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Abstract: Marine sponge-derived manoalide has a potent anti-inflammatory effect, but its potential
application as an anti-cancer drug has not yet been extensively investigated. The purpose of this
study is to evaluate the antiproliferative effects of manoalide on oral cancer cells. MTS assay at 24 h
showed that manoalide inhibited the proliferation of six types of oral cancer cell lines (SCC9, HSC3,
OC2, OECM-1, Ca9-22, and CAL 27) but did not affect the proliferation of normal oral cell line (human
gingival fibroblasts (HGF-1)). Manoalide also inhibits the ATP production from 3D sphere formation
of Ca9-22 and CAL 27 cells. Mechanically, manoalide induces subG1 accumulation in oral cancer cells.
Manoalide also induces more annexin V expression in oral cancer Ca9-22 and CAL 27 cells than that
of HGF-1 cells. Manoalide induces activation of caspase 3 (Cas 3), which is a hallmark of apoptosis in
oral cancer cells, Ca9-22 and CAL 27. Inhibitors of Cas 8 and Cas 9 suppress manoalide-induced Cas
3 activation. Manoalide induces higher reactive oxygen species (ROS) productions in Ca9-22 and CAL
27 cells than in HGF-1 cells. This oxidative stress induction by manoalide is further supported by
mitochondrial superoxide (MitoSOX) production and mitochondrial membrane potential (MitoMP)
destruction in oral cancer cells. Subsequently, manoalide-induced oxidative stress leads to DNA
damages, such as γH2AX and 8-oxo-2’-deoxyguanosine (8-oxodG), in oral cancer cells. Effects, such
as enhanced antiproliferation, apoptosis, oxidative stress, and DNA damage, in manoalide-treated
oral cancer cells were suppressed by inhibitors of oxidative stress or apoptosis, or both, such as
N-acetylcysteine (NAC) and Z-VAD-FMK (Z-VAD). Moreover, mitochondria-targeted superoxide
inhibitor MitoTEMPO suppresses manoalide-induced MitoSOX generation and γH2AX/8-oxodG
DNA damages. This study validates the preferential antiproliferation effect of manoalide and explores
the oxidative stress-dependent mechanisms in anti-oral cancer treatment.
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1. Introduction

Oral cancer is one of the high incidence cancers worldwide [1], especially in Southeast Asia and
Taiwan. Betel quid chewing, smoking, and alcohol consumption are high risk factors for oral cancer [2].
Oral cancer causes serious morbidity and mortality [3]. Current therapies for oral cancer patients
include surgery or chemoradiation, or both. However, chemoradiation commonly shows severe side
effects in oral cancer patients [4]. Therefore, continuous drug screening and development for oral
cancer therapy remains a challenge.

Marine natural products provide an abundant resource for development of anti-cancer agents [5–8].
Besides corals, marine sponges provide diverse sources of natural products from the ocean. Marine sponges
are marine resources with a wide range of bioactive compounds and secondary metabolites with potential
therapeutic effects [9–11]. Bioactive compounds of marine sponges and their microbial consortia are known
for their anticancer, anti-inflammatory, antiviral, and antibiotic effects [11,12].

In 1980, manoalide, an antibiotic sesterterpenoid isolated from the marine sponge Luffariella
variabilis, was discovered [13]. In 1999, manoalide was reported to function as an analgesic and
anti-inflammatory agent [14]. This anti-inflammatory effect may be caused by the inhibition of
phospholipase A2 (PLA2) by manoalide [14]. Moreover, manoalide also functions as inhibitors for
phospholipase C (PLC) [15,16] and calcium channels [17]. Manoalide reached Phase II (antipsoriatic)
clinical trial, although it was discontinued due to formulation problems [18].

In addition to anti-inflammatory effects, the anti-cancer effects of manoalide have not been
extensively studied. For example, manoalide showed a cytotoxic effect against murine lymphoma
LI210 and human epidermoid carcinoma KB cells [19]. However, the anticancer effect against oral
cancer cells was not studied as yet.

