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An age-structured SEIR model simulates the propagation of COVID-19 in
the population of Northern Ireland. It is used to identify optimal timings
of short-term lockdowns that enable long-term pandemic exit strategies by
clearing the threshold for herd immunity or achieving time for vaccine
development with minimal excess deaths.

1. Introduction

Epidemiological population models are developed to analyse the characteristics of
infectious disease propagation such as the distribution of epidemic sizes [1], to pre-
dict the possible course of future epidemics [2], and to determine the efficacy of
possible interventions [3]. These are especially useful when there is limited empiri-
cal data during the early stages of an outbreak and a rapid response of allocating
resources at scale is required to pre-empt the exponential growth of case numbers.
In vaccination programmes, mathematical models can indicate what fraction of the
population would need to be immunized in order to control the epidemic. In such
a way, modelling assists with planning interventions in public health, particularly
when trials or direct measures of impact are unavailable [4].

Compartmental population models capture the mechanisms of infectious dis-
ease transmission in a population. In such models, compartments represent the
different statuses of an individual regarding the disease and so the size of the
compartments indicates how much of the population is in a particular state at a
given time. Simplest is the SIR (susceptible-infectious-recovered) model, where
the infectious compartment accounts for the number of individuals in the popu-
lation who currently can transmit the disease. A proportion of susceptible
individuals who encounter them are infected while infectious individuals recover
or perish with a given rate. More sophisticated models of this type may include an
‘exposed’ compartment and may segregate the population by age, gender, or
physical location. Such models have been widely used to simulate COVID-19
[5], incorporating complications such as age- or space-structure and multiple
infectious compartments to delineate the severity of symptoms. Examples simu-
lating the outbreak in Wuhan include an age-structured SEIIR model [6], and an
SEIR model [7] that distinguishes between ‘true’ cases and the estimated fraction
of these that are detected. Some approaches separate symptomatic and asympto-
matic infections, such as a model calibrated to US states [8]. An age-structured
SEIIR model for Belgium separates the infection into three levels of severity
[9], while an SEIRS model allowing for re-infection has been trained on data
from Northern Ireland and South Korea [10]. Others are used to quantify the
effect of national lockdowns, comparing their impact across countries [11], and
testing optimal lockdown and control measures to identify a viable pandemic
‘exit strategy’ [12]. Space-structured network models divide states or nations
into multiple smaller communities, with examples including an age-structured
model for Scotland [13]; for the UK [14]; for Italy [15]; and for Georgia, USA
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[16]. Such a spatially structured approach can incorporate non-
uniform spatial factors such as age distribution and population
density, allowing researchers to forecast the regions of a
country likely to be worst affected or to simulate varying
regional interventions. An example is a model for the UK
[17] that compares the use of national lockdowns with loca-
lized lockdowns triggered by regional levels of intensive care
unit (ICU) bed capacity.

Mathematical models are employed practically to test the
effectiveness of proposed interventions such as further lock-
downs, mask use, and social distancing on the possible
course of the pandemic. Researchers have sought to quantify
the effect of timing and duration of lockdowns [18], finding
that timing restrictions within an optimal opportunity
window may be critical in controlling peak infections. Others
have found that either a longer eradication strategy or a shorter
curve-flattening strategy may be preferable when accounting
for economic concerns [19]. Throughout 2020, the UK govern-
ment’s decisions were influenced by modelling by the group at
Imperial College London [20], and in November 2020 model
projections were the reported rationale for the four-week
national lockdown in England. Concerns about a possible
second wave, combined with the hope of an imminent vaccine
led to further high-intensity ‘circuit break’ lockdowns. As these
need to be maximally effective and as short as possible to mini-
mize further economic disruption, a particular application of
compartmental models was to identify optimal use of circuit
breaks [21,22], while other work has explored switching strat-
egies between lockdowns and keeping communities open [23].
Further research has concerned the question of ‘unlocking’,
with both agent-based [24] and SEIR compartmental models
[25] favouring exit strategies that gradually release restrictions.

