobiliza-
tion on a magnetic support [85,86]. The authors coated magnetite NPs with chitosan (CS), at-
tached an imidazole-containing ionic liquid (IL), and then immobilized PPL (Figure 9) [85].
The enhanced immobilization degree, biocatalyst efficiency, as well as higher tolerance to
pH and temperature changes were assigned to improved biocompatibility due to CS and
the effect of the IL ion, protecting the PPL native conformation.
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6. Conclusions

In this short review, we analyzed the major advantages of magnetic supports for
enzyme immobilization, and the influence of their structural features on the biocatalytic
properties. The most straightforward advantage of magnetic biocatalysts is the easy
separation due to magnetic forces between magnetic NPs and an external magnetic field,
facilitating the biocatalyst reuse. It allows for savings of energy, materials, and time,
facilitates reuse, and results in less expensive processes, paving the way for future industrial
applications. Another remarkable benefit is realized when enzymes are attached in close
proximity to iron oxide NPs, thus allowing for synergy between the enzyme and iron oxide
NPs due to the inherent enzyme-like activity of the latter. We believe this enhancement
is underutilized because, very frequently, iron oxide NPs are isolated from enzymes by
silica or polymer shells with the assumption that magnetic NPs could be detrimental for
biocatalyst performance. Indeed, this could be the case if the media is acidic (very rarely
for biocatalytic reactions) or if iron oxide promotes a side reaction. We believe that for all
other cases, co-existence of immobilized enzymes and iron oxide NPs in proximity to each
other is highly beneficial.

The other major benefit of magnetic biocatalysts is the skillfully developed hierarchical
porosity of the supports, allowing a controlled enzyme immobilization for the design of
efficient biocatalysts. The advantages of hierarchical porosity include easy mass transport
of reacting molecules in large pores, optimal self-assembly of enzyme molecules inside the
medium size pores (resulting in an enhancement of the enzyme activity), and preservation
of structural integrity of the biocatalyst due to small pores. Magnetic MOFs grant an
additional advantage of pore ordering.

Finally, surface modifying agents play an important role in the enhancement of the
biocatalytic performance, for example, in the case of hydrophobic lipases, allowing one
to adjust the support or lipase hydrophobicity, and to improve compatibility between
the magnetic support, enzyme, and reacting molecules. We believe a combination of the
advantages of magnetic nanoparticles (magnetic separation and enzyme-like properties)
with well-designed porosity and targeted surface modification is a promising avenue for
the successful development of efficient magnetic biocatalysts.
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