Natural products, such as marine sponges, commonly showed antioxidant properties [20,21].
Some marine sponge-derived natural products showed both cytotoxic and antioxidant activities [22–24].
Manoalide inhibits superoxide production in colon cancer cells (HT29-D4) [25], suggesting that
manoalide may have an antioxidant potential. Interestingly, antioxidants possess double-edge sword
activities to regulate cellular reactive oxygen species (ROS). For example, antioxidants at physiological
concentrations may decrease ROS and benefit cell health but induce ROS that damage cells at high
concentrations [26]. Hence, the ROS modulating effect of manoalide on oral cancer cells warrants
further investigation. Furthermore, drugs with inducing ROS generation ability may preferentially
kill cancer cells but show little damage to normal cells [27]. Whether manoalide causes a preferential
killing to oral cancer cells needs further to be examined.

In this study, we hypothesized that manoalide may preferentially inhibit the proliferation of
oral cancer cells. To examine this hypothesis, the preferential antiproliferation effect of manoalide
on oral cancer cells was studied by analyzing cell survival, cell cycle, apoptosis, oxidative stress,
and DNA damage.

2. Results

2.1. Cell Viability of Manoalide-Treated Oral Cancer and Normal Oral Cells with or Without Pretreatments of
NAC or Z-VAD

Cell viability was determined by mitochondrial enzyme activity-based MTS assay. Figure 1A
shows that manoalide dose-responsively decreases the viability (%) of oral cancer cells (CAL 27, Ca9-22,
HSC3, OECM-1, SCC9, and OC-2), but it only slightly decreases oral normal cells (human gingival
fibroblasts (HGF-1)), i.e., their IC50 values of manoalide are 7.8, 9.1, 14.9, 17.4, and 18.5 µM at 24 h MTS
assay. Among the oral cancer cells, Ca9-22 and CAL 27 cells belong to different oral locations (gingival



Cancers 2019, 11, 1303 3 of 18

and tongue) and show higher cytotoxicity upon manoalide treatment. Accordingly, Ca9-22 and CAL
27 cells were selected for the following assays to investigate the detailed mechanisms of anti-oral
cancer cells by manoalide. Figure 1B shows that 48 and 72 h treatments of manoalide dose-responsively
decrease the viability (%) of oral cancer cells, but it only slightly decreases oral normal cells (HGF-1),
i.e., the IC50 values of manoalide-treated oral cancer Ca9-22 and CAL 27 cells are 5.3 versus 14.0 µM
and 3.1 versus 7.5 µM at 48 and 72 h MTS assay, respectively. Furthermore, the photo images of 3D
sphere formation pattern of oral cancer cells are provided (Figure S1A). Its cell viability needs to be
determined by ATP detection. As shown in Figure 1C, the ATP-detected 3D sphere formation ability of
oral cancer cells (Ca9-22 and CAL 27) was decreased by manoalide treatment.