In this paper, we calibrate an age-structured SEIIR model
to the age distribution of the population of Northern Ireland
and simulate the COVID-19 pandemic throughout 2020 and
early 2021, computationally fitting parameters such as infec-
tion rates. This model is employed to explore hypothetical
implementations of lockdowns. In §4, this involves testing
the influence of the duration and intensity of a lockdown
and the possibility of restrictions only applying to the more
vulnerable members of society. In §5, we test trigger mechan-
isms that could be used during a future pandemic for
implementing restrictions according to the number of hospi-
tal occupants. In such cases, we study the impact of the
sensitivity of the trigger and the delay until lockdown
begins on clinical outcomes such as the overall cumulative
deaths from the pandemic.

2. Model description

We divide the population of Northern Ireland (approx.
1894 000) into five 20-year age classesi=1, ..., 5, using demo-
graphic data [26]. The total population of each age class is
considered invariant over the time-frame of the simulations,
but they are each subdivided into eight compartments that
reflect the status of individuals with respect to the disease,
and so the sizes of these compartments are updated according
to the epidemiological dynamics described below.
For age class i, the population P; consists of

— §; susceptible individuals who have never contracted the
disease.

— E; exposed individuals, who are currently infected with [ 2 |

the disease but are not yet able to transmit it.

— I5,; subclinical infectious individuals, who have the dis-
ease currently and may infect others but who do not
display recognizable symptoms. This includes both
pre-symptomatic individuals who will later develop
symptoms, and asymptomatic individuals, who will
never display symptoms.

— I, clinical infectious individuals, who have the disease
currently, manifest symptoms and may infect others,
but who do not yet require hospitalization treatment.

— H;,; clinical infectious individuals who have been
progressed to hospital.

— H,; clinical infectious individuals who have been
progressed from general hospital wards to ICU.

— R, recovered individuals who are no longer capable of
either spreading the disease or of contracting it.

— D; deceased individuals.

Thus,
Pi=Si+Ei+Isi+Ici+Hii+H,i+Ri+Di
and the total population of the country is given by
P= 27'5:1 P;.

Infectious individuals come into contact with (any) individ-
uals of an age distribution governed by a contact matrix c
[27], and the base probability of infection is determined by
the transmission rate 8. Data for the number of contacts
made between individuals of each age class are obtained
from an empirical study [27] which estimated contacts separ-
ately for ‘home’, ‘work’, ‘school’ and ‘other’ environments for
5-year age classes up to age 80. For this study, we condensed
the average of the matrices for the UK and Ireland, with the
process fully described in S1.2 of the electronic supple-
mentary material. The final contact matrix ¢ and S may
vary during the simulation, for example as school closures
reduce the contact for the youngest age class, and as social
distancing reduces the value of f across the entire population.
Infectious individuals are divided into two categories: subcli-
nical and clinical, who have a relative infectiousness ig=1
and ic=0.5869, respectively, so that on average 56.1% of
infections occur during the pre-symptomatic stage of a clini-
cal case [28-30], given that each such case spends on average
3 days in the subclinical compartment followed by 4 days in
the clinical compartment." Additional infections occur due to
subclinical cases that do not progress and may have been
undetected in these studies, and due to the emphasis on
symptomatic individuals self-isolating a higher transmission
rate for the subclinical compartment is not unreasonable.
The number of individuals of age class i who move to the
exposed compartment is further influenced by their sus-
ceptibility o; [31]. Thus, Baic;(isls;+iclc;) would be the
rate of new infections generated in class i from class j, assum-
ing that all members of i are susceptible. Summing over
the infectious compartments of all classes, and scaling
by the probability S;P;! of an individual of class i being
susceptible gives the total rate of new exposed cases for this
age class.”

