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Abstract Targeted sequencing of sixteen SLE risk loci among 1349 Caucasian cases and controls

produced a comprehensive dataset of the variations causing susceptibility to systemic lupus

erythematosus (SLE). Two independent disease association signals in the HLA-D region identified

two regulatory regions containing 3562 polymorphisms that modified thirty-seven transcription

factor binding sites. These extensive functional variations are a new and potent facet of HLA

polymorphism. Variations modifying the consensus binding motifs of IRF4 and CTCF in the XL9

regulatory complex modified the transcription of HLA-DRB1, HLA-DQA1 and HLA-DQB1 in a

chromosome-specific manner, resulting in a 2.5-fold increase in the surface expression of HLA-DR

and DQ molecules on dendritic cells with SLE risk genotypes, which increases to over 4-fold after

stimulation. Similar analyses of fifteen other SLE risk loci identified 1206 functional variants tightly
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linked with disease-associated SNPs and demonstrated that common disease alleles contain

multiple causal variants modulating multiple immune system genes.

DOI: 10.7554/eLife.12089.001

Introduction
Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease resulting from a profound

loss of immune tolerance to self-antigens (Olsen and Karp, 2014; Theofilopoulos, 1995a;

1995b; Fairhurst et al., 2006). The disease initiates with the production of autoantibodies against a

spectrum of self-antigens (typically >10 in SLE patients), focused on nucleic acids and nucleic-acid-

associated proteins. Disease pathology begins with the deposition of immune complexes in various

target tissues, leading to the activation of inflammatory effector mechanisms that damage critical

organ systems. Patients with SLE can present with combinations of symptoms, including skin rashes,

oral ulcers, glomerulonephritis, neurologic disorders, severe vasculitis, and a distinct form of

arthritis (Tsokos, 2011). This extensive heterogeneity in clinical presentation presumably reflects var-

iations in the sites of immune complex deposition and induced inflammation among patients, but

also suggests that SLE may be a collection of related diseases, rather than a single pathogenic pro-

cess. A generalized loss in immune tolerance by the humoral immune system and the aberrant acti-

vation of inflammatory effector mechanisms at the sites of immune complex deposition, however,

are consistent features of SLE.

Susceptibility to SLE is caused by a combination of genetic and environmental factors

(Fairhurst et al., 2006; Harley et al., 2009; Deng and Tsao, 2010; Rai and Wakeland, 2011). Cur-

rent thought postulates that a collection of common risk alleles mediates the development of an

autoimmune-prone immune system which, when coupled with poorly-defined environmental trig-

gers, becomes dysregulated, leading to the development of autoantibodies and the initiation of dis-

ease pathologies. Genome-wide association analyses (GWAS) have identified more than 50 SLE risk

loci to date, indicating that susceptibility is quite polygenic (Harley et al., 2009; Nath et al., 2008;

Harley et al., 2008; Kim et al., 2012; Graham et al., 2006; 2008; 2009; Hom et al., 2008;

Gateva et al., 2009; Relle et al., 2015). A variety of candidate genes have been identified within

these risk loci, including: HLA-DR and HLA-DQ class II alleles, IRF5, ITGAM (CD11b), STAT4/STAT1,

TNFAIP3, and BLK. The functional effects or ’endophenotypes’ that these disease genes contribute

to the disease process have not been clearly delineated.

GWAS utilize a dense array of single nucleotide polymorphisms (SNP) to map the positions of risk

loci within the human genome to relatively small segments, termed linkage disequilibrium (LD)

blocks (typically < 200 Kb in length). Within these LD blocks, recombination is infrequent and poly-

morphisms form stable combinations or ’haplotypes’ that persist within populations for extended

periods (Balding, 2006; de Bakker et al., 2005; Frazer et al., 2007). Disease associated ’tagging’

SNPs are postulated to be imbedded in specific haplotypes that contain the functional variations

that impact disease susceptibility. The characteristics of these functional variations and the endophe-

notypes that they contribute to disease processes are a poorly described aspect of common disease

genetics.

Population sequencing studies have identified extensive variations in both the coding and non-

coding regions of the human genome (Abecasis et al., 2010; 2012; Barreiro and Quintana-Murci,

2010; Laval et al., 2010). The ENCODE consortium has investigated the functional characteristics of

non-coding regions in the human genome in detail and have defined a plethora of regulatory ele-

ments impacting transcription levels and cell lineage differentiation, including histone associated

regions, transcription factor (TF) binding sites, and DNase hypersensitivity clusters (Gerstein et al.,

2012). A parallel series of investigations by several research groups have used expression quantita-

tive trait locus (eQTL) analysis to identify common polymorphisms that quantitatively impact gene

transcription (Sheffield et al., 2013; Vernot et al., 2012; Dunham et al., 2012; Bernstein et al.,

2010; Cookson et al., 2009; Fairfax et al., 2012; 2014; Gilad et al., 2008). These findings, coupled

with data indicating that many disease-tagging SNPs are localized to non-coding regulatory regions

(Maurano et al., 2012), suggest that the causal variants for common disease risk alleles may impact

regulatory processes, rather than protein structure.
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Here we describe the targeted, deep sequencing of 28 risk loci for SLE in a population of SLE

patients and controls. Our sequencing study identified 124,552 high quality sequence variants con-

tained in these risk loci among 1349 Caucasian cases (773) and controls (576). Detailed analysis of

sixteen of these SLE risk loci demonstrate that haplotypes of functional variations in tight LD with

SLE- tagging SNPs often impact the expression of multiple genes, resulting in the association of sev-

eral transcriptional variations with SLE risk haplotypes. Notably, multiple SLE risk haplotypes within

the HLA-D region were found to coordinately upregulate HLA-DR, -DQ and a variety of other genes

within the antigen processing and presentation pathways for HLA class I and class II molecules.

These results reveal a new functional diversification mediated by HLA-D polymorphisms and provide

important insights into the molecular mechanisms by which HLA-D and other SLE risk loci potentiate

disease.

Results

Deep sequencing of SLE risk loci in populations of SLE cases and
controls
Targeted genomic sequencing of twenty-eight GWAS-confirmed SLE risk loci was performed using

Illumina (Illumina Inc., San Diego, CA) custom enrichment arrays on genomic DNA from 1775 SLE

patients and controls (Supplementary file 1A, Figure 1A–F). These procedures resulted in

>128 fold coverage of the genomic segments containing these SLE risk loci (Supplementary file 1B,

Figure 1G). Our bioinformatics pipeline (Figure 1H) defined 1349 samples of European American

(EA) ancestry (Figure 2A) that carried 124,552 high quality variants of which 114,487 are single

nucleotide variations (SNVs) and 10,065 are insertion/deletions (In/Del). This sequence-based variant

database, which identifies an average of one variant every 39 basepairs in the targeted regions, pro-

vides a comprehensive assessment of genomic diversity at SLE risk loci in the EA population. The

functional properties of these variants were annotated using multiple databases cataloguing the

functional properties of human genomic variation (Figure 2B,C), including the phase 3 release from

the 1000 genome study (Auton et al., 2015), the PolyPhen/SIFT (Adzhubei et al., 2010; Ng and

Henikoff, 2003) coding region database, the ENCODE (Pazin, 2015) and RegulomeDB

eLife digest The human immune system defends the body against microbes and other threats.

However, if this process goes wrong the immune system can attack the body’s own healthy cells,

which can lead to serious autoimmune diseases.

Systemic lupus erythematosus (SLE) is an autoimmune disease in which immune cells often attack

internal organs – including the kidneys, nervous system and heart. Over the past decade, multiple

genes have been linked with an increased risk of SLE. However, it is largely unknown how the

sequences of these genes differ between individuals with SLE and healthy individuals, and the

precise changes that lead to an increased risk of SLE are also not clear.

Now, Raj, Rai et al. have determined the genetic sequences of over 700 people with SLE and

over 500 healthy individuals and looked for differences that influence susceptibility to the disease.

The vast majority of differences were discovered in stretches of DNA that regulate the expression of

nearby genes, rather than in DNA that encodes the structures of proteins. Notably, extensive

differences were found in a region of the human genome that regulates the production of proteins

called Human Leukocyte Antigen class II molecules; which are known to play a critical role in

activating the immune system. Raj, Rai et al. found that slight changes to the regulatory DNA

sequences resulted in an overabundance of these proteins, which led to a hyperactive immune

system that is strongly associated with SLE.

Future studies could now ask if the changes to the regulatory DNA sequences highlighted by Raj,

Rai et al. increase susceptibility to other autoimmune disorders as well. It may also be possible to

use the increased understanding of how the immune system is regulated to develop new ways to

minimize the rejection of organ transplants.

DOI: 10.7554/eLife.12089.002
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Figure 1. Sequencing quality metrics and work flow pipeline. (A) Depth of sequence reads across chromosomes 6, 7 and 8 for three samples,

illustrating enrichment efficiency for targeted regions. (B) Zoom in read depth analysis of IRF5-TNPO3 gene region (~228 Kb) for three different

samples. (C) Genotype calls for a SNP in IRF5 illustrating read depth across a typical variant position. (D) Examples of data used to genotype a novel

SNV in RAVER1, a novel deletion in ITGAM and a novel insertion in SCUBE1 gene. (E) The distribution of variant calls in forward and reverse

sequencing reads. (F) About 35 SNPs from various targeted genes were confirmed by Sanger sequencing. Sanger sequencing results were further

validated by calculating read depths for reference and alternate alleles in heterozygous samples, as shown for ITGAM and BANK1. (G) This

figure compares fold coverage versus SNP concordance rate for a subset of samples that were both sequenced and genotyped with the Immunochip.

Figure 1 continued on next page
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databases (Boyle et al., 2012), and several eQTL databases for immune cell lineages (Fairfax et al.,

2014; Raj et al., 2014; Westra et al., 2013). The specific technologies, bioinformatics algorithms,

and quality assessments used to generate these data are discussed in Materials and Methods and

relevant data are provided in Supplementary file 1B and Figures 1A–H. Overall, these sequence

analyses identified 70,070 previously annotated variations and 54,482 novel or unannotated varia-

tions within the EA cohort. Functional annotation defined about 40% of the variants in the dataset as

regulatory, based on their inclusion in eQTL datasets or their localization into ENCODE-defined reg-

ulatory segments (Figures 2B,C).

Association analysis of common variants with SLE
As shown in Figure 3A, multiple variants in 26 of the 28 risk loci were strongly associated with sus-

ceptibility to SLE, with seven loci reaching genome-wide significance (p�5 � 10-8), ten reaching sug-

gestive significance (p�5 � 10-5), and nine reaching confirmatory significance (p�10-3) (tabulated in

Supplementary file 1D). We also replicated associations previously reported in SLE GWAS for

36 SNPs at ten loci (Supplementary file 1E), although the bulk of the strongest associations

detected in the sequence dataset were variants that were not previously reported to be associated

with SLE. As tabulated in Supplementary file 1F, 673 variants in the sequencing data set exhibited

similar or stronger associations with disease than published tagging SNPs, and 345 of these were

categorized as functional. This is presented in Figure 3B, in which functional variants are shown as

yellow points, variants with no functional annotations in blue, and previously identified tagging SNPs

in red. Zoom in Manhattan plots of TNFAIP3 and ITGAM are also shown. These results show that

multiple, new variants had the strongest disease-associations in 27 of the 28 risk loci and that 14 of

the peak variants are annotated as functional.

Sixteen risk loci were selected for more detailed analyses, based predominantly on the presence

of multiple variations showing strong associations with disease. Table 1 provides association statis-

tics, identifies the strongest associated variants, and tabulates the coding and non-coding functional

variants in tight LD with the peak signal(s) in each locus. As shown, conditional analyses identified

four risk loci with multiple, independent signals. This indicates that NMNAT2-SMG7, TNFSF4, HLA-

D, and XKR6 each contained two or more LD blocks with potentially regulatory variants which might

be contributing to disease susceptibility independently. In this regard, we attribute regulatory char-

acteristics to these variants based on published studies from the ENCODE consortium and other

research groups (see Supplementary file 1F for details). Additional studies will be required to con-

firm these regulatory properties and delineate the precise mechanisms impacting disease-relevant

mechanisms. As shown, 1206 functionally annotated variants were in tight LD (D’>0.8) with the

21 peak risk signals and all but 7 of these were non-coding, regulatory variants. These results dem-

onstrate that multiple functional variations are in tight LD with the peak disease associated signal in

every risk locus.

Haplotype analysis of functional variants in tight LD with peak tagging
SNPs
The strategy utilized to assess the association of functional variations with disease is outlined in

Figure 1H (iv) and illustrated for the STAT4 risk locus in Figure 4. As shown in Figure 4A and tabu-

lated in Supplementary file 1B, targeted sequencing of the 104.2 kb STAT4 risk locus produced an

average of 100.17-fold coverage and identified 2273 high quality variants. The LD structure of this

region was assessed using 104 common markers (MAF>0.1). As shown, two distinct LD blocks were

identified and the ~68 Kb LD block that encompasses the 3’ portion of STAT4 contained the SLE dis-

ease-tagging SNPs. Figure 4B plots the disease association of all of the common variants within this

LD block and Figure 4C demonstrates that conditioning with the strongest SLE tagging SNP

(rs12612769) accounts for all of the disease association within STAT4. These results indicate that

functional variations in tight LD with rs12612769 are responsible for the disease-associated

Figure 1 continued

v1 SNP array. (H) A diagram of the work flow pipeline for bioinformatics analysis of the sequencing data including quantitative information for the

number of variants passing filters at each step.

DOI: 10.7554/eLife.12089.003
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Figure 2. Principal component analysis (PCA) and variant summary. (A) Principal component analysis (PCA),

showing clustering of study cohort (orange points) with the CEU (blue points) HAPMAP reference group for

Caucasians. (B) (i) Pie chart showing percentages of annotated and unannotated variants in common (MAF�0.05)

and low frequency (MAF<0.05) categories. (B) (ii) Pie chart showing percentages of potentially functional single

nucleotide variants (SNVs) and structural variants (InDels) defined by ENCODE and eQTL data. (B) (iii) Pie chart

showing the distribution of variants in various genomic regions and percentage of potential functional variants in

each. (B) (iv) Pie chart showing classification of coding variants into various sub-categories. (C) (i) Pie chart showing

classification of common frequency coding/splice variants. (C) (ii) Pie chart showing percentages of ENCODE and/

or eQTL defined potentially functional common regulatory variants. (C) (iii) Pie chart showing the percentages of

un-annotated or novel SNVs and InDels with potentially functional annotations.

DOI: 10.7554/eLife.12089.004
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endophenotypes of the STAT4 locus. Figure 4D demonstrates that seven functional variants are in

strong LD (D’>0.8) with rs12612769 (strongest tagging SNP in this analysis) and rs7574865 (strongest

tagging SNP from literature). Figure 4E presents 4 prevalent (frequency > 0.05) haplotypes formed

by these functional variants, which in sum account for >90% of the chromosomes found among the

1349 EA samples. As shown, HAP2 is strongly associated with susceptibility to SLE (6.88E-08) and

HAP1 is associated with protection (6.00E-04).

Figure 4F presents the patterns of sequence divergence that distinguish these haplotypes, utiliz-

ing the median neighbor joining (MJ) algorithm (Bandelt et al., 2000). MJ analysis is a phylogenetic

algorithm that models sequence-based allelic divergence of haplotypes within species. For MJ dia-

grams, the spheres (termed nodes) represent individual haplotypes in the network and their size is

proportional to their frequency. The pie charts overlaid on each node represent the relative fre-

quency of that haplotype in cases (red) and controls (white). The individual SNPs that distinguish

each node are listed along the line that connects them and the length of the line is roughly propor-

tional to the number of SNPs that distinguish the haplotypes. The network is progressive, such that

the two nodes at opposite ends of the network are most divergent. In essence, MJ analysis provides

a visually informative illustration of the relationships of a set of haplotypes segregating within a

population.

Several features of STAT4 polymorphisms within the EA population are apparent from this analy-

sis. First, HAP1, HAP3, and HAP4 form a clade of protective haplotypes (nodes highlighted in blue),

all with decreased frequencies in SLE patients. Further, both the peak signal SNP in this analysis

(SNP5) and the peak GWAS SNP from the literature (SNP6) together with three functional variants,

SNP2, SNP8, and SNP9, distinguish the disease-associated HAP2 (highlighted in red) from the haplo-

types in the protective clade. As listed in Supplementary file 2, SNP8 (rs10181656) is located within

a binding site for the CCCTC-binding factor (CTCF), which is a chromatin insulator that inhibits tran-

scription and plays a role in defining the borders of transcriptional domains. SNP9 (rs7582694) is

located within an ENCODE-defined segment containing transcription binding sites for ESR1 (estro-

gen response elements) and FOS1. Both of these transcription factors are active in multiple tissues

and immune cell lineages and both are annotated by ENCODE with strong effect scores and good

regulomeDB scores, suggesting that these variations mediate transcriptional endophenotypes in sev-

eral cell lineages.