To address the role of oxidative stress and apoptosis in cell viability, the ROS scavenger
N-acetylcysteine (NAC) [28,29] and apoptosis inhibitor Z-VAD-FMK (Z-VAD) [30] were used. The cell
morphologies were abnormal in manoalide-treated oral cancer (Ca9-22 and CAL 27) cells, especially
at higher concentrations (Figure S1B). However, these manoalide-induced abnormal changes on
morphologies were recovered by NAC pretreatment and partly recovered by Z-VAD pretreatment
(Figure S1B). Moreover, manoalide-suppressed cell viabilities in oral cancer cells were completely
inhibited by a NAC pretreatment and partly inhibited by a Z-VAD pretreatment (Figure 1D).
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for 24 h. Oral cancer (CAL 27, Ca9-22, OECM-1, OC-2, HSC 3, and SCC9) cells and oral normal (HGF-
1) cells were included. (B) MTS assay-based cell viabilities for 48 and 72 h for oral cancer (CAL 27 and 
Ca9-22) and oral normal (HGF-1) cells. (C) Statistical of 3D spheroid formation for manoalide-treated 
oral cancer (Ca9-22 and CAL 27) cells for 72 h. (D) NAC and Z-VAD effects on MTS viability of 
manoalide-treated oral cancer cells. Pretreatment conditions were 8 mM, 1 h for NAC and 100 μM, 2 
h for Z-VAD. Following pretreatment or not, oral cancer (Ca9-22 and CAL 27) cells were post-
incubated with 5 and 10 μM manoalide for 24 h. Data, means ± SDs (n = 3). Data were analyzed by 
one-way ANOVA with Tukey HSD Post Hoc Test. Data showing the same small lettersrepresent 
nonsignificant differences whereas data showing no overlapping same small letters are significant 
difference (p < 0.05–0.001). 

Figure 1. Cell viabilities of oral cancer cells after manoalide treatment and its N-acetylcysteine
(NAC)/apoptosis inhibitor Z-VAD-FMK (Z-VAD) effects. Cells were treated with 0, 5, 10, and 20 µM of
manoalide. All treatments have the same concentration of DMSO. (A) MTS assay-based cell viabilities
for 24 h. Oral cancer (CAL 27, Ca9-22, OECM-1, OC-2, HSC 3, and SCC9) cells and oral normal
(HGF-1) cells were included. (B) MTS assay-based cell viabilities for 48 and 72 h for oral cancer
(CAL 27 and Ca9-22) and oral normal (HGF-1) cells. (C) Statistical of 3D spheroid formation for
manoalide-treated oral cancer (Ca9-22 and CAL 27) cells for 72 h. (D) NAC and Z-VAD effects on MTS
viability of manoalide-treated oral cancer cells. Pretreatment conditions were 8 mM, 1 h for NAC and
100 µM, 2 h for Z-VAD. Following pretreatment or not, oral cancer (Ca9-22 and CAL 27) cells were
post-incubated with 5 and 10 µM manoalide for 24 h. Data, means ± SDs (n = 3). Data were analyzed
by one-way ANOVA with Tukey HSD Post Hoc Test. Data showing the same small lettersrepresent
nonsignificant differences whereas data showing no overlapping same small letters are significant
difference (p < 0.05–0.001).
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2.2. Cell Cycle Changes of Manoalide-Treated Oral Cancer Cells with or Without Pretreatments of NAC
or Z-VAD

7-Aminoactinomycin D (7AAD) is a DNA staining dye for measuring the different cell cycle
phases. Figure S2A shows the pattern changes of cell cycle progression for oral cancer cells (Ca9-22 and
CAL 27) after manoalide treatment. The subG1 and > 4N populations appear at 10 and 20 µM of
manoalide for Ca9-22 cells and at 20 µM for CAL 27 cells. Figure 2A shows that the subG1 populations
are increased after manoalide treatment.

To address the role of oxidative stress and apoptosis in cell cycle distribution, the NAC and Z-VAD
were used. Figure S2B shows the effect of NAC and Z-VAD pretreatments on pattern of cell cycle
progression for manoalide-treated oral cancer cells and shows cell cycle disturbances (subG1 and >

4N populations). Figure 2B shows these manoalide-induced subG1 accumulations were recovered by
NAC pretreatment and partly recovered by Z-VAD pretreatment.
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Figure 2. Cell cycle changes of manoalide-treated oral cancer (Ca9-22 and CAL 27) cells. (A) Statistical
results of the subG1 (%) for manoalide-treated oral cancer cells in Figure S2A. Cells were treated with
0, 5, 10, and 20 µM of manoalide for 24 h. (B) Statistical result of the subG1 (%) for NAC, Z-VAD,
and/or manoalide-treated oral cancer cells in Figure S2B. Cells were pretreated with 8 mM, 1 h for NAC
or 100 µM and 2 h for Z-VAD, and they were then post-incubated with 10 µM of manoalide for 24 h.
Data, means ± SDs (n = 3). Data were analyzed by one-way ANOVA with Tukey HSD Post Hoc Test.
Data showing no overlapping same small letters represent significant difference (p < 0.05–0.001).