Exposed individuals become subclinical infectious at
rate o (1/5.1 [32,33]). They do not show symptoms at
this stage but can transmit the virus to others. With rate
vs (1/3 [6]) they leave this class, and an age-dependent [31]
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Table 1. Summary: parameters chosen based on external data.

parameter
incubation rate c
recovery rate from subclinical Vs
recovery rate from clinical Ye
progression rate from general hospital o
progression rate from ICU 13
age-dependent susceptibility to infection weighting a;
age-dependent probability of clinical case €;
age-dependent probability of hospitalization i
age-dependent probability of ICU hy,i
age-dependent probability of death in hospital ward i
age-dependent probability of death in ICU i
contact matrices between age classes c
fraction €; develop clinical symptoms, while the remainder
join the recovered compartment. Those who have moved
to the clinical infectious group then leave it with rate yc (1/
4 [6]). Of them, an age-dependent fraction h;; subsequently
require hospitalization, and a fraction h,; of that compart-
ment will progress further to ICU [34]. We assume that
transmission from hospitalized individuals is negligible as
they are isolated. Those in hospital and those in ICU have
an age-dependent probability d4;; and d,; respectively, of
death [34]. These are recorded as they exit that compartment,
after an average of 11 days in general ward and 8 days in ICU

(thus leaving with rates 6, =1/11 and &, =1/8 respectively),
based on a major study in China [35]> Any individuals
who do not progress to a more serious stage enter the
recovered compartment instead.

Probabilities of requiring more serious treatment and of
death (e, h1, hy, dv;, da;) are dependent upon age class i,
but the time spent in each stage and thus the rates of pro-
gression (o, ys, yc, 61, 62) are treated as universal across all
ages (although some studies indicate that average duration
of hospital stays may increase with age [39]). The age-
weighted probabilities of progression to hospital, ICU, and
death were obtained from the estimates of the Imperial College
COVID-19 Response Team [34] using data from March-May
2020 recorded by the COVID-19 Hospitalization in England
Surveillance System (CHESS). We have adapted these esti-
mates for our simpler model-—combining the probabilities of
death in ICU and step-down after ICU, and modifying the
probability of death in general ward such that it is only
applied to the fraction of patients who are not progressed to
ICU. Parameters fixed using external sources are summarized
in table 1.

Hence, the rates of change for the compartments of class i
are given by the following system of ODEs:

ds; o i
ditl = —,BaiS,‘Pi_l Z Cj,i(lsls,j + ZCIC,]')
j=1
dE; NS e
qp = PSP > cjilisls; +icle;) — oF;
j=1
dls;
dil = oF; — vsls,

symbol

value source
1/5.1 [32,33]
13 [6,40]
1/4 (7 days infectious) [6,40]
m [35]
1/8 [35]
— [31]
_ [31]
— [34]
— [34]
— [34]
_ [34]
— [27]
dlc;
Ti = €vslsi — yclci
dHy,
dtL = hyivclc;i — 81Hy,i
dHZ,i . ) o )
T hyi61Hyi — 8:Ha i
dR;
e (1 =€) ysls; + (1 = hi)vclc,
+ (1 —hyi —di;)61H1i + (1 — da)62Hy i
and dthi =dy;61H1,i + doi6:Hy .

These are discretized using the Euler method with step size
of one day. The process (excluding transmission between
different age classes) is illustrated in figure 1.

For a given simulation, we iterate for 400 days beginning
on 1 January 2020. This is divided into nine distinct intervals
based on policy in Northern Ireland, and during a simulation
the transmission rate 8 must be selected for each of these
intervals alongside other parameters that could not be deter-
mined a priori. These time periods and the parameters to be
fitted are described in sections S1.1 and S.1.4 of the electronic
supplementary material, respectively.

3. Fitted simulation

The simulation which best predicts the 7-day rolling average
of hospital admissions (available from the Department of
Health [41]) is illustrated in figures 2-4. The accompanying
set of parameters are contained in table S3 of the electronic
supplementary material, giving a coefficient of determination
R?=0.9481. The procedure for identifying these are described
in S52.1-2.2 with additional results in 52.3.