Finally, SNP2 (rs11889341) is the most potent of several eQTL variants within the STAT4 risk locus

is very strongly associated with SLE susceptibility (p<4.8 � 10-9), and impacts the transcription levels

of STAT1 and STAT4 (Supplementary file 2). As shown in Figure 4G, our eQTL dataset for mono-

cyte-derived macrophages (MDM) identifies a significant increase in baseline STAT1 and STAT4 tran-

scription with the T allele of SNP2, which associates this phenotype with susceptibility to SLE.

Several other SNPs distinguishing the protective and risk haplotypes were also associated with

STAT1 and/or STAT4 transcription levels in published eQTL databases from ex vivo monocytes or

peripheral blood (Supplementary file 2 and Figure 4H). These results indicate that the transcription

of both STAT1 and STAT4 are impacted by variants in tight LD with the SLE tag variant and that the

disease risk allele is associated with increased transcription of both genes in multiple cell types.

Multiple SLE associations within the HLA-D region
Sequence analysis of the HLA-D region revealed 15129 common variants (1 variant/29.6 bp) distrib-

uted throughout the 448 Kb segment analyzed. These variations occur predominantly in non-coding

regions, indicating that the entire HLA-D region is diversified. This result is consistent with previous

genomic sequencing analyses of HLA-D that defined 4–5 phylogenetic clades with ancient origins

for this segment of HLA-D (Raymond et al., 2005). Figure 5A presents the LD structure of HLA-D

within the EA cohort, based on 8062 common variants (MAF>0.15). Overall, LD in the region is high

and the LD structure is very complex, with multiple partial LD associations exhibited between various

blocks throughout the region.

More common (15129) than rare (12076) variants were detected in HLA-D, which differs signifi-

cantly from the roughly 5-fold excess of rare variants that are typically detected throughout the

human genome and at other SLE risk loci in our study (Abecasis et al., 2010; 2012; Hu et al., 2014)

(Supplementary file 1B). Previous studies in many species have demonstrated that much of the

extant polymorphisms found in MHC class I and class II genes have ancient origins and persist in

populations over evolutionary timespans (McConnell et al., 1988; Lawlor et al., 1988;
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Figure 3. Association analysis of sequencing variants from 28 SLE risk loci. (A) Manhattan plot of 15582 common variants (MAF>0.05) plotting –log10 p-

value of SLE association (y-axis) versus chromosomal location (x-axis). Horizontal lines mark threshold of significant (p=10-8) and suggestive (p=10-5)

genome-wide significance threshold. (B) Same Manhattan plot using color coding to identify functional variants (yellow), variants with no current

functional annotation (blue), and previously identified SLE GWAS tagging SNPs (red). Zoom in picture of Manhattan plot for TNFAIP3 and ITGAM gene

is shown.

DOI: 10.7554/eLife.12089.005
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Gyllensten and Erlich, 1989; Edwards et al., 1997; She and Wakeland, 1991). The preponderance

of common variants in this sequence dataset is consistent with an ancient origin of these HLA-D

polymorphisms within the human lineage. In addition, the LD structure of these HLA-D variations in

our EA cohort is very similar to the LD structure obtained for this segment of HLA-D in the

2504 human genomes in the 1000 genome project (Figure 5Ai and ii).

Figure 5B plots the association of variants throughout HLA-D with SLE and uses color-coding to

distinguish regulatory variants (yellow) from variants with no current functional annotation (blue). As

shown, 3786 variations in HLA-D are nominally associated with SLE (p<0.05) and 1797 of these have

annotated regulatory functions. Five separate segments within HLA-D contained variants achieving

genome-wide significance for association with SLE. The peak SLE association was with rs9271593

(p=6.50E-10), which is one of 687 SLE-associated regulatory variants mapping to the XL9 regulatory

component within the intergenic region separating DRB1 and DQA1 (Majumder et al., 2006;

Majumder et al., 2008). This ~50 kb segment is heavily annotated with ENCODE-defined regulatory

sequences controlling chromatin structure and/or the binding of specific transcription factors. As

shown in Figure 5Aiii & iv the XL9 segment of HLA-D is not adequately covered by SNP typing

Table 1. Characteristics of disease associated variants at sixteen SLE risk loci.

Risk locus Signal Peak SNP
Minor
allele

Odds
ratio
(Minor
allele)

Allele
Freq.
(Cases)

Allele
Freq.
(Controls)

SLE
association
P-value

SLE
associated
Annotated
variants

Variants in LD with peak SNP
(D’ >0.8)

Total
variants

Total
potentially
functional
variants

Total
coding
variants

STAT4 1 rs12612769 C 1.7 0.29 0.19 5E-10 52 49 9 0

HLA-D 1 rs9271593
(XL9)

C 1.7 0.55 0.42 7E-10 835 530 398 0

2 rs9274678
(DQB1)

G 2.1 0.24 0.13 6E-09 736 216 69 0

3 rs36101847
(DRB1)

T 0.5 0.13 0.23 8E-09 760 296 126 0

ITGAM-
ITGAX

1 rs41476751 C 1.9 0.25 0.15 8E-09 153 121 62 3

IRF5_TNPO3 1 rs34350562 G 1.8 0.23 0.14 3E-09 245 189 124 0

UBE2L3 1 rs181366 T 1.5 0.27 0.20 2E-07 82 79 55 1

BANK1 1 rs4699260 T 0.7 0.20 0.28 9E-06 267 143 29 2

TNIP1 1 rs62382335 A 1.4 0.14 0.10 6E-05 46 22 16 0

TNFAIP3 1 rs57087937 T 1.9 0.10 0.06 2E-06 69 63 40 1

CCL22-
CX3CL1

1 rs223889 T 1.5 0.34 0.27 5E-07 32 25 20 0

RAVER1-
ZGLP1

1 rs35186095 T 1.3 0.21 0.17 2E-04 43 24 19 0

ICA1 1 rs74787882 A 0.7 0.06 0.09 2E-03 34 10 6 0

TNFSF4 1 rs1819717 G 0.7 0.29 0.36 2E-05 73 30 14 0

2 rs4916313 C 1.3 0.39 0.32 2E-04 30 21 0

BLK 1 rs7822109 C 0.8 0.46 0.52 9E-05 97 61 38 0

XKR6 1 rs4840545 A 2.0 0.13 0.07 1E-07 335 51 23 0

2 rs7000132 C 0.9 0.42 0.46 5E-04 178 118 0

NMNAT2-
SMG7

1 rs41272536 G 2.9 0.11 0.05 2E-08 33 8 8 0

2 rs111487113 A 0.6 0.13 0.18 5E-04 17 5 0

ETS1 1 rs34516251 A 0.8 0.18 0.21 7E-03 18 10 6 0

DOI: 10.7554/eLife.12089.006
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arrays such as the Immunochip v.1, possibly accounting for the failure to detect this potent SLE asso-

ciation in previous GWAS analyses. The second strongest SLE association signal was with rs9274678

(p=6.21E-09), which is located in a segment extending 5’ from the DQB1 proximal promoter. The

third genome-wide SLE signal was with rs36101847 (p=8.33E-09), which has no functional annotation

and is located in close proximity to DRB1 exon 2, which encodes the peptide binding segment of

Figure 4. LD structure, haplotypes and MJ networks analysis at STAT4 locus. (A) LD structure of STAT4 sequenced segment is shown above molecular

map of the genomic segment showing STAT1 and STAT4 exon structure. The locations of GWAS tagging SNPs are shown above LD plot, which was

produced with 104 markers (MAF�10%) in 1349 Caucasians. (B) Zoom in Manhattan plot showing SLE association levels of individual sequence variants

in STAT4 LD block containing STAT4 tagging SNPs. Yellow points indicate functional variants, blue points indicate un-annotated variants and red points

identify GWAS and study peak tagging SNPs. (C) Conditional analysis on peak SNP rs12612769 removes all significant associations with SLE within the

LD block. (D) LD block based on nine potentially functional SLE associated variants used for haplotype analysis. (E) Derived haplotypes with SLE

association results. (F) Median-joining (MJ) network analysis of STAT4 haplotypes. Spheres (termed nodes) represent the locations of each haplotype

(from table in E) within the network and the size of the node is proportional to the overall frequency of that haplotype in the dataset. Each node is

overlaid with a pie chart that reflects the frequency of that haplotype in cases (red) versus controls (white). The lines connecting the nodes are labeled

with the variants that distinguish the connected nodes and the length is proportional to the number of variants. Haplotypes with significant (p<0.05)

association with SLE are highlighted with red (risk) and blue (non-risk). Study peak SNP, SLE GWAS tag SNP and eQTLs are indicated with arrows,

boxes and circles within their locations within the network. (G) Presents cis-eQTL effects observed with SNP2 on STAT1 and STAT4 in macrophage

RNAseq analysis. (H) Similar eQTL effects observed in published eQTL databases in literature.
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Figure 5. LD structure, haplotypes and MJ Network analysis of XL9 region. (A) The LD structure of HLA-D region is shown below a molecular map of

the region. The locations of the genes and five genome-wide SLE association signals are marked. Peak association signal is coded blue. (A) (i) The HLA-

D LD structure in 1349 Caucasians from present study assayed with -8062 common (MAF>0.15) variants. (A) (ii) The HLA-D LD structure in 2504 samples

representing twenty-six cohorts from the world population. Data obtained by analysis of the1000 Genome project datasets using the same -8062

variants analyzed in A (i). (A) (iii) SNP content of Immunochip v.1 across HLA-D region. (A) (iv) High quality common variant calls in this region from

targeted sequencing in this study. Highlighted area boxes the XL9 through DQB1 5’ segment regulatory region. Yellow points indicate potentially

functional variants and blue points indicate un-annotated sequencing variants. (B) Zoom Manhattan plot of all common (MAF>0.05) variants using color

coding to identify functional (yellow) and non-annotated (blue) variants. The locations of peak association signals are marked. A molecular map of the

Figure 5 continued on next page

Raj et al. eLife 2016;5:e12089. DOI: 10.7554/eLife.12089 11 of 52

Research article Genomics and evolutionary biology Human biology and medicine

http://dx.doi.org/10.7554/eLife.12089


DRB1. The fourth signal is rs9269131 (p=9.92E-09), which has no functional annotation and is in close

proximity to DRA1. Finally, the fifth signal is rs2076530 (p=2.21E-08), which is a regulatory SNP in

proximity to BTNL2 that has previously been associated with sarcoidosis and autoimmunity

(Hofmann et al., 2013).

The independence of these five SLE association signals was assessed by conditional analysis,

beginning with the peak SNP (XL9 region, rs9271593) and using a forward stepwise regression

method (Figure 5B). As shown in Figure 5Bi, conditioning with rs9271593 removed the associations

of signals 4 and 5 with SLE, consistent with the LD associations revealed in Figure 5A. These results

indicate that the DRA1 and BTNL2 disease association signals are in strong LD with variants in the

XL9 region. However, the DQB1 promoter and DRB1 signals, although significantly diminished, were

still significantly associated with disease after removal of the peak XL9 signal, indicating that these

signals were somewhat independent. Removal of the XL9 and DQB1 promoter signals left only the

DRB1 signal with marginally significant SLE association and removal of all three signals removed all

significant association of HLA-D with disease (Figure 5Bii & iii). Thus, these conditional analyses

identified three independent disease associations, each localized to important regulatory or coding

elements within HLA-D. Their basic properties and SLE association characteristics are summarized in

Table 1.

XL9 polymorphisms mediate quantitative variations in HLA-DR and –
DQ transcription
As shown in Figure 5C, conditioning on the XL9 signal (rs9271593) completely removed the SLE

association of variants within the DRB1 to DQA1 intergenic segment, indicating that rs9271593 tags

the XL9 functional haplotype responsible for this disease signal. The content of regulatory variants in

strong LD (D’ >0.8) with the XL9 signal was very high (Table 1) and consequently detailed haplotype

analysis was focused on variants with strong ENCODE functional effect scores (>500 for at least one

transcription factor binding site), eQTL effects, and associations with SLE. This identified 56 func-

tional variants that formed 12 haplotypes of which HAP3 was strongly associated with SLE suscepti-

bility (OR 2.0, p<7.04 E-08) while HAP1 (OR 0.58, p<1.63 E -06) and HAP6 (OR 0.34, p<1.69 E-07)

were protective (Figure 5D,E, Supplementary file 2). As shown in Figure 5F, MJ analysis found that

the protective (shaded in blue) and risk (shaded in red) haplotypes form separate clades at opposite

ends of the network, indicating that these two extremes in disease association are also extremes in

the divergence of regulatory variations.

Figure 6A overlays the locations of the three peak disease signals in HLA-D with the multitude of

regulatory elements located within the ~130 Kb segment spanning HLA-DRB1 through HLA-DQB1.

This genomic segment contains 5 separate regions with dense arrays of sequence elements that reg-

ulate chromatin structure (histone marks, DNAse I clusters) and transcription factor binding. As

shown in the top tract within Figure 6A, more than 150 variations within this small genomic segment

are eQTLs that have been shown to impact the transcription of 72 genes in various immune cell line-

ages (Supplementary file 2). Our own RNA-SEQ-based eQTL dataset for MDM associates many of

these variations with quantitative variations in the transcription of DRB1, DQA1, and DQB1. All of

the MDM eQTL variants impacting HLA-DR and DQ expression are associated with variants in XL9

(Figure 6D).

XL9 contains binding sites for multiple factors affecting chromatin structure (CTCF, ZNF143) and

has been shown to assemble HLA-DR and HLA–DQ proximal promoters into a transcriptional

Figure 5 continued

region and the tiled regions for targeted sequencing are identified at the bottom. Gaps reflect the locations of long stretches of highly repetitive

regions that cannot be assembled. (B) (i) The residual association level after conditioning on peak signal 1 in XL9. (B) (ii) Residual association level after

conditioning on both signal 1 (XL9) and signal 2 (DQB1 5’ segment). (B) (iii) No significant associations remain after conditioning on signal 1 (XL9), signal

2 (DQB1 5’ segment), & signal 3 (DRB1). Yellow points identify potentially functional variants and blue points indicate un-annotated variants. (C)

Conditional analysis on peak SNP rs9271593 (XL9 signal) showing that all significantly associated variants are in tight LD. (D) A 60KB LD block generated

with 56 variants from XL9 region with strong regulatory scores and association with SLE. (E) Twelve haplotypes generated with HAPLOVIEW using the

56 regulatory variants. Frequencies in cases and controls, association statistics, and odds ratios are provided. Protective (blue) and risk (red) haplotypes

are highlighted. (F) Median neighbor-joining (MJ) network produced as described in the text. Annotation is the same as presented in legend for

Figure 2. Variants that disrupt binding sites of CTCF, ZNF143, and IRF4 are labeled.
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Figure 6. Chromatin architecture and transcriptional regulation at SLE associated XL9 region. (A) A snap shot of the ~140 Kb DRB1-DQB1 segment that

contains three genome-wide association signals for SLE. The locations of HLA class II genes and the peak signals are marked. The locations of some of

the more than 750 eQTLs variants mapped into this region are overlaid onto ENCODE defined regulatory elements (Histone marks and DNA hyper

sensitivity clusters). (B) A snap shot of a ~1 Kb segment in the center of the XL9 that contains 13 of the 56 strong regulatory variants that constitutes the

XL9 haplotype. The positions of the canonical protein binding motifs of CTCF, IRF4 and ZNF143 highlighted in yellow and the peak XL9 SNP

highlighted in blue. The locations of about 30 binding sites for transcription factor that are located within this same region and are also impacted

genetic variation are also listed. (C) The consensus sequence for IRF4 binding in XL9 is shown with the locations of the two nucleotide variants boxed

Figure 6 continued on next page
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complex that facilitates coordinate, tissue-specific transcription (Bailey et al., 2015; Xi et al., 2007;

Liu et al., 2008; Whitfield et al., 2012). This assembly is mediated by interactions of the transcrip-

tional insulator protein CTCF with cohesion and other chromatin regulatory components such as

ZNF143. Current data supports the idea that the XL9 transcriptional complex contains multiple regu-

latory domains that interact with a variety of transcription factors to control the coordinated expres-

sion of HLA-DR and -DQ in lymphoid, myeloid, and thymic epithelial cell lineages. For example,

recent studies by Singh and co-workers have demonstrated that the level of transcription of HLA

class II molecules in dendritic cells is strongly controlled by the transcription factor IRF4, which is one

of several transcription factor binding sites located within XL9 (Vander Lugt et al., 2014). Notably,

IRF4 up-regulation of MHC class II molecules was shown by these investigators to be strongly associ-

ated with disease severity in a murine model of experimental autoimmune encephalomyelitis (EAE).