2.3. Apoptosis of Manoalide-Treated Oral Cancer Cells with or Without Pretreatments of NAC or Z-VAD

Apoptosis was detected by the annexin V/7AAD method. Figure S3A shows that the populations
of oral cancer (Ca9-22 and CAL 27) cells shift from annexin V (−)/7ADD (−) to annexin V (+)/7ADD (−)
at 5 µM of manoalide and further shift to annexin V (+)/7ADD (+) at 10 and 20 µM. In contrast, normal
oral cells (HGF-1) show only a slight shift to apoptosis region. Therefore, cell populations of oral
cancer cells shift from alive, early apoptosis, to late apoptosis when the concentrations of manoalide
increase. Figure 3A shows that manoalide mainly induces early apoptosis at 5 µM, moderately
induces late apoptosis at 10 µM, and mainly induces late apoptosis at 20 µM in oral cancer cells.
However, manoalide-treated HGF-1 cells induce little apoptosis, which is undetectable at 5 and 10 µM
and is less than 15% for early apoptosis at 20 µM.

The involvement of oxidative stress in the apoptosis for manoalide-treated oral cancer cells
were further examined (Figure S3B and Figure 3B). Figure S3B shows that the populations of
manoalide-induced late apoptosis shift to early apoptosis or living status by NAC or Z-VAD
pretreatment. Figure 3B shows that NAC or Z-VAD pretreatments decrease the manoalide-induced
apoptosis for both oral cancer cells, Ca9-22 and CAL 27.

To further validate that apoptosis is induced by manoalide in oral cancer cells, western blotting
analysis was performed. Figure 3C shows that manoalide induces overexpression of cleaved forms of
caspase 3 (c-Cas 3) in both oral cancer cells, Ca9-22 and CAL 27. Figure S4A showing the procaspase
3 and c-Cas 3 patterns also supports this finding. Moreover, this manoalide-induced c-Cas 3 is
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suppressed by NAC or Z-VAD pretreatments in both oral cancer cells, Ca9-22 and CAL 27 (Figure 3D).
All the raw data for western blotting are provided (Figures S4B and S5).