Aside from underestimating the number of hospital
admissions in those aged 60-80 during early 2021
(figure 2a,b, purple), the model is able to accurately repro-
duce the behaviour of the pandemic. The total hospital
occupancy during this period is consequently also lower
than that recorded (figure 3a,b, blue). This could also be
partly due to longer hospital stays during the winter,
noting that such durations vary considerably between
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Figure 1. Compartmental flowchart of disease progression within each age class i.
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Figure 2. 7-day rolling average of daily new hospital admissions. (a) Empirical data and (b) best fit of the model.

countries and studies [36]. Total ICU occupancy and deaths
are closely predicted, with only a slight over-estimate of
total deaths (figure 3a,b, yellow) coming from the 60-80 age
class (electronic supplementary material, figure S6) while
deaths in the 80+ age class are slightly underestimated.

The effective reproduction ratio R; is calculated daily
(figure 4b) using the next generation matrix method [42,43].
It is obtained from the largest eigenvalue of a 15x15
matrix using the current base transmission rate j, the time-
dependent contact matrices, and the susceptible proportion
of each age class. This yields an estimated R; of approxi-
mately 5.08 during the initial stage of the pandemic, and
thus a basic reproduction ratio of Rox5, commensurate
with the wide range of estimates in other work.* The

measures introduced during the initial spring 2020 lock-
down, and the period of strengthened restrictions in late
October 2020, successfully reduced the R; value below one,
while the two circuit breaks only just brought it to down
to a value of one. Note that R; is not constant in each
time period, decreasing as the proportion of susceptible
individuals gradually declines.

We further calculate the minimum thresholds of the pro-
portion of the population (assuming uniform behaviour
across all age classes) who would need to be non-susceptible
(whether because of natural immunity, recovery, or vaccination)
to control the value of R; as a function of the transmission rate 3,
and these are presented for each of the three sets of contact
matrices used at different periods of the simulation: in
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conditions, schools closed. (c) Post-pandemic social conditions, schools open.

figure 5a schools are open, and the contact matrices follow their
pre-pandemic values. In figure 5b,c, fitted post-pandemic con-
tacts are used with schools closed and open, respectively. The
estimated § values at each stage of the pandemic (electronic sup-
plementary material, table S3) are indicated on the appropriate
figure panel, so given pre-pandemic rates we would require
80.4% of the population to be immune in order to achieve
Rt <1 (herd immunity) where the virus would fail to establish
(figure 5a, red cross), while the first lockdown (B, line in

figure 5b) is completely effective and requires no population
immunity. This proportion can also be directly estimated by
1—1/Ry, for example in [48] who calculated a smaller fraction
for the UK based on early estimates of R.

Further results of the model are the following.

— 9.5% of the population of Northern Ireland had con-
tracted COVID-19 between the introduction of the virus
and early February 2021 (figure 4a), whether they had
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shown symptoms or not. This is in comparison with
104 274 (approx. 5.5% of the population) cases identified
by at least one positive laboratory-recorded test by
1 February 2021 [41].

At no point after 24 March 2020 did either the trans-
mission rate B or reproduction ratio R; return to those of
the initial period (figure 4b). The most severe spike in
cases in winter 2020 was due to a transmission rate
approximately 3/4 of that prior to the pandemic, likely
due to reduced social interaction. However, at no point
were the transmission rate or R; lower than during the
first lockdown, indicating subsequent lockdowns were
not as effective in accordance with the perception that
they were less severe and the increased transmissibility
of subsequent COVID-19 variants.

In electronic supplementary material, 54, the effect of modify-
ing the fixed parameters is investigated. In each case, the fitted
values of the infection rate B potentially compensate for the
effect these changes may have on hospital admissions, but all
alternative scenarios yielded a worse fit than the parameters
employed in the main body of the paper. Despite this, the
time series of total deaths, ICU occupancy, and hospital occu-
pancy remained highly consistent such that in all cases the
final number of cumulative deaths by Day 400 lay within
2000-2500, demonstrating that the model’s predicted clinical
outcomes are robust to modification.