Figure 6B presents a fine map of variations occurring within the regulatory sequence elements in

a 1 Kb segment in the center of XL9. This segment contains more than 30 transcription and chroma-

tin configuration factor binding sites. Thirteen of the fifty-six potent regulatory variants in the XL9

haplotypes are located within this small segment. Five of these variants are located in the consensus

binding sites for CTCF, ZNF143, or IRF4 and are predicted to impact their binding properties

(Figure 6B). As shown in the MJ network in Figure 5F, four of the five motif variants occur within

the SLE risk clade and differ between the protective and risk clades. Interestingly, one of the IRF4

variants occurs in the final link of the risk clade leading to HAP3 (strongest SLE association), while

the second IRF4 variant is in the final branch leading to risk HAP2.

Figure 6C diagrams the nucleotide changes in the binding motif of IRF4 caused by the two XL9

IRF4 variants, both of which are predicted to strongly impact the binding of IRF4. For both of these

variants, alleles carrying the unmodified IRF4 consensus binding sequence are associated with the

risk haplotypes, while those with nucleotides that are less common to the consensus motif are pres-

ent in all of the non-risk haplotypes (Figure 5F, Figure 6C, and Supplementary file 2). As dia-

grammed in Figure 6C, this suggests that the transcription of HLA-DR and -DQ should be increased

in individuals carrying risk HAP2 and HAP3 due to increased IRF4 binding to XL9 regulatory

domains. As shown in Figure 6D, the HAP2 and HAP3 alleles of variants within this short segment,

including an IRF4 motif variant, are strongly associated with increased transcription of HLA-DRB1,

HLA-DQA1, and HLA-DQB1 in our eQTL panel of MDM cell cultures and in datasets from the litera-

ture (Supplementary file 2).

The crucial role of the XL9 region in the chromatin configuration of the HLA-DR and DQ transcrip-

tional complex suggests that XL9 variations should impact the transcription of both DR and DQ in a

cis-active, chromosome-specific manner. To test this, we measured allele-specific transcription in

four individuals that are heterozygous for XL9 alleles within our MDM eQTL panel. Each of these

individuals carries a HAP3 XL9 risk haplotype together with either a HAP1 or HAP6 XL9 protective

haplotype. We assessed the allelic bias of transcription for DRB1, DQA1, and DQB1 in these hetero-

zygotes utilizing coding region SNPs in tight LD with XL9 regulatory variants. As shown in

Figure 6E, coding region variants linked with XL9 risk associated regulatory variants are present in a

significantly higher proportion of RNA-SEQ reads than coding variants linked to protective alleles.

The allelic bias in RNA-SEQ reads for HLA-DRB1, HLA-DQA1, and HLA-DQB1 is presented for a rep-

resentative coding SNP in Figure 6E (iii). This bias in SNP read depth was a consistent feature for

Figure 6 continued

and marked. The consensus sequence for IRF4 binding (GA) are the alleles present in XL9 risk haplotypes. The alternative alleles for these two

nucleotides, which are much less frequent in IRF4 binding motifs, are in protective haplotypes. The red and blue highlighted paths describe the

predicted effects of these variations on IRF4-mediated transcription of HLA-DR and HLA-DQ, with risk haplotypes highlighted in red and protective

haplotypes highlighted in blue. (D) shows cis eQTL effects observed with SLE associated XL9 region regulatory variants. SNPs were found to impact the

expression level of HLA-DRB1, HLA-DQA1 and HLA-DQB1 gene in monocyte derived macrophages (MDMs). In each plot, x-axis shows three genotypes

of a given eQTL SNP and y-axis shows RNAseq expression values in RPKM. SNP numbers correspond to XL9 variants in Figure 5F. (E) Part i shows LD

between peak regulatory SNP and a coding SNP in HLA-DRB1, DQA1 and DQB1. Part ii highlights the SLE associated coding allele sequence and

shows the association statistics on peak regulatory and coding SNP haplotype for above three genes. Part iii shows the allelic bias in transcription in

DRB1, DQA1 and DQB1 gene in human macrophages, demonstrated in terms of significantly different number of RNA sequencing reads for SLE risk

and non-risk allele. Part iv shows the transcriptional bias between risk and protective alleles for HLA class II genes in four heterozygous human donors

for these IRF4 variants.
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Figure 7. Cell surface expression of HLA-CLASS II genes. (A.1) Monocyte-derived dendritic cell (MDDC) surface expression of HLA-DR in a culture

produced from a homozygote for protective (blue) and homozygote for risk (red) HLA-D haplotypes. This experiment was repeated in same donors.

(A.1) shows flow data. (A.2) shows the MFIs from repeated experiments. p-value shown in (A.2) was calculated on mean MFIs from two experiments. (B)

shows normalized RNAseq expression on HLA-class II genes in dendritic cells on same donors presented in (A). (C.1–C.8) shows HLA-DQ surface

expression on MDDC cultures from a homozygote for protective (blue) and heterozygote for risk (red) HLA-D haplotype. Flow data and respective MFIs

are shown on MDDCs at steady state (C.1 and C.2), at 4 hr (C.3 and C.4), 8 hr (C.5 and C.6) and 18 hr (C.7 and C.8) after stimulation with TLR7/8

ligands. (D) heatmap on RNAseq data on lymphoblastoid cell line (LCL) from 1000 genome project compare expression level of HLA-class II genes

between individuals homozygous for HLA-D protective and risk haplotype.
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SNP variants throughout exon 2 and exon 3 for all three genes in all four heterozygous individuals

[Figure 6E(iv) ]. Taken together, these experiments demonstrate that XL9 regulatory variations mod-

ulate the level of transcription of HLA-DR and HLA-DQ in a chromosome-specific manner.

The functional implications of increased transcription of HLA-D by SLE risk associated XL9 alleles

are contingent upon their impact on the surface expression levels of HLA-DR and HLA-DQ molecules

on immune cell lineages. To test this, quantitative flow cytometry was performed on monocyte-

derived dendritic cell cultures (MDDC) derived from the PBMC of individuals with specific XL9 haplo-

types. As shown in Figure 7A.1 and A.2, HLA-DR surface expression is roughly 2.5-fold higher on

unstimulated MDDC from a HAP3 (risk) homozygote in comparison to a HAP1 (protective) homozy-

gote. As shown in Figure 7A.2, this statistically significant variation in surface expression was fully

reproducible. RNA-SEQ analyses of these same MDDC cultures confirmed the increase transcription

of HLA-D genes by the XL9 HAP3 donor (Figure 7B). Similarly, the surface expression of HLA-DQ on

MDDC from a risk/protective heterozygote is greater than the expression levels of those from a

homozygote for a protective haplotype (Figure 7C.1–C.2). This increased surface expression of

HLA-DQ is maintained on dendritic cells following activation with the TLR7/8 ligand R848 in a time

course over 18 hours, indicating that HLA-D risk haplotypes drive higher levels of HLA class II mole-

cule surface expression during TLR activation and dendritic cell maturation (Figure 7C.3–C.8). Taken

together, these findings indicate that variations in the XL9 regulatory region modify chromatin struc-

ture and transcription factor binding, leading to a significant increase in the surface expression of

HLA class II in the dendritic cell lineage of individuals expressing SLE risk alleles of HLA-D. Finally,

the transcription of several genes within the HLA complex are strongly upregulated in lymphoblas-

toid cell lines from risk versus protective XL9 haplotype homozygotes in the 1000 genome RNA-SEQ

lymphoblastoid cell line (Lappalainen et al., 2013) data set (Figure 7D). These results, obtained via

an identical analysis of a public dataset, are an independent replicate of our findings of increased

expression of important HLA genes in individuals carrying HLA-D haplotypes associated with SLE.

Regulatory effects and disease associations of composite HLA-D
haplotypes
Detailed analyses of the SLE signal within the segment 5’ of HLA-DQ (signal 2) revealed tight LD

with twenty eight regulatory variants that are distributed through a ~40 KB segment extending 5’

from the DQB1 transcription start site. The properties of these regulatory variants are provided in

Supplementary file 2 and conditioning and MJ analyses are provided in Figure 8Ai-vi. Interestingly,

none of the regulatory variants are correlated with eQTL effects that impact DQB1, although they

are associated with transcriptional effects on other genes within the antigen processing pathway of

HLA, such as PSMB8, PSMB9, TAP1, TAP2, DQA2, and DQB2. Among the variants in tight LD, seven

have strong (�900) effect scores from ENCODE and 4 of these are also scored within the 1 or 2 cat-

egory in the RegulomeDB database, making it likely that they impact transcription factor binding

and transcription (Supplementary file 2). ENCODE predicts that these variants will impact the bind-

ing of many transcription factors including POLR2A, RELA, BATF, RUNX3, TBP, TAF1, PAX5, RFX5,

EP300, and NFIC. The twenty eight variants formed seven haplotypes of which HAP4 was protective

(OR 0.3, p<3.88 E-09) and HAP2 condoned risk (OR 1.9, p<1.11 E-06). As shown, two of the stron-

gest regulatory variants and all of the variants showing strong associations with SLE are located on

the final MJ branch leading to the risk clade. These results indicate that the most potent regulatory

variants identified by ENCODE and associated with the increased transcription of multiple compo-

nents of the antigen presentation pathway (APP), are all associated with increased risk for SLE.

The DRB1 signal (signal 3) is also associated with twenty eight regulatory variations; however,

their predicted functional properties are weaker than those found in the XL9 or DQB1 signals

(Supplementary file 2). The DRB1 regulatory variants are distributed in a region extending from the

peak SNP through DRB1 and about 10 Kb 5’ from the DRB1 start site towards the XL9 regulatory

region. As shown in Figure 8Biv, they form 8 haplotypes of which HAP6 is protective (OR 0.4,

p=4.58E-05) and HAP1 is risk (OR 1.6, p=1.50E-06). The DRB1 regulatory variants do not have

strong ENCODE or RegulomeDB scores and do not contain eQTL associations with DRB1 expres-

sion. However, associations with DRB5, DQA1, and DQB1 transcription have been reported for var-

iants in the DRB1 regulatory haplotypes. Also, although the DRB1 peak variant is strongly associated

with SLE, only 2 of the regulatory variants in tight LD with this peak variant are strongly associated

with SLE (Figure 8Bv) and those variants were not included in the MJ network branch proximal to
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Figure 8. LD structure, haplotypes and MJ network analysis in HLA-DQB1 and HLA-DRB1 region. (A) (i) LD structure at HLA-DQB1 5’ region generated

with 68 common (MAF�10%) potentially functional variants in 1349 samples. (A) (ii) Zoom Manhattan plot showing SLE variant association levels and

conditional analysis on peak SNP rs9274678. (A) (iii) LD block structure of 28 potentially functional SLE associated SNPs which are used for downstream

haplotype analysis. (A) (iv) Haploview generated seven haplotypes from these 28 functional variants. Frequencies in cases and controls and association

statistics are provided. Risk (red) and protective (blue) haplotypes are color highlighted. (A) (v) MJ networks analysis to illustrate divergence of risk and

protective regulatory haplotypes. (A) (vi) eQTL variations from public databases for variants in strongest risk haplotype. (B) (i) LD structure at HLA-DRB1

region generated with 66 common (MAF�10%) potentially functional variants in 1349 samples. (B) (ii) Zoom Manhattan plot showing SLE variant

association levels and conditional analysis on peak SNP rs36101847. (B) (iii) LD block structure of 28 potentially functional SLE associated SNPs which

Figure 8 continued on next page
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the risk clade. Taken together, these results suggest that these DRB1 regulatory variations may not

play a dominant role in the endophenotypes causing the association with SLE.

The SLE associations of regulatory variations spanning the entire HLA-D interval were assessed

using composite haplotypes formed with 32 regulatory variants with strong SLE association signals

that were derived from the three independent SLE associated signals. As shown in Figure 8C, these

variants spanned a 116 Kb block containing DRB1, DQA1, and DQB1 and are all in tight LD. The

composite analysis formed eleven haplotypes that accounted for more than 90% of all of the chro-

mosomes identified within the EA panel (Figure 8D). As shown, HAP1 (p=2.38E-07, OR = 0.59) and

HAP6 (p=1.01E-06, OR = 0.42) are protective, and HAP3 (p=4.56E-09, OR = 2.1), HAP2 (p=0.032,

OR = 1.3), and HAP11 (p=0.0172, OR = 2.3) are risk. MJ analysis revealed a pattern similar to that

obtained for XL9 haplotypes (Figure 5F versus Figure 8F). As shown in Figure 8E, an assessment of

chromosome-specific transcription in MDM cultures from eleven heterozygotes for the rs9271593

(peak XL9 signal) revealed consistent and highly significant increases in transcription of HLA-DRB1,

HLA-DQA1, and HLA-DQB1 for chromosomes carrying risk-associated variants. These results dem-

onstrate that all of the regulatory haplotypes carrying the risk allele of rs9271593, which is the XL9

peak SNP (Figure 8F), transcribe higher levels of HLA-D class II genes than protective regulatory

haplotypes.

Comparing HLA class II alleles and HLA-D regulatory haplotypes in SLE
susceptibility
The HLA-D sequence data allowed the imputation of standard HLA-DRB1, HLA-DQA1, and HLA-

DQB1 class II alleles with four digit accuracy for the EA cohort, using algorithms and strategies

described previously (Morris et al., 2012). The imputed HLA class II allele designations were used

to assess the associations of HLA class II alleles with SLE in our EA cohort and to assess the relation-

ships of these classical HLA-D class II alleles with the defined HLA-D regulatory haplotypes. The

table in Figure 9A lists the SLE association statistics for the most strongly associated HLA class II

alleles and HLA-D regulatory haplotypes in the EA cohort. As shown, HLA-DRB1_0301 and HLA-

DQB1_0201 were the most strongly associated HLA-D class II alleles in this analysis, which is consis-

tent with several previous studies of HLA-D associations with SLE (Morris et al., 2012;

Armstrong et al., 2014; Fu et al., 2011; Furukawa et al., 2014; Kim et al., 2014; Morris et al.,

2014; Fernando et al., 2012). The disease associations and odds ratios detected for HAP3 of the

XL9 signal (Figure 5F) and HAP2 of the DQB1 promoter signal are equivalent with these HLA class II

alleles. Similarly, as shown in the bottom of Figure 9A, both regulatory haplotypes and HLA class II

alleles are strongly associated with protection from SLE. Thus, HAP4 of the DQB1 promoter signal,

HAP6 of the XL9 signal, and HAP7 of the DRB1 signal all have potent association statistics and odds

ratios for decreased frequencies in cases, as do the classic HLA-D class II alleles HLA-DQB1_0302,

HLA-DRB1_0402, and HLA-DQA1_0301.

Figure 9B presents conditional analyses of the SLE associations contributed by the HLA-D regula-

tory haplotypes and the imputed HLA class II alleles. The top plot illustrates that XL9 regulatory

polymorphisms can completely remove the associations of HLA-DRB1 and HLA-DQA1 imputation

variants with SLE, but does not remove the DQB1 imputation or 5’ region regulatory haplotype asso-

ciations. Similarly, conditioning on the DQB1 regulatory haplotype removes the association of HLA-

DQB1 imputation SNPs with disease, but has little effect on the imputation or regulatory variations

in DRB1, DQA1, or XL9 (Figure 9B, middle panel). Finally, conditioning on HLA-DRB1 imputation

Figure 8 continued

are used for downstream haplotype analysis. (B) (iv) Haploview generated eight haplotypes from these 28 functional variants. Frequencies in cases and

controls and association statistics are provided. Risk (red) and protective (blue) haplotypes are color highlighted. (B) (v) MJ networks analysis to illustrate

divergence of risk and protective regulatory haplotypes. (B) (vi) eQTL variations from public databases for variants in strongest risk haplotype. Panel (C)

116 kb LD block generated with 32 SLE associated potentially functional variations from the three independent association signals in HLA-D region. (D)

Haplotype association statistics in cases and controls with risk (red) and protective (blue) haplotypes highlighted. (E) Allelic bias in level of transcription

for HLA-class II genes between SLE risk and non-risk alleles in 11 independent heterozygous donors (measured as shown in Figure 6). Number of RNA

sequencing reads were compared between chromosome carrying risk (orange line) verses non-risk (blue line) allele for each class II gene. (F) MJ

network analysis illustrating the relationships of risk and non-risk haplotypes based on 32 functional variations. SLE associated variants sitting exactly

within specific protein binding motifs i.e. IRF4, CTCF and ZNF143 are highlighted with arrows.