To identify the initiator caspase responsible for the activation of Cas-3, the involvements of Cas
8 and Cas 9 were examined by using its inhibitors [31]. Figure S6A shows that the immunofluorescence of
c-Cas 8- and c-Cas 9-staining of manoalide-treated oral cancer cells is higher than the control. Figure S6B
shows that the populations of manoalide-induced c-Cas 3 shift to a low level by pretreatments of
Cas 8 or Cas 9 inhibitors. Figure 3E shows that Cas 8 or Cas 9 inhibitor pretreatments decrease
the manoalide-induced c-Cas 3 activation for both oral cancer cells, Ca9-22 and CAL 27, suggesting
that initiator caspase, such as both Cas 8 and Cas 9, are responsible for the c-Cas-3 activation in
manoalide-treated oral cancer cells.
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productions of Ca9-22 and CAL 27 cells are dramatically induced when the concentrations of 
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Figure 3. Apoptosis changes in manoalide-treated oral cancer (Ca9-22 and CAL 27) cells and normal
oral (HGF-1) cells. (A) Statistical results of the annexin V/7AAD method in manoalide-treated oral
cancer cells and normal oral (HGF-1) cells in Figure S3A. Cells were treated with different concentrations
of manoalide for 24 h. Early and late apoptosis were, respectively, counted by the populations in the
annexin V (+)/7AAD (−) and annexin V (+)/7AAD (+) regions, i.e., Q3 and Q2. (B) Statistics results of
annexin V/7AAD method in NAC, Z-VAD, and/or manoalide-treated oral cells in Figure S3B. Cells were
pretreated with NAC (8 mM, 1 h) or Z-VAD (100 µM, 2 h), and posttreated with manoalide (10 µM,
24 h). Apoptosis was represented by the sum of early and late apoptosis, i.e., annexin V (+)/7AAD (+
or −). (C) Western blotting for detecting apoptosis in manoalide-treated oral cancer cells. (D) Western
blotting for detecting apoptosis in NAC, Z-VAD, and/or manoalide-treated oral cells. Cleaved forms
caspase 3 (c-Cas 3) were used to detect apoptosis. Actin was the internal control. (E) Statistical results of
c-Cas 3 positive levels in Cas 8 inhibitor, Cas 9 inhibitor, and/or manoalide-treated oral cells in Figure S6.
Cells were pretreated with Cas 8 inhibitor Z-IETD-FMK (100 µM, 2 h) or Cas 9 inhibitor Z-LEHD-FMK
(100 µM, 2 h), and posttreated with manoalide (10 µM, 24 h). Data were analyzed by one-way ANOVA
with Tukey HSD Post Hoc Test. Data, means ± SDs (n = 3). Data showing no overlapping same small
letters represent significant difference (p < 0.05–0.001).

2.4. ROS Production of Manoalide-Treated Oral Cancer and Normal Oral Cells

2’,7’-dichlorodihydrofluorescein diacetate (DCFH-DA) can react with ROS to generate products
for flow cytometry detection [32]. Figure S7A shows the ROS patterns of manoalide-treated oral cancer
(Ca9-22 and CAL 27) and normal oral (HGF-1) cells. Figure 4A shows that the ROS productions of
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Ca9-22 and CAL 27 cells are dramatically induced when the concentrations of manoalide increase.
In contrast, the ROS productions of HGF-1 cells stay unchanged at 5%, at less than 10 µM and slightly
increased to 25% at 20 µM.

To address the role of oxidative stress and apoptosis in manoalide-induced ROS production,
pretreatments of NAC and Z-VAD were used, and its ROS patterns were shown in Figure S7B. Figure 4B
shows that the manoalide-induced ROS productions are inhibited by NAC and Z-VAD pretreatments
for both oral cancer cells, Ca9-22 and CAL 27.
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Figure 4. ROS changes in manoalide-treated oral cancer (Ca9-22 and CAL 27) and normal oral (HGF-1)
cells. Cells were treated with different concentrations of manoalide for 10 min. (A). Statistical results
of ROS (+) (%) for manoalide-treated oral cancer and oral normal cells in Figure S7A. (B) Statistical
results in NAC, Z-VAD, and/or manoalide-treated oral cells in Figure S7B. Cells were pretreated with
NAC (8 mM, 1 h) or Z-VAD (100 µM, 2 h), and posttreated with manoalide (10 µM, 10 min). Data were
analyzed by one-way ANOVA with Tukey HSD Post Hoc Test. Data, means ± SDs (n = 3). Data showing
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2.5. Mitochondrial Superoxide (MitoSOX) Production of Manoalide-Treated Oral Cancer Cells with or Without
Pretreatment of MitoTEMPO

MitoSOX™ Red can react with intra-mitochondrial superoxide to generate products for flow
cytometry detection [33]. Figure S8A shows the populations of oral cancer (Ca9-22 and CAL 27) cells
shift to MitoSOX (+) region when the concentrations of manoalide increase. Figure 5A shows that the
MitoSOX production of Ca9-22 and CAL 27 cells dramatically increase. Figure S8B shows the positive
control treatment (betulinic acid; BA) [34] for MitoSOX patterns in oral cancer. Figure 5B shows that
the manoalide induces more MitoSOX productions than that of BA in Ca9-22 and CAL 27 cells.