4. Role of intensity and duration of a lockdown

This section investigates how properties impact the effective-
ness of a lockdown. During a 1000-day simulation, once the
pandemic has been recognized by Day 84 as necessitating a
response, we assume a transmission rate g=0.0663 for the
remaining days (averaging the fitted rate for non-lockdown
post-pandemic periods), except for up to 100 days of lock-
down (when schools will be closed). The optimal time

for intervention is determined by explicit testing, and the
question is how do reductions in total deaths or peak
hospitalizations vary with the severity and duration of the
intervention? We compare the impact of measures restricted
to more vulnerable older age groups with blanket restrictions
on the entire population. In each case, the simulation requires
the lockdown be activated within 100 days of Day 84, and all
simulations last 1000 days so as to avoid merely selecting the
circumstances that delay the larger impact of the virus
(although even then the virus will not be fully extinguished
in most cases).

The scenarios illustrated in figures 6 and 7 feature a
‘constant inflow” of new cases to allow for subsequent re-
infections entering from Great Britain and the Republic of
Ireland. From Day 31 of the simulation, one additional
member is added to a randomly selected age class of the
exposed compartment. Testing indicates that the random age
can alter projected long-term deaths by up to 1500 by Day
2000; however, the figures are representative of the overall
trends. The main figure illustrates the minimized value of cumu-
lative deaths or peak numbers in hospital or ICU for a given
lockdown duration (in days, from 1 to 100) and lockdown inten-
sity (defined as the percentage reduction of the transmission rate
B from its base value 0.0663 during the lockdown, testing from 1
to 100%). The corresponding point in the inset figure indicates
the day (between 84 and 183) when the lockdown begins in
order to yield this optimal result.

Additional results in electronic supplementary material,
55.1-5.3, include modelling Northern Ireland as a ‘closed
system’ with no importation of exposed cases, restricting
only the 80+ age class or only the 60-80 age class, and the
implementation of a sequence of ten lockdowns each of
duration up to ten days.

Unsurprisingly, stronger and longer lockdowns are more
effective by every measure across all scenarios. By late
March, the strongest measures should usually be implemented
as soon as possible (for figures 6 and 7 the dark-coloured top-
right of each panel indicates an optimal early intervention).
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However, when using a single lockdown affecting all ages a
slightly later lockdown minimizes overall deaths (inset of
figure 6a), while the best reduction to peak hospital or ICU
occupancy was achieved by intervening as soon as possible
(compare with the corresponding inset in figure 6b), so the opti-
mal timing of a single lockdown may depend on which
outcome is most critical to manage in the short term.

Restricting only the contact of all individuals aged 60+
(figure 7) can yield the best reduction of total deaths, but
only in the case of the strongest and longest-lasting interven-
tions (the top-right corner of figure 7a is darker in colour than
anywhere in figure 6a). This is because it allows spread
among the younger population, who then recover, thus build-
ing up immunity without incurring a large number of deaths.
When the vulnerable groups subsequently exit lockdown, the
virus is then less able to spread to them. However, if this
strategy is attempted with lockdowns that are insulfficient in
duration or intensity, the overall effect is actually worse
than an equivalent weak-moderate lockdown of all ages.
To further demonstrate this, limiting restrictions either
to only those aged 60-80 or to only those aged 80+ is less
effective than a blanket restriction on the entire population.
Thus, targeted restrictions are a risky strategy that may be
counter-productive if they are insufficient in strength, dur-
ation, or the size of the restricted group. These age-related
trends are evidenced for both the closed system and constant
inflow models.

5. Mechanistic activation of lockdowns

Statistical analysis has indicated that once the virus begins to
spread, the precise timing and delays in implementing restric-
tions can significantly impact case numbers [49], and it is
essential to time restrictions based on the true peak incidence
[18]. Given possible delays in monitoring and reporting
cases [50], we investigate the use of easily trackable clinical
outcomes as a mechanistic trigger than could be used to
implement restrictions during an ongoing pandemic.