DOI: 10.7554/eLife.12089.011
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variants removes the association of XL9 regulatory variants and the HLA-DQA1 and HLA-DQB1

imputation SNPs, but does not significantly impact the association of the DQB1 regulatory haplo-

type with SLE. These analyses indicate that variations in XL9 and HLA-DRB1 class II alleles are in tight

LD and represent a combined contribution to SLE, while variations in the segment 5’ of DQB1 inde-

pendently contribute to SLE susceptibility.

Finally, Figure 9C presents the MJ network formed by the composite HLA-D regulatory haplo-

types (from Figure 8F) and overlays the imputed DRB1-DQA1-DQB1 HLA class II alleles present in

individuals homozygous for the protective and risk HLA-D regulatory haplotypes. As shown, LD is

very strong, but incomplete between the classical HLA class II alleles and the regulatory haplotypes.

Notably, all homozygotes for regulatory HAP3 (peak risk) are also homozygous for DRB1_0301,

DQA1_0501, DQB1_0201, which is the HLA-D class II haplotype found in the extended DR3 haplo-

type (Kachru, 1984; Smolen et al., 1987; Hohler and Buschenfelde, 1994; Schur et al., 1990;

Niu et al., 2015). Similarly, regulatory risk HAP2 is predominantly associated with the DRB1_1501,

DQA1_0401, DQB1_0602 haplotype, which has also been previously associated with susceptibility to

Figure 9. HLA-D regulatory haplotypes and classical HLA alleles. (A) SLE association statistics of regulatory and classical HLA alleles in this study. (B)

Conditional analysis on peak regulatory signals in XL9, DQB1 and DRB1 regions. (C) Median-joining (MJ) network analysis of 32 regulatory variants

spanning HLA-DRB1 to DQB1 region. SLE associated variants sitting directly on canonical binding motif of CTCF, IRF4 and ZNF143 transcription factor

are indicated with arrows. The HLA DRB1-DQA1-DQB1 haplotypes associated with each of the risk and protective regulatory haplotypes are presented.

DOI: 10.7554/eLife.12089.012
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Figure 10. LD structure, haplotypes and MJ network analysis of ITGAM, IRF5, UBE2L3 and BANK1. Panel 10 (i) shows ITGAM, Panel 10 (ii) shows IRF5,

Panel 10 (iii) shows UBE2L3 and Panel 10 (iv) shows BANK1 genetic association analysis. (A) LD structure of studied intervals generated with common

(MAF�10%) variants in 1349 samples, 221 in case of ITGAM, 400 in case of IRF5, 84 in case of UBE2L3 and 430 variants in case of BANK1. (B) Zoom

Manhattan plot of all common variants in studied region showing SLE association levels and conditional analysis on peak SNP/s. (C) LD block based on

potentially functional SLE associated SNPs which are used for downstream haplotype analysis. (D) Haploview generated haplotypes from functional

variants. Frequencies in cases and controls and association statistics are provided. Risk (red) and protective (blue) haplotypes are color highlighted. (E)

MJ networks analysis to illustrate divergence of risk and protective regulatory haplotypes. Haplotype with significant p value (p<0.05) are highlighted

Figure 10 continued on next page
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SLE. Overall, the DR and DQ alleles that have been associated with SLE in previous studies of EA

cohorts are found among the regulatory risk haplotypes and are absent from the protective clade

(Morris et al., 2012; 2014; Niu et al., 2015; Ramos et al., 2010). Taken together, these results are

consistent with the strong LD within this small genomic segment of HLA and suggest that the regula-

tory variations and the peptide binding groove polymorphisms are two aspects of HLA-D diversifica-

tion that are tightly intertwined within allelic lineages of the HLA-D region.

Regulatory haplotypes in non-HLA risk loci
Table 2 provides a summary for all sixteen SLE risk loci that have been analyzed in this study.

Detailed analyses for the fourteen loci not discussed above are presented in Figures 10–13. Several

characteristics of the genetic variations that underlie common SLE susceptibility alleles are revealed

by these data. First, maximal risk for disease is associated with specific haplotypes typically com-

posed of five or more functional variations that are in strong LD with the peak risk variant. The over-

whelming majority of these variants are in regulatory elements (1199 of 1206, Table 1) and carry

ENCODE scores indicating that they are potent functional polymorphisms. They occur as stable hap-

lotypes within the EA population and are predicted to impact multiple endophenotypes. MJ analysis

revealed that the risk and protective/non-risk haplotypes are typically at opposite ends of the net-

works (15 of 16 risk loci), indicating that significant variations in disease risk are most strongly associ-

ated with multiple functional changes. Furthermore, for some risk loci, multiple haplotypes are

significantly associated with either risk or protection, but with varying odds ratios, indicating that a

spectrum of functional haplotypes with varying disease risk contributions underlie the disease associ-

ation of individual risk loci.

As tabulated in Table 2, peak risk haplotypes have greater odds ratios for SLE susceptibility than

individual peak tagging SNPs from the original published GWAS studies and from the targeted asso-

ciation studies performed here. Overall, the peak risk haplotype had a higher odds ratio than the

peak GWAS tagging SNP for 13 of 16 loci, resulting in an overall 17% increase in the average odds

ratio for the sixteen loci tested. This result is consistent with theoretical predictions of the increase in

odds ratio that would be achieved by specifically identifying causative variants in complex disease

risk loci, thus supporting the presence of the causal variants of SLE within the identified functional

haplotypes (Gusev et al., 2013; Yang et al., 2010).

Thirteen of the SLE risk loci characterized in detail here were identified previously by our group

and others and the detailed sequence analyses of these risk loci has confirmed and extended these

previous findings. Several of these loci contain long haplotypes, as discussed for IRF5-TNPO3,

ITGAM-ITGAX, TNFAIP3, UBE2L3 and BANK1, while TNFSF4 and XKR6 each contain two indepen-

dent association signals in separate LD blocks (Figures 10–13 and Tables 1 and 2). Our analyses

found that regulatory haplotypes often contain variants impacting several eQTLs, chromatin struc-

ture and transcription regulatory elements. The ENCODE defined regulatory elements for POLR2A,

CTCF, IRF4, RELA, STAT5A, RFX5, RUNX3 were the most common regulatory elements affected by

SLE associated variants (Supplementary file 2). Finally, three risk loci, CCL22-CX3CL1 (Figure 11.

iii), ZGLP1-RAVER1 (Figure 11.iv), and ICA1 (Figure 12.i), which were comparatively less well-stud-

ied for SLE association, were detected with strong statistical associations in this EA cohort (Table 1,

Supplementary file 2). Detailed sequence analysis of these loci identified significant associations of

these genes with SLE and identified SLE associated haplotypes impacting multiple regulatory com-

ponents. More results on these loci have been incorporated into the relevant Figure legend for each

risk locus.

Discussion
These analyses provide a comprehensive assessment of the genomic variations associated with SLE

disease alleles. We identified 345 regulatory variations impacting gene transcription within these loci

Figure 10 continued

with red (risk) and blue (non-risk) color. Study peak SNP, previously known SLE GWAS tag SNP and eQTLs are indicated with arrows. (F) eQTL variations

from public databases for variants in strongest risk haplotype.
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Figure 11. LD structure, haplotypes and MJ network analysis of TNIP1, TNFAIP3, CCL22 and ZGLP1-RAVER1. Panel 11 (i) shows TNIP1, Panel 11 (ii)

shows TNFAIP3, Panel 11 (iii) shows CCL22 and Panel 11 (iv) shows ZGLP1-RAVER1 genetic association analysis. (A) LD structure of studied intervals

generated with common (MAF�10%) variants in 1349 samples, 140 in case of TNIP1, 356 in case of TNFAIP3, 30 in case of CCL22 and 126 variants in

case of ZGLP1-RAVER1. (B) Zoom Manhattan plot of all common variants in studied region showing SLE association levels and conditional analysis on

peak SNP/s. (C) LD block based on potentially functional SLE associated SNPs which are used for downstream haplotype analysis. (D) Haploview

generated haplotypes from functional variants. Frequencies in cases and controls and association statistics are provided. Risk (red) and protective (blue)

haplotypes are color highlighted. (E) MJ networks analysis to illustrate divergence of risk and protective regulatory haplotypes. Haplotype with
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that exhibited stronger disease-associations than previously identified GWAS tagging SNPs

(Figure 3B). Detailed analyses of the allelic architecture at these loci revealed that SLE disease

alleles are haplotypes composed of multiple functional variations and that these variations often

modulate several endophenotypes. This architecture is modeled in Figure 14A, which depicts the

manner in which several functional variants in tight LD with GWAS tagging SNPs mediate transcrip-

tional variations at multiple adjacent genes. As shown, the functional haplotypes identified in our

analyses capture all of these causal variants within the LD block, which leads to the identification of a

peak risk haplotype with increased disease association. Our analyses identified variants impacting

multiple transcriptional changes at nine of the sixteen SLE risk loci, indicating that this level of com-

plexity is prevalent among SLE risk loci. In this regard, we could only utilize our own MDM eQTL

database and a few public eQTL databases for immune cell lineages in this analysis (datasets for

monocytes, PBMC, and LBL are currently accessible, (Fairfax et al., 2014; Raj et al., 2014;

Westra et al., 2013) and it is quite likely that these haplotypes will be found to have additional

effects as more datasets become available.

Figure 14B presents the odds ratios for disease obtained with GWAS-defined tagging SNPs

(Harley et al., 2008; Graham et al., 2008; Adriantoet al., 2011; Taylor et al., 2011) and peak risk

haplotypes for the sixteen SLE loci analyzed. As shown, the odds ratio for disease obtained for the

peak risk haplotype at each locus was consistently higher than that of the tagging SNP, leading to

an average increase of 17% in odds of disease overall (Table 2 and illustrated in Figure 14B). These

results support the presence of most or all of the causal variations for disease susceptibility within

the identified peak risk haplotypes for each locus. Interestingly, we identified both protective and

risk haplotypes with nominal statistical significance (p<0.05) at fourteen of the sixteen risk loci ana-

lyzed, suggesting that both types of disease alleles are prevalent and contribute to population risk.

MJ analyses consistently found peak risk and protective haplotypes at opposite ends of the network,

which suggests that the combined effects of multiple regulatory variations may additively impact dis-

ease associations. Consistent with this, HLA-D, STAT4, IRF5, and CCL2-CX3Cl1 all have multiple hap-

lotypes with different disease associations, suggesting that a spectrum of disease alleles with

different impacts on susceptibility may occur at highly variable risk loci. However, some caution is

appropriate when interpreting the significance of multiple intermediate risk haplotypes within a net-

work, in that sample numbers for many haplotypes were often small. Consequently, a larger sample

of SLE patients will be required for the detailed assessment of the disease risk attributable to all of

the prevalent haplotypes at SLE risk loci.

These haplotypes represent stable polymorphisms within the EA population, with six or fewer

haplotypes accounting for about 90% of the LD block regulatory sequences segregating in the EA

population at individual risk loci (Table 2 and Figures 10–13). We assessed this in more detail by

determining the frequencies of the major risk haplotypes for HLA-D, STAT4, IRF5, ITGAM, and

UBE2L3 in 2504 individuals derived from 26 global ethnic populations sequenced in the

1000 Genomes project (Abecasis et al., 2010; 2012). As shown in Figure 14C, these five risk haplo-

types are present at variable frequencies within all of the European, South American, and South

Asian populations. However, they are much less frequent in the African populations sampled and,

with the exception of UBE2L3, absent from the East Asian populations. This suggests that additional

haplotypes will be identified during the analysis of specific ethnic groups as previously shown (Kim-

Howard et al., 2014). In addition, although these five SLE risk haplotypes are predominantly found

in European populations and populations with significant European admixture, they are also detect-

able with low frequencies in some African populations. Based on this distribution, it is likely that

these haplotypes arose prior to human global colonization and that they were present with divergent

frequencies in the ancestral founding populations of modern ethnic groups.

This dataset can also be used to assess the percentage of population disease risk that is attribut-

able to the combined effects of all of these risk loci As tabulated in Table 2, the cumulative risk asso-

ciated with the GWAS tagging SNPs for all sixteen loci sums to 6.04 fold, while the same value for

Figure 11 continued
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Figure 12. LD structure, haplotypes and MJ network analysis of ICA1, BLK and ETS1. Panel 12 (i) shows ICA1, Panel 12 (ii) shows BLK and Panel 12

(iii) shows ETS1 genetic association analysis. (A) LD structure of studied intervals generated with common (MAF�10%) variants in 1349 samples, 370 in

case of ICA1, 258 in case of BLK and 209 variants in case of ETS1 (B) Zoom Manhattan plot of all common variants in studied region showing SLE

association levels and conditional analysis on peak SNP/s. (C) LD block based on potentially functional SLE associated SNPs which are used for

downstream haplotype analysis. (D) Haploview generated haplotypes from functional variants. Frequencies in cases and controls and association

statistics are provided. Risk (red) and protective (blue) haplotypes are color highlighted. (E) MJ networks analysis to illustrate divergence of risk and

protective regulatory haplotypes. Haplotype with significant p value (p<0.05) are highlighted with red (risk) and blue (non-risk) color. Study peak SNP,
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all peak risk haplotypes is 8.8, indicating that improved resolution of disease alleles increases the dis-

ease risk and proportion of ’heritability’ that is associated with these common disease alleles.

Assuming that the contribution of all risk loci for SLE sum to 29 (Alarcon-Segovia et al., 2005;

Deapen et al., 1992), then the sum of these sixteen loci would account for about one third of the

genetic heritability for SLE. In this regard, a contentious debate concerning the contribution of ’com-

mon’ (MAF > 0.05) versus ’rare’ (MAF << 0.05) disease risk alleles to the overall heritability of com-

mon diseases has persisted among investigators in complex phenotype genetics for several years

(Raychaudhuri, 2011; Cirulli and Goldstein, 2010; Manolio et al., 2009; Pritchard and Cox, 2002).

Although it is clear that rare alleles contribute to disease susceptibility in small subsets of patients

(Hunt et al., 2013; Lee-Kirsch et al., 2007; Tang et al., 2014; Mitchell et al., 2002), recent analyti-

cal studies have firmly established that common disease alleles are responsible for the bulk of the

heritability for autoimmune diseases (Yang et al., 2010; Visscher et al., 2010; Stahl et al., 2012). It

is likely that ’missing’ heritability predominantly reflects an extensive genetic heterogeneity that

underlies many common diseases.

An alternative method to measure the cumulative risk attributable to a specific collection of risk

loci is via the calculation of population attributable risk (PAR) (Zheng et al., 2008; Bruzzi et al.,

1985; Rockhill et al., 1998a; 1998b; Mezzetti et al., 1998; Natarajan et al., 2007; Claus et al.,

1996; Kraft et al., 2009; Pepe et al., 2004). This calculation utilizes the odds ratio for disease and

the risk allele population frequency to calculate a weighted risk value for each locus and then com-

bines them to assess their contribution to genetic risk for the population as a whole. As shown in

Figure 14B and tabulated in Supplementary file 3B, the peak risk haplotypes at these sixteen risk

loci account for 66% of the population attributable risk for SLE within this EA

cohort (Supplementary file 3A and 3B). PAR and estimates of ’heritability’ differ in that PAR calcula-

tions do not assume a specific level of population genetic risk (i.e. 29), but instead simply calculates

the proportion of risk that cannot be accounted for by the variables assayed within the population

studied, and thus determining the proportion of risk that is attributable to tested factors. The calcu-

lated PAR in this analysis indicates that these sixteen loci contribute a significant proportion of dis-

ease risk within our population. However, a larger cohort and broader list of risk loci will be essential

to estimate genetic risk in all populations and account for a larger proportion of SLE heritability.

Our results provide as system using sequence analyses that can efficiently and accurately identify

disease risk alleles within large populations. Further, we define a path forward for the development

of useful genetic tools for assessing disease risk. The next phase of genetic analyses of autoimmune

disease will involve assessing the functional properties of these disease alleles, sorting out their

interactions during disease development, and developing analytical tools for the accurate quantita-

tion of genetic risk for disease in individual genomes (Ray and Hacohen, 2015; Ghodke-

Puranik and Niewold, 2015; Lewi et al., 2015; Wang et al., 2015; Mohan and Putterman, 2015).