Moreover, the involvement of MitoSOX in manoalide-treated oral cancer cells was further
validated using MitoSOX inhibitor (MitoTEMPO). Figure S8C shows the MitoSOX patterns of
MitoTEMPO pretreatment effects against manoalide-treated oral cancer cells. Figure 5C shows
that MitoTEMPO pretreatment decreases the manoalide-induced MitoSOX production for both oral
cancer cells, Ca9-22 and CAL 27.
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Figure 5. Change of mitochondrial superoxide (MitoSOX) production in manoalide-treated oral cancer
(Ca9-22 and CAL 27) cells. (A) Statistical results of MitoSOX (+) (%) for manoalide-treated oral cancer
cells in Figure S8A. Cells were treated with different concentrations of manoalide for 24 h. (B) Statistical
results of positive control of MitoSOX (+) (%) for oral cancer cells in Figure S8B. Cells were treated
with betulinic acid (BA; 25 µM, 24 h) as the positive control treatment for comparison to manoalide
(10 µM, 24 h). (C) Statistical results of MitoSOX (+) (%) in MitoSOX inhibitor (MitoTEMPO) and/or
manoalide-treated oral cells in Figure S8C. Cells were pretreated with MitoTEMPO (20 µM, 1 h) and
posttreated with manoalide (10 µM, 24 h). Data were analyzed by one-way ANOVA with Tukey HSD
Post Hoc Test. Data, means ± SDs (n = 3). Data showing no overlapping same small letters represent
significant difference (p < 0.05–0.001).

2.6. Membrane Potential (MitoMP) of Manoalide-Treated Oral Cancer Cells with or Without Pretreatments of
NAC or Z-VAD

JC-1 aggregate (red fluorescent) form can concentrate at mitochondria, and JC-1 monomer
form (green fluorescent) escape from mitochondria, reflecting the intact and depolarized MitoMP,
respectively [35]. These fluorescent signals were detected by flow cytometry. Figure S9A shows that
the populations of oral cancer (Ca9-22 and CAL 27) cells shift from JC-1 aggregates MitoMP (+) to
JC-1 monomers MitoMP (−) region when the concentrations of manoalide increase. Figure 6A shows
that the JC-1 monomers MitoMP (−) population is dose-responsively increased in manoalide-treated
oral cancer cells. Figure S9B shows the positive control treatment (betulinic acid; BA) for MitoMP
patterns in oral cancer. Figure 6B shows that the manoalide induces more JC-1 monomers MitoMP (−)
productions than that of BA in Ca9-22 and CAL 27 cells.

To address the role of oxidative stress and apoptosis in manoalide-suppressed MitoMP,
pretreatments of NAC and Z-VAD were used and its MitoMP patterns are shown in Figure S9C.
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Figure 6C shows that the manoalide-induced JC-1 monomer generations are inhibited by NAC and
Z-VAD pretreatments for both oral cancer cells, Ca9-22 and CAL 27.Cancers 2019, 11, x FOR PEER REVIEW 8 of 18 
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Figure 6. Change of membrane potential (MitoMP) in manoalide-treated oral cancer (Ca9-22 and
CAL 27) cells. (A) Statistical results of JC-1 monomers (%) for manoalide-treated oral cancer cells in
Figure S9A. Cells were treated with different concentrations of manoalide for 24 h. High JC-1 monomers
(%) indicates low MitoMP, i.e., the MitoMP depolarization. (B) Statistical results of positive control of
low MitoMP for oral cancer cells in Figure S9B. Cells were treated with betulinic acid (BA; 25 µM, 24 h)
as the positive control treatment for comparison to manoalide (10 µM, 24 h). (C) Statistical results of
JC-1 monomers (%) for NAC, Z-VAD, and/or manoalide-treated oral cells in Figure S9C. Cells were
pretreated with NAC (8 mM, 1 h) or Z-VAD (100 µM, 2 h) and posttreated with manoalide (10 µM,
24 h). Data, means ± SDs (n = 3). Data were analyzed by one-way ANOVA with Tukey HSD Post Hoc
Test. Data showing no overlapping same small letters represent significant difference (p < 0.05–0.001).