We use the current number of hospital inpatients as the
trigger mechanism and study the effect of interventions of
varying strengths, the threshold of the trigger that will

enable lockdown (between 0 and 2000 hospital inpatients)
and the delay between the conditions being met and the
beginning of the lockdown (between 0 and 20 days). Low,
medium and high interventions reduce the transmission
rate by 25% for 15 days, by 50% for 30 days and by 75%
for 60 days, respectively. Either a single or an unlimited
number of lockdowns are permitted.

Each simulation lasts 2000 days, with a single infection on
30 January 2020, and initial transmission rate f=0.1200. On
the 84th day, this reduces to = 0.0663 as in the previous section.
This rate reduces further and schools close during a lockdown
intervention, and the rate returns (and schools re-open) when
the lockdown concludes. No lockdowns are permitted during
days 10002000 so as to ensure that long-term consequences
are accounted for. Caution must be emphasized when interpret-
ing the following results as the model over-estimates deaths,
and school holidays are not accounted for. Vaccination is
considered in §5.4, but not present in the main set of results.

Figures 8 and 9 illustrate the effect of lockdowns in a
closed system model, using hospital occupancy as the trigger,
showing the cumulative deaths, peak hospital and ICU occu-
pancies, and the fraction of the population (disease spread)
who have contracted COVID-19 (whether symptomatic or
otherwise) by the end of the 2000-day simulation as a func-
tion of the trigger sensitivity and the delay between this
threshold and the lockdown(s) beginning. Additional out-
comes are shown in S6.1 of the electronic supplementary
material, along with full results for equivalent scenarios
using the number of new daily deaths as the trigger.”

In figures 10 and 11, we illustrate the equivalent effect of
dynamically activated lockdowns in a system where there is a
constant inflow of new exposed individuals.

5.1. Outcomes of mechanistic lockdown scenarios

Even without eradicating the virus completely, deaths can be
reduced over a significant timescale without an indefinite
number of lockdowns. With a single lockdown of medium
quality (lasting only 30 days), total deaths can be reduced
from 16000 to 10000 by managing the spread until herd
immunity (R;<1) is reached with sufficient recovered cases.
However, this depends on several years of post-pandemic
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social distancing, assuming reduced transmission rates rather
than a return to pre-pandemic conditions. As it is more realistic
to model Northern Ireland as a system which cannot be fully
isolated, cumulative deaths will slowly continue to grow, and
long-term forecasts are discussed in S6.4 of the electronic
supplementary material. Therefore, these investigations pri-
marily concern short-term lockdown strategies to minimize
deaths while a permanent solution is developed, such as the
vaccination exit strategy separately considered in §5.4.

There is the counterintuitive result that while peak hospital
and ICU occupancy is uniformly reduced in a closed system
model compared to the equivalent scenario with constant
inflow, the propagation of COVID-19 and the accompanying
cumulative deaths are not always lessened in such a model.
In fact, when strong interventions are used, there is greater
overall spread of the virus in a closed system and hence greater
deaths (compare the strong slices of figure 8a,d with those of
figure 10), while weak interventions revert to the expected pat-
terns. This is because of a surge in the virus that occurs in such a
system when strong restrictions are lifted (S6.5 of the electronic
supplementary material), which is greatly reduced if there is a
constant importation of new cases as these lessen the impact of
the lockdown. It is still the case in a closed system that stronger
controls are generally more effective than weaker restrictions,
but the relative difference is greatly reduced compared to a
system with constant inflow.

5.2. Deaths, number of lockdowns, and the spread of
the virus

Cumulative deaths can be reduced by at least one intervention,
best triggered by a high number of hospitalizations (or an inter-
mediate number of daily deaths). Where the thresholds for
lockdown are too low, there may be little long-term benefit
(see the right-hand edges in figures 8a and 9a). This is
especially the case where there are multiple lockdowns per-
mitted in a closed system. Here, many lockdowns are
triggered in succession, covering much of the first 1000 days.
If deaths are measured at day 1000, close to the time while
measures are in place, this will seem to yield optimal results

(S6.6 of the electronic supplementary material). However,
once significant time has passed without further restrictions,
it is ultimately a poor long-term strategy—observe the many
deaths with low-threshold strong restrictions in figure 9a.
This demonstrates a circumstance where the only gain
from lockdown is to purchase time, as these lowest thres-
holds become optimal again if a vaccination programme is
forthcoming (§5.4).