HLA-D polymorphisms, antigen presentation pathways, and
autoimmune disease
The most intriguing result of our sequence analyses is the discovery of a strong association between

SLE susceptibility and HLA-D polymorphisms that regulate HLA class II gene expression. The HLA-D

region is consistently a potent susceptibility locus in autoimmunity and significant effort has focused

on defining the molecular mechanisms that mediate autoimmunity in the context of specific HLA-D

class II alleles (Morris et al., 2012; 2014; Armstrong et al., 2014; Kim et al., 2014; Niu et al.,

2015; Graham et al., 2007; Cruz-Tapias et al., 2012; Todd et al., 1987). Multiple genetic studies

have identified coding variations in the peptide binding sites of MHC class II molecules as key

genetic components of the disease associations, strongly supporting the hypothesis that allelic varia-

tions in the antigen presentation process underlie autoimmune disease (Kim et al., 2014;

Morris et al., 2014; Fernando et al., 2012; Raychaudhuri et al., 2012). The dominant paradigm

has been that the peptide binding regions of disease-associated HLA class II alleles have unique
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Figure 13. LD structure, haplotypes and MJ network analysis of TNFSF4, NMNAT2 and XKR6. Panel 13 (i) shows TNFSF4, Panel 13 (ii) shows NMNAT2

and Panel 13 (iii) shows XKR6 genetic association analysis. These three interval showed more than one independent LD block associated with SLE in our

analysis. (A) LD structure of studied intervals generated with common (MAF�10%) variants in 1349 samples, 152 in case of TNFSF4, 411 in case of

NMNAT2 and 643 variants in case of XKR6. In case of TNFSF4, (B) shows two SLE associated LD blocks and zoom Manhattan plot of all common

variants in studied region. (C) showing SLE association levels and conditional analysis on peak SNP/s. (D and E) Haploview generated haplotypes from

functional variants in block 1 and block2, respectively. Frequencies in cases and controls and association statistics are provided. Risk (red) and

protective (blue) haplotypes are color highlighted. Similarly, (F and G) shows MJ networks analysis to illustrate divergence of risk and protective

regulatory haplotypes from block1 and block2, respectively. Haplotype with significant p value (p<0.05) are highlighted with red (risk) and blue (non-risk)

Figure 13 continued on next page

Raj et al. eLife 2016;5:e12089. DOI: 10.7554/eLife.12089 28 of 52

Research article Genomics and evolutionary biology Human biology and medicine

http://dx.doi.org/10.7554/eLife.12089


peptide binding properties that present a novel spectrum of self-peptides or modified self-peptides

in a manner capable of eliciting autoimmunity. Solid data supporting this mechanism have been

developed by decades of experiments, notably for insulin peptides in autoimmune diabetes

(Unanue, 2014) However, many studies have found that multiple self-antigens are recognized by T

cells clones isolated from the earliest stages of disease development, suggesting that HLA-D associ-

ated autoimmunity is initiated against multiple self-antigens by a heterogeneous T cell response.

Notably, SLE patients have a profound breach in immune tolerance and typically produce autoanti-

bodies binding more than ten different self-antigens, with the diversity of autoantigens recognized

increasing as individuals approach disease diagnosis (Olsen and Karp, 2014; Arbuckle et al., 2003;

Li et al., 2005). Further, multiple HLA class II DR and DQ alleles are associated with SLE susceptibil-

ity, which indicates that HLA class II alleles with highly divergent peptide binding properties are

capable of promoting disease development. In this regard, classic studies of the association of DR2

and DR3 with susceptibility to SLE have shown that DR2/DR3 heterozygotes are more strongly asso-

ciated with disease susceptibility than the individual haplotypes (Graham et al., 2007). Taken

together, these data suggest that SLE is associated with an extensive array of divergent HLA class II

alleles that would be predicted to present a diverse array of self-peptides.

Our data indicate that all of the HLA-DR and -DQ alleles that are strongly associated with suscep-

tibility to SLE are in strong LD with XL9 regulatory haplotypes that increase HLA class II gene tran-

scription. Boss and co-workers have shown that XL9 contains CTCF elements that interact with

cohesion molecules and other chromatin factors to assemble a transcriptional complex that brings

multiple HLA class II promoters into close proximity with an array of transcription factor binding sites

(Majumder et al., 2006; 2008). The XL9 model in Figure 15A.i, which is adapted from a model pre-

sented by Majumder et al. (2008), illustrates the key role of chromatin configuration in the coordi-

nated transcription of HLA class II genes. Consistent with the chromatin structure effects of XL9, our

data indicate that transcriptional variations are chromosome specific in HLA-D heterozygotes, with

polymorphisms in the XL9 regulatory haplotype modulating transcription of DR and DQ genes in a

cis-specific fashion. This indicates that the level of transcription dictated by XL9 will be specific for

the adjacent HLA-DR or DQ allele, thus making expression levels an additional allele-specific facet of

HLA-D class II molecules. Classic studies have demonstrated allele-specific variations in the expres-

sion levels of MHC class II molecules in murine MHC heterozygotes and shown that these levels

strongly impacted the stimulation of antigen-specific T cells in autoimmune disease models

(Ridgway et al., 1998). Our data suggest that these early studies revealed an important facet of

MHC diversity that strongly impacts the development of autoimmunity.

XL9 contains the peak association signal with SLE in our sequencing dataset, indicating that these

regulatory haplotypes play an important role in the development of SLE autoimmunity. We suspect

that the failure to detect XL9 associations in previous GWAS reflects the low frequency of many of

the associated variants and the paucity of SNPs in this region on the commonly utilized SNP typing

arrays (see Figure 5.iii & iv). Our data demonstrate that individuals homozygous for XL9 HAP3 (risk)

variations have more than two-fold higher surface expression for HLA-DR and DQ molecules at base-

line which increases to 4-fold after stimulation with TLR-ligand on monocyte-derived dendritic cells
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Figure 14. Model of allelic architecture for functional variations in common disease risk loci. (A) A working model of the architecture of the variations

within common disease risk loci. Disease associated tagging SNPs associate an LD block with a disease phenotype. Within this LD block, multiple

variations are in tight LD, including nonfunctional, functional, and causal variants. Causal variants potentiate the disease phenotype by modulating

endophenotypes. In this model, causal variants impact two adjacent genes, one of which is not located within the LD block, both of which contribute

endophenotypes towards disease. Haplotype and MJ analysis using functional variants in tight LD with original tagging SNP define haplotypes that

contain all of the causal variants. The peak risk haplotype defines a disease allele with increased disease association in comparison to the original

GWAS tagging SNP. (B) A plot of all of the odds ratios attributable to the GWAS tagging SNP (blue bars) versus the peak risk haplotype (additional red

Figure 14 continued on next page
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than HAP1 (protective) homozygotes (Figure 7). This increase is maintained during the maturation of

these dendritic cells via TLR7/8 stimulation, thus supporting the functional significance of these tran-

scriptional variations to immune mechanisms known to impact immune response activation. Potent

polymorphisms in the binding motif of the IRF4 transcription factor are in the final MJ branch to the

SLE-associated XL9 HAP2 and HAP3 haplotypes and it is likely that these two polymorphisms are

causal and contribute significantly to this expression change. Recent studies by Vander Lugt et al

(Vander Lugt et al., 2014) have demonstrated that IRF4 is a key component of the transcriptional

regulation of HLA class II molecules in dendritic cells and that upregulation of MHC class II molecules

strongly promotes susceptibility to autoimmunity in an animal model. Based on these data, we

hypothesize that the XL9-mediated increase in surface expression of HLA-DR and DQ in dendritic

cells is predominantly responsible for the association of XL9 regulatory haplotypes with susceptibility

to SLE.

The extensive diversification of HLA-D regulatory elements has implications well beyond the asso-

ciation of these polymorphisms with SLE. HLA class II molecules are expressed on a variety of

immune cell lineages, including monocytes, macrophages, dendritic cells, B cells, activated T cells

and thymic epithelial cells. Expression levels are tightly controlled by a variety of transcription factors

unique to these cell lineages and their expression impacts a variety of functional processes in the

immune system (Cresswell, 1994; Krawczyk et al., 2004; Steimle et al., 1994; Reith et al., 2005).

For example, increased surface expression of class II molecules is an essential event in the matura-

tion of dendritic cells, in that higher surface expression is crucial to the increased capacity of mature

dendritic cells to effectively present antigens to naı̈ve T cells (Cella et al., 1997a;

1997b; Banchereau and Steinman, 1998; Pierre, 1997). As tabulated in Figure 15A.ii, twenty-

three transcription factor binding sites in XL9 and fourteen in the DQB1 5’ segment are strongly

modified by the extensive variations present within these genomic segments. Overall, we identified

a total of 1651 functional variants in XL9 and 1912 functional variants in the DQB1 5’ segment, indi-

cating that the regulatory characteristics of these transcriptional complexes will be highly diversified

among HLA-D haplotypes. This level of polymorphism is readily comparable to that observed in the

codons for the peptide binding regions of the HLA class II molecules. Interestingly, as shown in

Figure 15B, both the protective and risk haplotypes that we identified for the entire HLA-D region

are present with varying frequencies throughout the global population. These findings are consistent

with the characteristics of other highly polymorphic regions of HLA, including the HLA-D class II cod-

ing alleles, and indicate that these regulatory haplotypes have evolved together with the HLA class II

coding regions over long periods. Given all of these characteristics, we propose that these regula-

tory variations represent an essential and highly selected characteristic of the diversification of HLA-

D that strongly impacts a variety of immune functions.

These regulatory HLA-D haplotypes probably have divergent effects on the expression levels of

HLA class II molecules in different cell lineages. That is, XL9 HAP3 clearly upregulates HLA class II

expression in the myeloid lineage, however, that may not be true for HAP3 B cells, T cells, or thymic

epithelial cells. In addition, XL9 variants impact the function of a variety of transcription factors

whose activity is modified by innate system activation signals in specific cell lineages, indicating that

modulations of HLA class II expression levels by activation signals may also be differentially associ-

ated with individual haplotypes. Taken together, these features indicate that the regulatory polymor-

phisms identified in this study will have multifaceted effects on the adaptive immune response and

probably result in a significant diversification in the functioning of HLA class II antigen presentation

among HLA haplotypes.

Finally, a variety of eQTL studies have identified the HLA complex as a ’master’ regulatory com-

plex that impacts the expression of genes throughout the genome (Fehrmann et al., 2011;

2012). An analysis of the available eQTL databases identified a total of 72 genes whose transcription

Figure 14 continued
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Figure 15. Model of chromatin architecture and transcription regulatory elements in XL9 and DQB1 segments. (A)

(i-ii) A model showing the XL9 transcription complex and three important proteins (CTCF, IRF4 and ZNF143) which

may be impacted by SLE associated genetic variants hitting canonical motifs in XL9 region (Adapted from

Majumdar et al., 2008). The chromatin structure of the regulatory complex produced in the DQB1 5’ segment is

hypothetical and currently unknown. A chromosomal map of HLA-DRB1 through HLA-DQB1 region showing

ENCODE defined regulatory marks, eQTLs and most strongly impacted transcription factors by XL9 and the DQB1

5’segment is shown below these models. The transcription factor binding sites impacted by functional variations

within these regions are shown below the molecular map. (A) (iii) A table listing the numbers of and characteristics

Figure 15 continued on next page

Raj et al. eLife 2016;5:e12089. DOI: 10.7554/eLife.12089 32 of 52

Research article Genomics and evolutionary biology Human biology and medicine

http://dx.doi.org/10.7554/eLife.12089


levels are reported to be modulated by variations in the HLA-D region. Many of these eQTL targets

are encoded in other segments of the HLA complex, as well as 35 that are located on other chromo-

somes. A variety of immune system genes are included in this list and Figure 16 illustrates the pat-

tern of up and down expression that distinguishes the HAP3 risk haplotype from the HAP1 and

HAP6 protective haplotypes. As shown, essentially all of the HLA class II molecules and a variety of

gene products involved in antigen processing, peptide loading, and surface expression are up-regu-

lated by the HAP3 risk haplotype. This result illustrates the extensive functional variations that are

associated with a single HLA-D risk haplotype within the EA population. Whether these eQTLs

reflect the formation of remarkably intricate transcriptional complexes, or (more likely) very strong

LD throughout the HLA complex remains to be determined. However, these results indicate that

regulatory polymorphisms in HLA-D affect a plethora of immune system genes that are involved in

various pathways of the adaptive immune system. It is likely that these regulatory variations are an

integral element of the functional diversification of HLA and that they will ultimately be found to

modulate functions throughout the immune system.

Figure 15 continued

of functional variants in these two regulatory regions of HLA-D. (B): Global distribution of the major risk and

protective haplotypes from the composite HLA-D region analysis.
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Figure 16. SLE risk haplotype upregulates the antigen presentation pathway (APP). All of the composite HLA-D haplotypes within the risk clade

(highlighted in red) contain eQTL variants reported to impact 72 genes in the publicly available eQTL datasets utilized in this study. The patterns of

increased or decreased transcription associated with all of these haplotypes is modeled on the left, with red indicating increased expression and green

indicating decreased expression relative to the protective haplotypes shaded in blue. All of the HLA-DR, HLA-DQ, and HLA-DP class II molecules,

along with a variety of gene products involved in the APP pathway are upregulated in all SLE risk haplotypes. A variety of other genes in the immune

system, including some with known associations with SLE susceptibility (C2, C4A) are also modulated.

DOI: 10.7554/eLife.12089.020
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Materials and methods

Targeted sequencing of SLE risk loci
Genomic sequencing libraries were prepared from 1775 SLE patient or control samples contributed

by 5 collaborating sites in the U.S.A and Europe (Supplementary file 1A). All subjects gave their

written informed consent and research protocols and methods employed were approved by the UT

Southwestern Institutional Review Board. More than 50% of SLE cases and all of the control samples

used in the present study were new recruitments and have not been used in any previous association

or GWAS on SLE. Target enrichment and deep sequencing was carried out in the UT Southwestern

Medical Center IIMT Genomics Core. 1 ug picogreen measured genomic DNA was sonicated using

Covaris S220 platform to generate 300–400 bp genomic fragments. The sequencing libraries were

generated using TruSeq (Illumina) or KAPA Biosystem library preparation kits (KK8232). Each sample

was ligated with custom designed Illumina-compatible adaptors with unique 6 base barcodes follow-

ing the kit manufacturer’s protocol. The custom target enrichment array (Illumina Inc.

San Diego, CA, www.illumina.com) was designed to capture the complete genome sequence of

28 confirmed or potential SLE risk loci (Supplementary file 1B). The Illumina custom enrichment sys-

tem theoretically captured sequence information for ~99.94% of the ~4.4 Mbs of genome targeted

in these risk loci. The enriched libraries were sequenced using a paired-end 100 bp protocol to pro-

duce 1–2 Gb of high quality data per sample.

Sequence alignment and variant calling
Sequence reads were demultiplexed and each sample’s reads were aligned to the human genome

(HG19) using BWA-MEM, with base quality recalibration and local realignment performed with the

Genome Analysis Toolkit (GATKv2) (Li et al., 2009; McKenna et al., 2010; DePristo et al., 2011).

As illustrated in Figure 1A, target enrichment was highly specific and efficient, typically resulting in

>70% of reads on target and resulting in >128X average coverage for the 28 risk loci analyzed

(Supplementary file 1B). Figure 1B illustrates that coverage within the targeted segments was com-

prehensive, with relatively uniform read depth throughout the non-repetitive regions. In general,

continuous sequences could be derived for >85% of the targeted intervals in assembled sequences,

with only extended regions (i.e. >1 Kb) of highly repetitive sequences failing to assemble.

Variant analysis with the GATK Haplotype caller identified a total of 215880 variations in the tar-

geted regions using analytic technologies and thresholds analogous to those of the 1000 Genomes

Project (Supplementary file 1B) (Abecasis et al., 2010; 2012).