2.7. Flow Cytometry-Based DNA Damage Changes of Manoalide-Treated Oral Cancer Cells with or Without
Pretreatments of NAC or Z-VAD

γH2AX is known as a DNA double strand break marker [36]. Figure S10A shows the populations
of oral cancer (Ca9-22 and CAL 27) cells shift to γH2AX (+) region when the concentration of
manoalide increases. Figure 7A shows that the γH2AX (+) population is dose-responsively increased
in manoalide-treated oral cancer cells. To address the role of oxidative stress and apoptosis in
manoalide-induced γH2AX, pretreatments of NAC and Z-VAD were used, and its γH2AX patterns are
shown in Figure S10B. Figure 7B shows that the manoalide-inducedγH2AX (+) (%) are inhibited by NAC
and Z-VAD pretreatments for both oral cancer cells, Ca9-22 and CAL 27. Moreover, the involvement of
MitoSOX for manoalide-induced γH2AX in oral cancer cells was further examined using MitoSOX
inhibitor (MitoTEMPO). Figure S10C shows the γH2AX patterns of MitoTEMPO pretreatment effects
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against manoalide-treated oral cancer cells. Figure 7C shows that MitoTEMPO pretreatment decreases
the manoalide-induced γH2AX (+) (%) for both oral cancer cells, Ca9-22 and CAL 27.Cancers 2019, 11, x FOR PEER REVIEW 9 of 18 
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Figure 7. Change of γH2AX DNA damage in manoalide-treated oral cancer (Ca9-22 and CAL 27)
cells. Cells were treated with the indicated concentrations of manoalide for 24 h. (A) Statistical results
of γH2AX (+) (%) for manoalide-treated oral cancer cells in Figure S10A. (B) Statistical results of
γH2AX (+) (%) in NAC, Z-VAD, and/or manoalide-treated oral cancer cells in Figure S10B. Cells were
pretreated with 8 mM, 1 h for NAC or 100 µM, 2 h for Z-VAD, and then post-incubated with 10 µM of
manoalide for 24 h. (C) Statistical results of γH2AX (+) (%) in MitoSOX inhibitor (MitoTEMPO) and/or
manoalide-treated oral cancer cells in Figure S10C. Cells were pretreated with MitoTEMPO (20 µM,
1 h) and posttreated with manoalide (10 µM, 24 h). Data were analyzed by one-way ANOVA with
Tukey HSD Post Hoc Test. Data, means ± SDs (n = 3). Data showing no overlapping same small letters
represent significant difference (p < 0.05–0.001).