Alternatively, if using high-threshold daily deaths as the
trigger the intervention may be too late or even never activated,
leading to the worst-case scenario with around 16 500 deaths.
This is in agreement with other studies [18] which found
that triggering a lockdown within an optimal window of
5-15 days before the peak cases was crucial for significantly
reducing peak hospitalizations.

The maximum cumulative deaths across these experiments
is approximately 16 500. This is equivalent to the virus spread-
ing to 45% of the population, where there is an R; value of 0.85
and so even without interventions herd immunity is achieved.
This is close to the minimum of 41.6% predicted to achieve
R; <1 for this value of  under such post-pandemic social beha-
viours in figure 5c. The discrepancy is due to non-uniformity in
the distribution of cases (and that there will be some overshoot
as individuals are infected while the virus is unable to sustain
itself), whereby in this worst case proportionally fewer infec-
tions are spreading among the vulnerable older age classes
according to the contact matrices while the 2040 age class
has the highest proportion of infections. This is also why the
upper limit of 16 500 deaths is less than half the maximum
possible deaths (electronic supplementary material, 51.3) if
the entire population were infected.

5.3. Peak hospitalization and intensive care unit

occupancy
In a closed system, peak levels of hospital and ICU admis-
sion are again minimized not by multiple lockdowns
with the lowest trigger threshold as these coincide with a
possible resurgence after restrictions are lifted, but instead
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by multiple lockdowns with a low—intermediate threshold
(figure 9b,c).

In models with constant new cases, high peak hospital and
ICU occupancy of around 10 000 and 850, respectively, may be
reached if the lockdowns are not activated quickly enough—
either because the threshold was too high or if there is too
great a delay. As deaths occur later, using these as the trigger
requires very low thresholds (electronic supplementary
material figure S35b,¢). If hospital admissions are used as the
trigger it is more important to ensure that there is low delay
in implementation (figure 10b,c). In each case, the strength of
the lockdown is less influential in reducing these peaks than
the timeliness of the intervention. This yields two contrasts
when managing different outcomes during a pandemic. (i)
Intervene earlier while the levels of hospital occupancy are
still low to prevent over-burdening the healthcare system,®
but hold off until moderately higher thresholds to reduce over-
all deaths (compare the locations that yield the lowest values in
the high-strength slices of figure 9b,c with that of figure 9a). This
contrast was also observed in §4. (ii) The strength of an interven-
tion is of greater significance for reducing deaths, while timing
plays a greater role in controlling peak occupancies.

5.4. Effect of vaccination

We briefly consider how results are impacted by vaccination,
as began in Northern Ireland in December 2020. Every day
from 1 January 2021 a constant number v(i) of individuals
from each age class i are immediately removed from the
pool of susceptible individuals. In the results shown in
figure 12, v={200, 400, 650, 1250, 2500} (during January-
August 2021 in Northern Ireland, there were 3000-18 600
average daily vaccinations) and we consider the scenario of
constant inflow of random age-class infections, using the
number of hospital inpatients as the lockdown trigger.
Alternative rates of vaccination are tested in electronic
supplementary material, S6.7.

Vaccination only has an effect on outcomes if prior lock-
downs are sufficient to reduce spread in the preceding
period. With a single high-intensity lockdown, vaccination
will reduce total deaths from 10000-12 000 to 5000-6000, of
which about 3200 occur during the first year. With multiple
lockdowns, it becomes desirable to trigger interventions at
the lowest sensitivities and thus to lockdown as strongly as is
economically and socially viable to maximally suppress
spread until the vaccination exit strategy is available, and the
faster the vaccine rollout, the less low that the trigger needs

to be in order to prevent additional deaths. Finally, note that
there are 30004000 total deaths when 1-3 strong lockdowns
are triggered by 50-300 hospital inpatients (figure 12b),
which is not unreasonable given recorded COVID-related
deaths in Northern Ireland reached 3000 in January 2022
after 1 year of vaccine distribution.