Defining high quality variants in the EA population
As listed in Figure 1G,H, we used additional criteria to filter this dataset to create an ethnically-

matched, case-control cohort with uniform coverage and high quality variant calls. Figure 1C illus-

trates the read depth and balanced allele representation of variants that passed all filters and

Figure 2A presents principal component analysis of sample ethnicity in comparison to standardized

populations from the HAPMAP dataset (International HapMap et al., 2003). We started with

1775 samples, all of which were sequenced with targeted array. Of these, 88 samples had missing

case/control status information and 249 were PCA outliers as they did not cluster with HapMap CEU

reference population in principal component analysis. Of the remaining 1438 PCA pass samples,

11 and 5 were excluded due poor call rate (<85%) and being duplicate, respectively. Furthermore,

73 samples were excluded due to poor sequencing fold coverage (<25x, n=54) and significant p

value (p>0.001) of HWE in controls (n=19). Thus, 1349 samples which included 773 SLEs and

576 normal controls passed all quality criteria and were used for genetic association analysis. Appli-

cation of these filters defined 1349 samples of EA ancestry and identified 124,552 high quality var-

iants, of which 114,487 are single nucleotide variations (SNVs) and 10,065 are insertion/deletion (In/

Del) polymorphisms. Data supporting the accuracy of these variant calls is provided in Figure 1F,

which presents Sanger sequence validation of several key variants. In addition, the concordance of

sequence-based SNV calls versus SNV calls with the Illumina Immunochip was >99.8% for samples

with >25X average coverage (Figure 1G), which supports the overall accuracy of variant detection

throughout the genomic segments assayed. This sequence-based variant database, which identifies

an average of one variant every 39 basepairs through 4.4 Mb of genomic DNA in 28 validated SLE
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risk loci, provides a comprehensive assessment of genomic diversity at SLE risk loci in the EA popula-

tion. Raw sequencing data (FASTQ files) for all targeted intervals in 1349 individuals is available on

request (www.utsouthwestern.edu/labs/wakeland/about/contact.html).

Variant annotation
Variants were annotated using multiple databases cataloguing the functional properties of human

genomic variation, including the recent phase 3 release from the 1000 genome study, the PolyPhen/

SIFT coding region database, the most recent release of the ENCODE database, and several recent

eQTL databases for immune cell lineages. The outcome of these analyses for all variants in the final

dataset is summarized in Figure 2B,C. Our sequence analyses identified 70070 previously annotated

variations and 54482 unannotated or novel variations. All but 76 of the novel variations were low fre-

quency or rare (MAF<0.05) within the EA cohort, which is consistent with expectations

(Supplementary file 1C). Functional annotation determined that about 40% of the variants in the

dataset were potentially functional, most of which were categorized as regulatory based on their

localization into ENCODE-defined regulatory segments or inclusion in eQTL datasets (Figure 2B.i-

iv). Figures 2C.i-iii shows summary statistics on just common coding, regulatory and novel variants.

Immunochip genotyping and Sanger sequencing
A subset (n=536) of study samples was also genotyped with the Immunochipv1, an Illumina infinium

genotyping chip which contains 196524 genomewide markers. SNP concordance analysis was done

between sequencing and immunochip genotypes in order to validate the quality of sequencing calls.

Raw image files from immunochip array were imported into Genome Studio (GS version 1.9.4) and

SNPs were called. The genotype outputs from Genome Studio were then imported into SNP & Vari-

ation suite (SVS version 7.6.8 win64) for further quality control (QC) and downstream association

analysis. In addition, about 35 SLE associated SNPs from various targeted genes were also con-

firmed by Sanger sequencing method.

Quality control criteria
Quality control filters were applied to both samples and markers. All the duplicates and those with

call rate <85% were excluded from the analysis. Principal component analysis (PCA) was done to

remove any population stratification. About 2902 markers (MAF�0.05) present in both Omni1 Hap-

Map data set and our sequencing data were used for PCA (Figure 2A). PCA clusters was further

confirmed by doing another PCA based on ~26000 markers present on Omni1 HapMap data set

and Immunochip v1.0 on subset samples (n=408). Samples that did not cluster with HapMap CEU

reference population were excluded after visual inspection of plots. SNP concordance was done

between sequencing and immunochip data on subset of samples (n=408), which showed a genotype

concordance rate �98% at �25x fold coverage. Therefore, samples with fold coverage <25x were

excluded from downstream analysis. For genetic association tests, autosomal markers showing HWE

p<0.001 in controls were excluded.

Genetic association tests and haplotype analysis
Of the 23,805 common (MAF�0.05) markers detected in 28 targeted loci, 15,582 quality pass var-

iants were used for genetic association tests. A basic allelic association test was performed with

1349 PCA confirmed and age matched European cases (n=773) and controls (n=576). The associa-

tion test was controlled for genomic inflation using Golden Helix scripts where we first determined

uncorrected genomic inflation factor yvalue which was 3.0. We further corrected data for batch

effects and stratification with PCA using numeric association and regression analysis in Golden Helix.

Finally, we corrected association results using this inflation value. This removed observed genomic

inflation in association results. Chi-square p values were further corrected for gender bias, using the

covariate regression module in SVS, Golden Helix software. A total of 5561 markers across 28 loci

showed significant (p<0.05) association with SLE. The LD structure and haplotype analysis was per-

formed in SVS, Golden Helix and using Haploview v4.2. Regulatory haplotypes were generated on

potentially functional variants with strong LD (�0.8) to the study peak and/or previously known SLE

tagging SNPs. An allele was defined as potentially functional if it is a coding variation i.e. non-
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synonymous, synonymous, UTR or splice variant, and or an ENCODE’s histone mark, transcription

factor binding site, DNase I hypersensitivity clusters or an expressed quantitative trait loci (eQTL).

Population attributable risk (PAR) calculation
PAR has been used in genome-wide association studies (Ziegler and studies, 2009;

Bonnelykke et al., 2013; Wang et al., 2010). It combines information on risk allele frequencies and

genotypic relative risks to estimate the excess fraction of cases that would not occur if no one in the

population carried the risk allele. The case/control design of present study provided authors an

opportunity to apply odds ratio (OR) and PAR to calculate the relative risk of SLE disease. As it has

already been shown and present study also confirms that SLE is a polygenic disease, assessment of

cumulative disease risk by calculating joint PAR from all the loci is a reasonable approach. First we

performed conditional analysis on peak SNP from all the 16 loci analyzed in the present study. We

observed residual SLE association after conditioning on each locus (Supplementary file 3A), which

suggests significant and cumulative contribution of each locus to SLE risk within this population.

Then, we used 16 SLE risk haplotypes to assess the percentage of population disease risk that is

attributable to the combined effects of all of these risk loci (Supplementary file 3B). PAR was calcu-

lated using methods applied in other complex diseases (Zheng et al., 2008).

Production of monocyte-derived macrophages and dendritic cells
Human peripheral blood mononuclear cells (PBMCs) were enriched by density gradient centrifuga-

tion of peripheral blood from healthy human donors through a Ficoll-Hypaque gradient. Monocytes

were isolated from PBMC either by negative selection using an EasySep Human Monocyte Enrich-

ment Kit (STEMCELL Technologies), or by cell culture dish adherence as plastic adherence method.

For monocyte isolation by adherence, PBMCs were plated in tissue culture treated dishes and incu-

bated for 2 hours at 37ºC in a humidified CO2 incubator. Non-adherent cells were discarded by

washing three times. For the generation of monocyte-derived dendritic cells (MDDCs) or human

monocyte-derived macrophages (MDMs), monocytes were cultured in RPMI-1640 with 10% FBS,

2 mM L-glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 100 U/ml penicilin, 100 mg/mL strepto-

mycin supplemented with 100 ng/ml GM-CSF and 50 ng/ml IL-4 or 50 ng/ml M-CSF, respectively.

The culture media which contained fresh GM-CSF and IL-4 or M-CSF were replaced every 2 days.

MDDCs and MDMs were harvested on day 7. MDDCs or MDMs were seeded in 6 or 12 well plates

at a density of 1 � 106 or 5 � 105 cells/ well, respectively, treated and incubated with 10 ug/ml

R848 for 18 hr. R848 (InvivoGen, tlrl-r848) is an imidazoquinoline compound with potent anti-viral

activity. This low synthetic molecule activates immune cells via the TLR7/TLR8 MyD88-dependent

signaling pathway (Hemmi et al., 2002)

Flow cytometry
MDDCs were incubated with anti-HLA-DR FITC (clone G46-6) for 20 min on ice and washed three

times with PBS. MDDCs were acquired on a FACS Calibur (BD Biosciences) and data analyzed using

FlowJo software. For HLA-DQ staining, MDDC’s were stimulated with 1 ug/ml R848 for 4, 8 and

18 hr. Cells were harvested and washed twice with PBS. Staining was done with HLA-DQ-FITC

(Clone: Tu169) in PBS for 30 min on ice followed by two washes with PBS and ran on BD FACSCALI-

BUR. Data was analyzed using FlowJO software.

RNA-Seq data production and analysis
RNA was extracted using TRIZOL (Life Technologies) and RNeasy Mini Kit (QIAGEN) according to

the manufacturer’s protocol. RNA quantity and purity was assessed on a NanoDrop 2000 spectro-

photometer (Thermo Fisher Scientific), and integrity was measured on an Agilent Bioanalyzer 2100

(Agilent Technologies). RNA-seq libraries were prepared with the Illumina TruSeq RNA Sample Prep-

aration kit (Illumina) according to the manufacturer’s protocol. Libraries were validated on an Agilent

Bioanalyzer 2100. Six RNAseq libraries were sequenced on a SE50 (single end 50 base pair) Hiseq

2500 lane, which yielded an average of about 30 � 106 reads/sample. We used CLC Genomics

Workbench 7 for bioinformatics and statistical analysis of the sequencing data. This approach used

by CLC Genomics Workbench is based on method developed by Mortazavi et al. (Mortazavi et al.,

2008). Human Genome GRCh37 was used as reference sequence. The reference has 33615 genes
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and 30842 transcripts. All uniquely mapping reads to the genes were counted. Alignment with mis-

match cost of ’2’, Insertion cost ’3’ Deletion cost of ’3’ was used. The maximum number of hits for a

read was set to 1 meaning that only reads those maps uniquely were considered. The steady state

expression of various genes was calculated in terms of RPKM values. For eQTL analysis RPKM values

were normalized as described previously (Dozmorov and Lefkovits, 2009; Dozmorov et al., 2011)

as well as for population stratification or batch effect and cis-eQTL results were corrected for gender

and ethnicity.

Public databases used
We have accessed multiple public databases to validate and functionally annotate sequencing var-

iants identified in the present study. We used DNA and RNA sequencing data-based variants from

the 1000 Genome Project samples (http://www.1000genomes.org/); and downloaded DNA

sequencing data from the phase III dataset (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/

20130502/) for haplotype analysis of 2504 genomic samples from the global human population. Sim-

ilarly, FASTQ files of RNA sequencing data (http://www.geuvadis.org/web/geuvadis/RNAseq-proj-

ect) of lymphoblastoid cell lines derived from 369 Europeans were downloaded and used for HLA

class II expression analysis. Our analysis of this data is shown in Figure 7D as a heatmap. The

ENCODE database (www.encodeproject.org) was used to annotate variants for transcription factors

binding motif, DNase hypersensitivity cluster and histone marks. Similarly, the RegulomeDB data-

base (http://regulomedb.org/) was used to annotate potentially regulatory variations. Finally, UCSC

genome browser (https://genome.ucsc.edu/) was used to generate custom tracks on sequencing

variants and for the general visualization of study data.

Source data text
ITGAM-ITGAX
We replicated association with previously reported GWAS SNPs in ITGAM [Integrin, Alpha M (Com-

plement Component 3 Receptor 3 Subunit)] and ITGAX [Integrin, Alpha X (Complement Component

3 Receptor 4 Subunit)] gene and identified new common variants showing strong association with

SLE in our analysis (Supplementary file 2). The peak associated SNP rs41476751 [OR (LCI-UCI) =

1.87 (1.5–2.2), p=7.84E-09] was mapped to the same LD block where previous GWAS SNP was

tagged (Figure 10.i). Conditioning on peak SNP removed all the disease association (Figure 10.i B).

We found 30 potentially functional variations including four known SLE GWAS SNPs in strong LD

with peak (Supplementary file 2). Haplotypes were then derived on these 31 potentially functional

variations and genetic association analysis was done in cases vs. controls (Figure 10.i D). Association

results showed that haplotype 4 (HAP4) which include all previously reported GWAS SLE alleles also

carry multiple potentially functional variations (eQTLs) and pose strongest SLE risk [OR (LCI-UCI) =

1.95 (1.5–2.5), p=1.58E-07]. Median-joining network analysis illustrated accumulation of multiple

potentially functional alleles in the risk haplotype (Figure 10.iE). Analysis of published eQTLs data

showed that risk haplotype carries multiple regulatory variations which cumulatively contribute to

the down-regulation of ITGAM, ITGAX and PYCARD genes (Figure 10.iF). Interestingly, we

observed that OR of strongest haplotype (HAP4) was significantly increased as compared to known

GWAS tag (rs9888739) as well as study peak SNP (Table 2).

IRF5-TNPO3
We replicated previous SLE associations at interferon regulatory factor 5 (IRF5) and transportin 3

(TNPO3) gene region and also identified many new potentially functional variants showing strong

association with disease (Supplementary file 2). Multiple association signals at this locus were

mapped to IRF5, TNPO3 and TPI1P2 gene region with peak SNP rs34350562 [OR (LCI-UCI) = 1.76

(1.4–2.1), p=2.86E-09] mapped near TNPO3 gene (Figure 10.iiA). Figure 11.iiB-C shows Manhattan

plot of SLE association and conditional analysis on peak SNP, respectively. Total of 29 SLE associ-

ated potentially functional variants were identified in the associated LD block which also included

four previously known GWAS tags (10.iiC). Haplotypes were generated based on all 29 variants and

haplotype association analysis was done. These results showed that haplotype 3 (HAP3) which carries

previously reported GWAS SLE SNPs and multiple potential functional alleles identified in present

sequencing study pose the greatest risk for SLE [OR (LCI-UCI) = 1.8 (1.2–2.3), p=1.44E-06]
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(Figure 10.iiD). Median-joining network analysis showed that risk haplotype HAP3 differs from the

non-risk haplotype (HAP1) by multiple functional variations which regulates transcription of local

genes (Figure 10.iiE). Further analysis of eQTL SNPs showed that SLE risk alleles were associated

with upregulation of IRF5 and TNPO3 expression in monocytes, PBMCs and MDMs (Figure 10.iiF).

In addition, a 3’UTR truncation of IRF5 gene rs10954213 (SNP9) was also a part of strongest risk

haplotype. Our analysis shows that there are multiple potential functional variants present at this

locus which contributes to the SLE susceptibility.

UBE2L3
UBE2L3 (Ubiquitin-conjugating enzyme E2L3) gene is a known SLE susceptibility gene. We observed

strong association signal at this locus and identified multiple regulatory variants (Supplementary file

2). The peak association was observed with SNP rs181366 [OR (LCI-UCI) = 1.5 (2.0–3.1), p=1.98E-07]

in same LD block where previously reported GWAS tag was located (Figure 10.iiiA). We replicated

previous SLE associations at this locus and identified many new associations. In addition to UBE2L3,

strong association signal were also mapped to SCUBE1 (Signal Peptide, CUB Domain, EGF-Like 1)

gene with SNP rs4647815 [OR (LCI-UCI) = 1.7 (1.2–2.3), p=5.46E-06] and YDJC (YdjC Homolog (Bac-

terial) gene with SNP rs2298429 [OR (LCI-UCI) = 1.5 (1.2–1.8), p=9.26E-07]. Manhattan plot of asso-

ciation and conditioning analysis are shown in Figure 10.iiiB. There was low frequency variant which

was not in strong LD with peak common variant. We identified 15 potentially functional variations in

strong LD with peak SNP including previously known GWAS tags for SLE. Haplotypes were derived

based on these 16 markers and haplotype association analysis was done (Figure 10.iiiC). As shown

in Figure 10.iiiD, haplotype 2 (HAP2) which carries GWAS SLE allele and multiple potentially func-

tional alleles was the greatest risk haplotype [OR (LCI-UCI) = 1.41 (1.1–1.7), p=1.80E-03]. Median-

joining network analysis illustrated that risk haplotype (HAP2) differs from non-risk haplotype (HAP1)

by 16 putatively functional changes (Figure 10.iiiE). Further, SNPs with published eQTL effects

shows that SLE associated risk haplotype associate with upregulation of UBE2L3 expression in

peripheral blood data (Figure 10.iiiF). Comparison of tag SLE SNP verses haplotype suggest that

present regulatory risk haplotype accounts for increased disease risk (OR=1.4) than known GWAS

SNP rs5754217 (OR=1.3) alone (Table 2).

BANK1
We observed peak association with an intronic SNP rs4699260 [OR (LCI-UCI) = 1.5(1.3–1.8),

p=8.54E-06] in BANK1 (B-cell scaffold protein with ankyrin repeats 1) gene. Previously reported SLE

associations were replicated and some new variants were identified in same LD block (Figure 10.

ivA). Association signal was in the range of suggestive genomewide significance (Figure 10.ivB). We

also observed few low frequency variants in the same block. Figure 10.ivB also shows conditional

analysis based on peak common variants and two low frequency variants. Annotation of SLE associ-

ated variants for possible potentially functional effects revealed 23 variants in strong LD with peak

associated SNP as well as previously known GWAS tags (Figure 10.ivC). So, we performed haplo-

type analysis on all 24 potentially functional variations (Supplementary file 2). Haplotype association

analysis showed that haplotype 1 (HAP1) is the strongest risk haplotype [OR (LCI-UCI) = 1.3 (1.0–

1.4), p=0.004] (Figure 10.ivD), which differs from non-risk haplotype by at least 13 potentially func-

tional variations (Figure 10.ivE). An interesting eQTL (SNP 20, rs17208914) was observed in risk hap-

lotype which associate with the upregulation of SLC39A8 gene expression upon stimulation by LPS

in monocyte.

TNIP1
Multiple strong association signals were observed with TNIP1 (TNFAIP3-interacting protein 1) gene

(Supplementary file 2). The peak associated SNP in our analysis was rs62382335 [OR (LCI-UCI) =

1.37 (1.0–1.8), p=6.42E-05] located in a different block than previously known GWAS tag (Figure 11.

iA). Still, both were in strong LD with each other due to long LD block. We observed a modest asso-

ciation signal at this locus (Figure 11.iB). Conditional analysis showed that in addition to peak com-

mon variant, there were few low frequency variants associated with SLE (Figure 11.iB). We

generated haplotypes on 9 potentially functional variations including peak and GWAS tag SNP (Fig-

ure 11.iC). The haplotype analysis showed that haplotype 3 (HAP3) is the strongest risk haplotype
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[OR (LCI-UCI) = 1.30 (1.0–1.6), p=0.04] (Figure 11.iD). Median-joining network analysis showed that

risk haplotype (HAP3) differs from non-risk haplotype (HAP1) by 9 potentially functional changes

(Figure 11.iE), which include an eQTL associated with downregulation of TNIP1 and ANXA6

(Annexin A6) gene expression in PBMCs (Figure 11.iF).

TNFAIP3
Multiple strong association signals were observed in TNFAIP3 (tumor necrosis factor, alpha-induced

protein 3) gene in present study. The peak associated SNP rs57087937 [OR (LCI-UCI) = 1.9 (1.4–2.5),

p=2.05E-06] is a ENCODE defined regulatory variant with strong potential to impact binding of sev-

eral transcription factors in intron 1 region of TNFAIP3 gene. We also replicated previously reported

association with rs5029939 [OR (LCI-UCI) = 2.0 (1.5–2.9), p=2.86E-05] which was located in the same

LD block (Figure 11.iiA). In addition, some new potentially regulatory variants were observed in our

analysis (Supplementary file 2). Figure 11.iiB shows Manhattan plot of SLE association and condi-

tional analysis, respectively. We identified 20 potentially functional variations including peak SNP

and known GWAS alleles (SNP rs5029930 (OR=1.5, p=7.74355E-05), rs7750604 (OR=1.5,

p=8.37827E-05), rs719149 (OR=1.5, p=0.0001) and rs719150 (OR=1.5, p=0.0001) in strong LD

(D’�0.8) (Figure 11.iiC). Next, haplotypes were derived on these 20 markers and association analysis

was done. Haplotype association results showed that haplotype 3 (HAP3) which also carries previ-

ously known SLE alleles confer strongest risk [OR (LCI-UCI) = 2.2 (1.4–2.9), p=4.57E-05] to SLE (Fig-

ure 11.iiD). Median -joining network analysis shows that risk haplotype (HAP3) differs from non-risk

haplotype (HAP1) by 20 potentially functional variations (Figure 11.iiE).

CCL22-CX3CL1
Strong association signals were observed in CCL22 [Chemokine (C-C Motif) Ligand 22(CCL22)] and

CX3CL1 [Chemokine (C-X3-C Motif) Ligand 1] genes (Supplementary file 2).The peak association

was observed with SNP rs223889 [OR (LCI-UCI) = 1.5(1.2–1.7), p=4.93E-07] in CCL22 gene (Fig-

ure 11.iiiA). SLE association statistics is shown in Manhattan plot (Figure 11.iiiB). All the SLE associa-

tion was gone after conditioning on peak SNP. Peak SNP is an eQTL associated with down-

regulation of COQ9 gene expression in peripheral blood (Westra et al., 2013). Seven potentially

functional variations were identified in strong LD with peak signal (Figure 11.iiiC). Four common

haplotypes were identified based on 8 potentially functional variations. The haplotype association

test results showed that HAP2 [OR (LCI-UCI) = 1.5 (1.1–1.7), p=6.00E-04] confer strongest SLE risk

as compared to HAP1 which is protective [OR (LCI-UCI) = 0.74 (0.62–0.87), p=6.00E-04] (Figure 11.

iiiD). Median -joining network analysis showed that risk haplotype (HAP2) differs from non-risk haplo-

type (HAP1) by 8 potentially functional variations (Figure 11.iiiE). eQTL analysis showed that stron-

gest risk haplotype is associated with upregulation of CCL22 and downregulation of COQ9 gene

expression in monocytes (Figure 11.iiiF).

ZGLP1-RAVER1
We observed multiple SLE association signals at this locus which were mapped to various local genes

including ZGLP1 (zinc finger, GATA-like protein 1), FDX1L (Ferredoxin 1-like), RAVER1 (Homo sapi-

ens ribonucleoprotein, PTB-binding 1), ICAM1 (Intercellular adhesion molecule 1), and TYK2 (Tyro-

sine kinase 2) genes (Supplementary file 2). Peak SNP rs35186095 [OR (LCI-UCI) = 1.32 (1.0–1.6),

p=2.10E-04] was sitting in the middle of a big LD block (Figure 11.ivA), mapped to intron 9 of

ZGLP1 gene. Manhattan plot illustrate the SLE association statistics as shown in Figure 11.ivB. The

conditioning on first and second peak variant removed all the observed association. We identified

16 potentially functional variations in SLE associated block and derived haplotypes on these (Fig-

ure 11.ivC). Haplotype association analysis showed that haplotype 2 (HAP2) is the strongest risk

haplotype [OR (LCI-UCI) = 1.5 (1.0–2.1), p=0.01] (Figure 11.ivD). Median-joining network illustrates

number of variants that differs between risk (HAP2) and non-risk (HAP1) haplotypes (Figure 11.ivE).

The eQTL data from literature suggests that SLE risk haplotype is associated with upregulated

expression of ICAM3 in human monocytes and PBMCs (Figure 11.ivF).
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ICA1
We observed modest association of ICA1 (Islet Cell Autoantigen 1, 69kDa) gene with SLE in our

study.The peak association was observed with SNP rs74787882 [OR (LCI-UCI) = 0.67 (0.49–0.92),

p=1.61E-03] which was mapped to the previously associated LD block (Figure 12.iA). We replicated

previous association with SNP rs10156091 [OR (LCI-UCI) = 1.5 (1.1–1.9), p=0.02]. Manhattan plot

shown in Figure 12.iB shows the strength of SLE association at this locus. All the association was

gone after conditioning on peak variant. Haplotypes were derived based on four potentially func-

tional variants in the SLE associated LD block (Figure 12.iC). Haplotype association test results

showed that haplotype 2 (HAP2) is the strongest risk haplotype in ICA1 (Figure 12.iD). Median-Join-

ing network shows that HAP2 is differed from non-risk haplotype HAP3 by four potentially functional

variants (Figure 12.iE). Associated data is provided in Supplementary file 2.

BLK
The SLE association signal at BLK (B lymphoid tyrosine kinase) gene was moderate in our analysis.

However, we did replicate previously reported associations at this locus. SLE associated peak SNP

rs7822109 [OR (LCI-UCI) = 0.79 (0.68–0.92), p=8.57E-05] is a potentially functional (ENCODE, eQTL

effects) variant. It is in strong LD (D’�0.8) with previously reported SLE GWAS SNPs (Figure 12.iiA).

Manhattan plot in Figure 12.iiB shows SLE association strength in present study and conditional

analysis. We derived haplotypes based on 10 potentially functional variations in this LD block and

performed haplotype association test (Figure 12.iiC). Results shows that haplotype 1 [OR (LCI-UCI)

= 1.25 (1.0–1.5), p=0.04] pose strongest risk for SLE (Figure 12.iiD). Several eQTLs cumulated into

SLE risk haplotype 1 associate with down regulation of BLK and upregulation of FAM167A and

MTMR9 genes in peripheral blood (Figure 12.iiE-F). Associated data is provided in

Supplementary file 2.

ETS1
Peak SLE association at ETS1 (V-ETS avian erythroblastosis virus E26 oncogene homolog 1) gene

was observed with a low frequency SNP rs117684226 [OR (LCI-UCI) = 0.47 (0.35–0.63), p=4.87E-06]

located in the previously implicated LD block (Figure 12.iiiA). In addition, rs34516251 was the stron-

gest common SLE risk alleles located in the same block. Manhattan plot in Figure 12.iiiB shows the

SLE association statistics. Conditional analysis revealed that peak low frequency variant and stron-

gest common allele accounts for all the observed association at this locus in the present study (Fig-

ure 12.iiiB). We identified 6 potentially functional variants in SLE associated LD block and derived

haplotypes on them (Figure 12.iiiC). Haplotype analysis showed that haplotype 3 (HAP3) is the

greatest risk haplotype [OR (LCI-UCI) = 1.4 (1.0–1.7), p=0.008] (Figure 12.iiiD), which differs from

non-risk haplotype HAP2 by 5 variants as illustrated in Median-Joining network (Figure 12.iiiE).

Associated data is provided in Supplementary file 2.

TNFSF4
We observed two independent association signal in TNFSF4 (Tumor necrosis factor (ligand) super-

family member 4) gene region (Figure 13.iA). First signal was SNP rs4916313 [1.34 [OR (LCI-UCI) =

1.34 (1.1–1.5), p=0.0002] in previously associated LD block (block 1). This SNP is a strong regulatory

variant defined by ENCODE data. In block 1, we identified 11 potentially functional variations in

strong LD with peak SNP. Manhattan plot shows the strength of SLE association in block1 and

block2 (Figure 13.iB). Conditioning analysis on peak variants in each block showed that both the sig-

nals are independent of each other (Figure 13.iC) Haplotypes association analysis in block1 showed

that haplotype 2 (HAP2) was the greatest risk haplotype [OR (LCI-UCI) = 1.33 (1.1–1.6), p=0.003]

(Figure 13.iD), which differs from HAP1 by 11 variations (Figure 13.iF). In block 2, where SNP

rs1819717 was the strongest association [OR (LCI-UCI) = 1.36 (1.1–1.6), p=2.29E-05] was mapped to

an uncharacterized gene LOC100506023. Haplotype analysis based on seven potentially functional

SNPs showed that HAP1 which carries multiple potentially functional variants pose strongest risk for

SLE from this region (Figure 13.iE). Median-joining network analysis shows distribution of various

risk alleles between risk and non-risk haplotypes from block 2 (Figure 13.iG).

Associated data is provided in Supplementary file 2.
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NMNAT2
We observed a modest association of polymorphisms in NMNAT2 (Nicotinamide nucleotide adenylyl

transferase 2) gene with SLE in present study (Supplementary file 2). The peak associated SNP was

though a low frequency variant rs41272536 [OR (LCI-UCI) = 2.9 (2.0–4.0), p=1.87E-08] but reached

genome wide level of significance. It was pretty much in LD with previously reported tag SNP (Fig-

ure 13.iiA). This SNP is a ENCODE defined strong regulatory variant which can impact binding of

several transcription factors, enhancers and insulators. Another strongly associated common variant

was SNP rs111487113. Conditional analysis on peak and strongest common alleles suggested that

two effects are independently associated with SLE (Figure 13.iiB). We identified 7 potentially func-

tional variations in strong LD with the strongest common variant and derived haplotypes (Figure 13.

iiC). Haplotype association analysis showed that haplotype 3 (HAP3) was the strongest risk haplo-

type [OR (LCI-UCI) = 1.3 (1.0–1.6), p=0.04] (Figure 13.iiD-E). We also derived haplotypes based on

three potential functional variants in modest LD with low frequency peak variant and found that

HAP3 which carry low frequency risk allele have strong SLE risk (OR=2.7) for SLE (Figure 13.iiF-H).

Also, we found that eQTL variations in low frequency risk haplotype were associated with down reg-

ulation of SMG7 (Homo sapiens smg-7 homolog, nonsense mediated mRNA decay factor) and upre-

gulation of NCF2 (Neutrophil cytosolic factor 2) gene expression in monocytes and PBMCs

(Figure 13.iiI).

XKR6
We observed more than one association signals at XKR6 (XK, Kell blood group complex subunit

related family, member 6) gene (Supplementary file 2). The peak associated SNP was rs4840545

[OR (LCI-UCI) = 1.95 (1.5–2.5), p=1.27E-07] was a low frequency marker mapped to a different LD

block than previously reported GWAS tag (Figure 13.iiiA). SNP rs7000132 was the strongest com-

mon allele associated with SLE at this locus but it was not in complete LD with peak low frequency

variant as shown by the conditional analysis (Figure 13.iiiB). We identified 10 potentially functional

variations in strong LD with rs7000132 including previously reported SLE associated rs11783247 SNP

and derived haplotypes (Figure 13.iiiC) Haplotype association test showed that HAP1 was the great-

est risk haplotype associated with SLE [OR (LCI-UCI) = 1.25 (1.0–1.4), p=0.005] (Figure 13.iiiD).

Median-Joining network analysis illustrated that risk haplotype 1 differs from non-risk haplotype

2 by several eQTL SNPs (Figure 13.iiiE), which are associated with down regulation of XKR6, MSRA

gene expression and upregulation of MTMR9 and CTSB gene expression in monocytes (Figure 13.

iiiF).

Statistical analyses
We used SNP & Variation suite (SVS) of Golden Helix (version 7.6.8 win64, Golden Helix, Inc., Boze-

man, MT, www.goldenhelix.com) for genetic analysis. SNP conditioning analysis was done using

regression module of SVS. Haploview v.2 software was used for visualization of LD plots and haplo-

type analysis (Barrett et al., 2005). GraphPad Prism 6.0 software was used for statistical analysis and

graphics. Correlations between continuous variables were determined using Pearson’s r in GraphPad

Prism 6.0. Discontinuous variables were compared by Fisher’s exact test. P values <0.05 were con-

sidered significant.

Acknowledgements
We thank the many SLE patients and control participants whose sample contributions were essential

for these studies. We also thank all of the personnel in the IIMT Genomics Core at UT Southwestern

Medical Center for their excellent technical support and participation. These studies were supported

by multiple grants from the NIH, the Alliance for Lupus Research, and the Walter M. and Helen D.

Bader Center for Research on Arthritis and Autoimmune Diseases.

Raj et al. eLife 2016;5:e12089. DOI: 10.7554/eLife.12089 41 of 52

Research article Genomics and evolutionary biology Human biology and medicine

www.goldenhelix.com
http://dx.doi.org/10.7554/eLife.12089


Additional information

Funding

Funder Grant reference number Author

Alliance for Lupus Research Prithvi Raj
Ran Song
Shaheen Khan

Walter M. and Helen D. Bader
Center

Edward K Wakeland

NIH Office of the Director AR055503 David R Karp
Quan Zhen Li
Patrick M Gaffney
Edward K Wakeland

NIH Office of the Director AI045196 Edward K Wakeland

NIH Office of the Director AR058959 Graham B Wiley
Jennifer A Kelly

The funding from above listed agencies supported sample collection, data generation, data
analysis, etc., and man power for the present study

Author contributions

PR, EKW, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting

or revising the article, Contributed unpublished essential data or reagents; ER, MM, GBW, JAK, CC,

COJ, Acquisition of data, Analysis and interpretation of data, Contributed unpublished essential

data or reagents; RS, SK, KV, BZ, ID, Acquisition of data, Analysis and interpretation of data, Draft-

ing or revising the article; BEW, Analysis and interpretation of data, Drafting or revising the article,

Contributed unpublished essential data or reagents; CA, CL, FC-J, BRL, NJO, CKG, CAW, JBH,

SKN, JAJ, BPT, QZL, Conception and design, Acquisition of data, Analysis and interpretation of

data; CP, Conception and design, Analysis and interpretation of data, Drafting or revising the article;

DRK, PMG, Conception and design, Acquisition of data, Analysis and interpretation of data, Drafting

or revising the article

Author ORCIDs

Edward K Wakeland, http://orcid.org/0000-0002-7107-0992

Ethics

Human subjects: All the study subjects gave their written informed consent for the study. All the

research protocols and methods employed were approved by UT Southwestern Institutional Review

Board.