6. Conclusion

We have determined several principles informing the use of
lockdowns for controlling future infectious diseases in North-
ern Ireland, demonstrating significant reductions in total
forecast deaths by proper timing of interventions. Further-
more, restrictions targeting only the most vulnerable rather
than the entire population may have short-term benefits, pro-
vided they are of sufficient intensity and last long enough
such that these individuals are protected while the virus
spreads among the less vulnerable until they recover. Earlier
interventions tend to be more helpful at managing peak
demands on healthcare resources, while optimal strategies
for lowering cumulative deaths require later initiation of
restrictions. Indeed, the exact timing is crucial for controlling
the peak number of occupants in hospitals and intensive care,
while the greatest factors affecting the number of deaths are
more often the duration of the lockdown and how effectively
it reduces transmission.

The study is limited in the modelling of vaccination pro-
grammes by the restriction of the scope to the short-
to medium-term use of lockdowns. Furthermore, an average
non-lockdown transmission rate is employed for the duration
of the investigation of mechanistically activated interven-
tions, rather than varying with the proliferation of more-
transmissible mutations. This limits the interpretation of
these results specifically regarding COVID-19 in the UK in
2021-2022, while allowing the principles obtained to be
more broadly applicable to future pandemics. Finally, note
that the parameter choices tended to predict fewer hospitaliz-
ations but greater deaths than observed in Northern Ireland
for the 60-80 age group.

Unless and until a vaccination exit strategy is feasible (as
for COVID-19), implementing the strongest controls at too
low a threshold of the disease’s effect may not be the best
route to minimizing long-term deaths—although it may not
be apparent in the short term while interventions are still
available. Locking down too strong and too early in an iso-
lated society can result in a resurgence when restrictions are
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lifted if there is a failure to completely eliminate the virus,
with potentially higher deaths than if it was permitted to
spread to a small extent prior to lockdown. Such hazards
observed in a closed system may be applicable to more
geographically isolated territories than Northern Ireland.
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Endnotes

'We have also investigated an alternative where exposed cases
become either subclinical for 3 days, or clinical for 7 days, essentially
merging pre-symptomatic cases into the clinical compartment. By
tuning S a similar age-profile of cases, and overall projections of
deaths, hospital and ICU occupants may be recovered. Thus the
exact behaviour of the disease in this regard is not critical for the
model’s predictive accuracy.

"This formulation is equivalent to S = —BwS; Z?Z] Cij
(issj + icIc,j)P]T], such as demonstrated in the electronic supplemen-
tary material of [27].

‘A meta-study [36] found these estimates to vary considerably, with
other Chinese studies producing larger estimated lengths of stay,
while a smaller number of studies outside China yield lower esti-
mates. Some UK-specific studies suggest average lengths of stay
closer to 7-10 for general ward and 10-13 for ICU [37,38] depending
on the dataset.

4Early studies in China averaged around 2.2 [44] to 2.6 [45], as did the
earliest European studies [46]. However, later modelling indicates an
uncontrolled basic Ry of 4.5 [47].

5Using the current number of ICU occupants yields broadly similar
results to using hospital occupants, with a rough conversion of
1000 hospital inpatients as a trigger being equivalent to 75 ICU
occupants.

‘Not necessarily as low as possible in a closed system, but still
definitively lower than the optimal threshold for minimizing
deaths. See the location of the darkest colours of figure 8b,c in com-
parison to figure 8a.

(OVID-19 pandemic. Commun. Nonlinear Sci. Numer.
Simul. 98, 105764. (doi:10.1016/j.cnsns.2021.
105764)

emergency containment measures. Proc. Natl Acad.
Sci. USA 117, 10 484-10 491. (doi:10.1073/pnas.
2004978117)
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