Additional files
Supplementary files
. Supplementary file 1. (A) SLE patients and controls analyzed in this study (B) Genomic intervals of

SLE risk loci targeted for sequencing (C) Characteristics of unannotated/novel common variants

(MAF�0.05) detected in this study (D) Peak association signal detected for each of the 28 SLE risk

loci (E) Association status of previously published GWAS tagging SNPs (F) Sequencing variants that

are strongly associated with SLE.

DOI: 10.7554/eLife.12089.021

. Supplementary file 2. Summary of functional properties of all variants in tight LD with disease tag-

ging SNPs used for haplotype analysis.

DOI: 10.7554/eLife.12089.022

. Supplementary file 3. (A) Conditional analysis on SLE associated 16 peak SNPs.(B) Calculation of

joint PAR on 16 SLE risk loci.

DOI: 10.7554/eLife.12089.023

Raj et al. eLife 2016;5:e12089. DOI: 10.7554/eLife.12089 42 of 52

Research article Genomics and evolutionary biology Human biology and medicine

http://orcid.org/0000-0002-7107-0992
http://dx.doi.org/10.7554/eLife.12089.021
http://dx.doi.org/10.7554/eLife.12089.022
http://dx.doi.org/10.7554/eLife.12089.023
http://dx.doi.org/10.7554/eLife.12089


Major datasets

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL

Database, license,
and accessibility
information

Fairfax BP,
Humburg P, Makino
S, Naranbhai V,
Wong D, Lau E,
Jostins L, Plant K,
Andrews R, McGee
C, Knight JC

2014 Innate Immune Activity Conditions
the Effect of Regulatory Variants
upon Monocyte Gene Expression

http://www.ncbi.nlm.nih.
gov/pmc/articles/
PMC4064786/

Publicly available at
the NCBI Gene
Expression Omnibus
(Accession no:
PMC4064786).

Raj T, Rothamel K,
Mostafavi S, Ye C,
Lee MN, Replogle
JM, Feng T, Lee M,
Asinovski N,
Frohlich et al.

2014 Polarization of the effects of
autoimmune and
neurodegenerative risk alleles in
leukocytes. Science

http://classic.science-
mag.org/content/344/
6183/519.long

Science, 2014. 344
(6183): p. 519-23

Westra H-J, Peters
MJ, Esko T,
Yaghootkar H,
Schurmann C,
Kettunen J,
Christiansen MW,
Fairfax BP, Schramm
K, Powell JE,
Zhernakova A,
Zhernakova DV,
Veldink JH, Van den
Berg LH, Karjalainen
J, Withoff S,
Uitterlinden AG,
Hofman A,
Rivadeneira F, ’t
Hoen PAC, Reinmaa
E, Fischer K, Nelis
M, Milani L, Melzer
D, Ferrucci L,
Singleton AB,
Hernandez DG,
Nalls MA, Homuth
G, Nauck M, Radke
D, Völker U, Perola
M, Salomaa V,
Brody J, Suchy-
Dicey A, Gharib SA,
Enquobahrie DA,
Lumley T,
Montgomery GW,
Makino S, Prokisch
H, Herder C, Roden
M, Grallert H,
Meitinger T, Strauch
K, Li Y, Jansen RC,
Visscher PM, Knight
JC, Psaty BM,
Ripatti S, Teumer A,
Frayling TM,
Metspalu A, van
Meurs JBJ, Franke L

2013 Systematic identification of trans
eQTLs as putative drivers of known
disease associations

http://www.nature.com/
ng/journal/v45/n10/full/
ng.2756.html

Nat Genet, 2013. 45
(10): p. 1238-43

The 1000 Genomes
Project Consortium

2015 A global reference for human
genetic variation

http://www.nature.com/
nature/journal/v526/
n7571/full/nature15393.
html

Nature, 2015. 526
(7571): p. 68-74

Lappalainen et al. 2013 Transcriptome and genome
sequencing uncovers functional
variation in humans

http://www.geuvadis.
org/web/geuvadis/RNA-
seq-project

Nature, 2013. 501
(7468): p. 506-511

Raj et al. eLife 2016;5:e12089. DOI: 10.7554/eLife.12089 43 of 52

Research article Genomics and evolutionary biology Human biology and medicine

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064786/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064786/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4064786/
http://classic.sciencemag.org/content/344/6183/519.long
http://classic.sciencemag.org/content/344/6183/519.long
http://classic.sciencemag.org/content/344/6183/519.long
http://www.nature.com/ng/journal/v45/n10/full/ng.2756.html
http://www.nature.com/ng/journal/v45/n10/full/ng.2756.html
http://www.nature.com/ng/journal/v45/n10/full/ng.2756.html
http://www.nature.com/nature/journal/v526/n7571/full/nature15393.html
http://www.nature.com/nature/journal/v526/n7571/full/nature15393.html
http://www.nature.com/nature/journal/v526/n7571/full/nature15393.html
http://www.nature.com/nature/journal/v526/n7571/full/nature15393.html
http://www.geuvadis.org/web/geuvadis/RNAseq-project
http://www.geuvadis.org/web/geuvadis/RNAseq-project
http://www.geuvadis.org/web/geuvadis/RNAseq-project
http://dx.doi.org/10.7554/eLife.12089


Pazin MJ 2015 Using the ENCODE Resource for
Functional Annotation of Genetic
Variants.

https://www.encodepro-
ject.org/

Cold Spring Harb
Protoc, 2015. 2015(6):
p. 522-36

Boyle AP1, Hong
EL, Hariharan M,
Cheng Y, Schaub
MA, Kasowski M,
Karczewski KJ, Park
J, Hitz BC, Weng S,
Cherry JM, Snyder
M

2012 Annotation of functional variation in
personal genomes using
RegulomeDB

http://regulomedb.org/ Genome Res, 2012.
22(9): p. 1790-7.

References
Abecasis GR, Altshuler D, Auton A, Brooks LD, Durbin RM, Gibbs RA, Hurles ME, McVean GA, Consortium G,
1000 Genomes Project Consortium. 2010. A map of human genome variation from population-scale
sequencing. Nature 467:1061–1073. doi: 10.1038/nature09534

Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, Handsaker RE, Kang HM, Marth GT, McVean GA,
Consortium G, 1000 Genomes Project Consortium. 2012. An integrated map of genetic variation from 1,092
human genomes. Nature 491:56–65. doi: 10.1038/nature11632

Adrianto I, Wen F, Templeton A, Wiley G, King JB, Lessard CJ, Bates JS, Hu Y, Kelly JA, Kaufman KM, Guthridge
JM, Alarcón-Riquelme ME, BIOLUPUS and GENLES Networks, Anaya JM, Bae SC, Bang SY, Boackle SA, Brown
EE, Petri MA, Gallant C, Ramsey-Goldman R, Reveille JD, Vila LM, Criswell LA, Edberg JC, Freedman BI,
Gregersen PK, Gilkeson GS, Jacob CO, James JA, Kamen DL, Kimberly RP, Martin J, Merrill JT, Niewold TB,
Park SY, Pons-Estel BA, Scofield RH, Stevens AM, Tsao BP, Vyse TJ, Langefeld CD, Harley JB, Moser KL, Webb
CF, Humphrey MB, Montgomery CG, Gaffney PM. 2011. Association of a functional variant downstream of
TNFAIP3 with systemic lupus erythematosus. Nature Genetics 43:253–258. doi: 10.1038/ng.766

Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR. 2010. A
method and server for predicting damaging missense mutations. Nature Methods 7:248–249. doi: 10.1038/
nmeth0410-248

Alarcón-Segovia D, Alarcón-Riquelme ME, Cardiel MH, Caeiro F, Massardo L, Villa AR, Pons-Estel BA, on behalf
of the Grupo Latinoamericano de Estudio del Lupus Eritematoso (GLADEL). 2005. Familial aggregation of
systemic lupus erythematosus, rheumatoid arthritis, and other autoimmune diseases in 1,177 lupus patients
from the GLADEL cohort. Arthritis & Rheumatism 52:1138–1147. doi: 10.1002/art.20999

Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, Harley JB. 2003. Development of
autoantibodies before the clinical onset of systemic lupus erythematosus. New England Journal of Medicine
349:1526–1533. doi: 10.1056/NEJMoa021933

Armstrong DL, Zidovetzki R, Alarcón-Riquelme ME, Tsao BP, Criswell LA, Kimberly RP, Harley JB, Sivils KL, Vyse
TJ, Gaffney PM, Langefeld CD, Jacob CO. 2014. GWAS identifies novel SLE susceptibility genes and explains
the association of the HLA region. Genes and Immunity 15:347–354. doi: 10.1038/gene.2014.23

Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S, McVean GA,
Abecasis GR.1000 Genomes Project Consortium.The Genomes Project C. 2015. A global reference for human
genetic variation. Nature 526:68–74. doi: 10.1038/nature15393

Bailey SD, Zhang X, Desai K, Aid M, Corradin O, Cowper-Sal�lari R, Akhtar-Zaidi B, Scacheri PC, Haibe-Kains B,
Lupien M. 2015. ZNF143 provides sequence specificity to secure chromatin interactions at gene promoters.
Nature Communications 2:6186. doi: 10.1038/ncomms7186

Balding DJ. 2006. A tutorial on statistical methods for population association studies. Nature Reviews Genetics
7:781–791. doi: 10.1038/nrg1916

Banchereau J, Steinman RM. 1998. Dendritic cells and the control of immunity. Nature 392:245–252. doi: 10.
1038/32588

Bandelt HJ, Macaulay V, Richards M. 2000. Median networks: speedy construction and greedy reduction, one
simulation, and two case studies from human mtDNA. Molecular Phylogenetics and Evolution 16:8–28. doi: 10.
1006/mpev.2000.0792

Barreiro LB, Quintana-Murci L. 2010. From evolutionary genetics to human immunology: how selection shapes
host defence genes. Nature Reviews Genetics 11:17–30. doi: 10.1038/nrg2698

Bernstein BE, Stamatoyannopoulos JA, Costello JF, Ren B, Milosavljevic A, Meissner A, Kellis M, Marra MA,
Beaudet AL, Ecker JR, Farnham PJ, Hirst M, Lander ES, Mikkelsen TS, Thomson JA. 2010. The NIH roadmap
epigenomics mapping consortium. Nature Biotechnology 28:1045–1048. doi: 10.1038/nbt1010-1045

Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, Karczewski KJ, Park J, Hitz BC, Weng S,
Cherry JM, Snyder M. 2012. Annotation of functional variation in personal genomes using RegulomeDB.
Genome Research 22:1790–1797. doi: 10.1101/gr.137323.112

Bruzzi P, Green SB, Byar DP, Brinton LA, Schairer C. 1985. Estimating the population attributable risk for
multiple risk factors using case-control data. American Journal of Epidemiology 122:904–914.

Bønnelykke K, Matheson MC, Pers TH, Granell R, Strachan DP, Alves AC, Linneberg A, Curtin JA, Warrington
NM, Standl M, Kerkhof M, Jonsdottir I, Bukvic BK, Kaakinen M, Sleimann P, Thorleifsson G, Thorsteinsdottir U,
Schramm K, Baltic S, Kreiner-Møller E, Simpson A, St Pourcain B, Coin L, Hui J, Walters EH, Tiesler CM, Duffy
DL, Jones G, Ring SM, McArdle WL, Price L, Robertson CF, Pekkanen J, Tang CS, Thiering E, Montgomery

Raj et al. eLife 2016;5:e12089. DOI: 10.7554/eLife.12089 44 of 52

Research article Genomics and evolutionary biology Human biology and medicine

https://www.encodeproject.org/
https://www.encodeproject.org/
http://regulomedb.org/
http://dx.doi.org/10.1038/nature09534
http://dx.doi.org/10.1038/nature11632
http://dx.doi.org/10.1038/ng.766
http://dx.doi.org/10.1038/nmeth0410-248
http://dx.doi.org/10.1038/nmeth0410-248
http://dx.doi.org/10.1002/art.20999
http://dx.doi.org/10.1056/NEJMoa021933
http://dx.doi.org/10.1038/gene.2014.23
http://dx.doi.org/10.1038/nature15393
http://dx.doi.org/10.1038/ncomms7186
http://dx.doi.org/10.1038/nrg1916
http://dx.doi.org/10.1038/32588
http://dx.doi.org/10.1038/32588
http://dx.doi.org/10.1006/mpev.2000.0792
http://dx.doi.org/10.1006/mpev.2000.0792
http://dx.doi.org/10.1038/nrg2698
http://dx.doi.org/10.1038/nbt1010-1045
http://dx.doi.org/10.1101/gr.137323.112
http://dx.doi.org/10.7554/eLife.12089


GW, Hartikainen AL, Dharmage SC, Husemoen LL, Herder C, Kemp JP, Elliot P, James A, Waldenberger M,
Abramson MJ, Fairfax BP, Knight JC, Gupta R, Thompson PJ, Holt P, Sly P, Hirschhorn JN, Blekic M, Weidinger
S, Hakonarsson H, Stefansson K, Heinrich J, Postma DS, Custovic A, Pennell CE, Jarvelin MR, Koppelman GH,
Timpson N, Ferreira MA, Bisgaard H, Henderson AJ, Australian Asthma Genetics Consortium (AAGC), EArly
Genetics and Lifecourse Epidemiology (EAGLE) Consortium. 2013. Meta-analysis of genome-wide association
studies identifies ten loci influencing allergic sensitization. Nature Genetics 45:902–906. doi: 10.1038/ng.2694

Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. 1997a. Inflammatory stimuli induce accumulation of MHC
class II complexes on dendritic cells. Nature 388:782–787. doi: 10.1038/42030

Cella M, Sallusto F, Lanzavecchia A. 1997b. Origin, maturation and antigen presenting function of dendritic cells.
Current Opinion in Immunology 9:10–16. doi: 10.1016/S0952-7915(97)80153-7

Chung SA, Taylor KE, Graham RR, Nititham J, Lee AT, Ortmann WA, Jacob CO, Alarcón-Riquelme ME, Tsao BP,
Harley JB, Gaffney PM, Moser KL, Petri M, Demirci FY, Kamboh MI, Manzi S, Gregersen PK, Langefeld CD,
Behrens TW, Criswell LA.SLEGEN. 2011. Differential Genetic Associations for Systemic Lupus Erythematosus
Based on Anti–dsDNA Autoantibody Production. PLoS Genetics 7:e1001323. doi: 10.1371/journal.pgen.
1001323

Cirulli ET, Goldstein DB. 2010. Uncovering the roles of rare variants in common disease through whole-genome
sequencing. Nature Reviews Genetics 11:415–425. doi: 10.1038/nrg2779

Claus EB, Schildkraut JM, Thompson WD, Risch NJ. 1996. The genetic attributable risk of breast and ovarian
cancer. Cancer 77:2318–2324. doi: 10.1002/(SICI)1097-0142(19960601)77:11<2318::AID-CNCR21>3.0.CO;2-Z

Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. 2009. Mapping complex disease traits with global gene
expression. Nature Reviews Genetics 10:184–194. doi: 10.1038/nrg2537

Cresswell P. 1994. Assembly, transport, and function of MHC class II molecules. Annual Review of Immunology
12:259–291. doi: 10.1146/annurev.iy.12.040194.001355
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Hubbard TJ, Kellis M, Kent WJ, Lieb JD, Margulies EH, Myers RM, Snyder M, Stamatoyannopoulos JA,
Tenenbaum SA, Weng Z, White KP, Wold B, Khatun J, Yu Y, Wrobel J, Risk BA, Gunawardena HP, Kuiper HC,
Maier CW, Xie L, Chen X, Giddings MC, Bernstein BE, Epstein CB, Shoresh N, Ernst J, Kheradpour P, Mikkelsen
TS, Gillespie S, Goren A, Ram O, Zhang X, Wang L, Issner R, Coyne MJ, Durham T, Ku M, Truong T, Ward LD,
Altshuler RC, Eaton ML, Kellis M, Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Tanzer A,
Lagarde J, Lin W, Schlesinger F, Xue C, Marinov GK, Khatun J, Williams BA, Zaleski C, Rozowsky J, Röder M,
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D, Giger T, Tikhonov A, Sultan M, Bertier G, MacArthur DG, Lek M, Lizano E, Buermans HPJ, Padioleau I,
Schwarzmayr T, Karlberg O, Ongen H, Kilpinen H, Beltran S, Gut M, Kahlem K, Amstislavskiy V, Stegle O,
Pirinen M, Montgomery SB, Donnelly P, McCarthy MI, Flicek P, Strom TM, The Geuvadis Consortium , Lehrach
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