8-Oxo-2’-deoxyguanosine (8-oxodG) is one of the typical types of oxidative DNA damage [37].
Figure S11A shows the populations of oral cancer (Ca9-22 and CAL 27) cells shift to the 8-oxodG (+)
region when the concentrations of manoalide increase, while the populations of 8-oxodG (+) in normal
oral (HGF-1) cells are few. Figure 8A shows that the 8-oxodG (+) population is dose-responsively
increased in manoalide-treated oral cancer cells; however, 8-oxodG (+) was rarely appeared in normal
oral (HGF-1) cells. To address the role of oxidative stress and apoptosis in manoalide-induced 8-oxodG,
pretreatments of NAC and Z-VAD were used and its 8-oxodG patterns are shown in Figure S11B.
Figure 8B shows that the manoalide-induced 8-oxodG (+) (%) is inhibited by NAC and Z-VAD
pretreatments for both oral cancer cells, Ca9-22 and CAL 27. Moreover, the involvement of MitoSOX
for manoalide-induced 8-oxodG in oral cancer cells was further examined using MitoSOX inhibitor
(MitoTEMPO). Figure S11C shows the 8-oxodG patterns of MitoTEMPO pretreatment effects against
manoalide-treated oral cancer cells. Figure 8C shows that MitoTEMPO pretreatment decreases the
manoalide-induced 8-oxodG (+) (%) for both oral cancer cells, Ca9-22 and CAL 27.
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Figure 8. Change of 8-oxodG DNA damage in manoalide-treated oral cancer (Ca9-22 and CAL 27)
and normal oral (HGF-1) cells. Cells were treated with the indicated concentrations of manoalide for
24 h. (A) Statistical results of 8-oxodG (+) (%) for manoalide-treated oral cancer cells in Figure S11A.
(B) Statistical results of 8-oxodG (+) (%) in NAC, Z-VAD, and/or manoalide-treated oral cancer cells
in Figure S11B. Cells were pretreated with 8 mM, 1 h for NAC or 100 µM, 2 h for Z-VAD, and then
post-incubated with 10 µM of manoalide for 24 h. (C) Statistical results of 8-oxodG (+) (%) in MitoSOX
inhibitor (MitoTEMPO) and/or manoalide-treated oral cancer cells in Figure S11C. Cells were pretreated
with MitoTEMPO (20 µM, 1 h) and posttreated with manoalide (10 µM, 24 h). Data were analyzed
by one-way ANOVA with Tukey HSD Post Hoc Test. Data, means ± SDs (n = 3). Data showing no
overlapping same small letters represent significant difference (p < 0.05–0.001).

3. Discussion

The hypothesis that manoalide may preferentially inhibit the proliferation of oral cancer cells was
validated in this study. In the following, we compare the manoalide sensitivity in different cancer cells
and discuss the role of oxidative stress in preferential killing, apoptosis, and DNA damage in oral
cancer cells.

3.1. Manoalide Sensitivity in Different Cancer Cells

Manoalide showed a cytotoxic effect against human epidermoid carcinoma KB cells (IC50 =

0.725 µM) [19] without providing information for treatment time and methods. Moreover, KB cells
were reported as misidentified; these were HeLa cells, rather than oral cancer cells [38]. In the current
study, oral cancer Ca9-22, CAL 27, OECM1, OC2, and HSC3 cells, respectively, show the IC50 values of
manoalide with 7.8, 9.1, 14.9, 17.4, and 18.5 µM at 24 h MTS assay. It is noted that the drug safety for
manoalide in normal cell lines was firstly demonstrated in normal oral cells (HGF-1), which remained
healthy below 25 µM in a 24 h MTS assay. These results suggest that manoalide provides a preferentially
killing effect to oral cancer cells and shows little damage to normal oral cells.

3.2. Manoalide Induced Oxidative Stress Contributes to Preferential Killing Against Oral Cancer Cells

Both 2,2-azinobis (3-ethyl-benzothiazoline-6-sulfonic acid) (ABTS) and hydroxyl scavenging
activities of manoalide showed IC50 values for 14.3 and 18 µM (Figure S12), suggesting that manoalide
causes the antioxidant abilities. Recently, antioxidants were reported to display dual concentration
effects [26,39], i.e., low and high concentrations, respectively, decrease and increase intracellular ROS
levels. Similarly, we found that manoalide differentially induced ROS production between oral cancer
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cells and normal oral cells, i.e., manoalide induces higher ROS production in oral cancer cells than in
normal oral cells (Figure 4). Moreover, manoalide also induces other types of oxidative stresses, such
as MitoSOX production and MitoMP depolarization (Figures 5 and 6). Using NAC or MitoTEMPO
pretreatments, oxidative stresses, such as ROS generation (Figure 4B), MitoSOX production (Figure 5C),
and MitoMP depolarization (Figure 6C), as well as antiproliferation, were suppressed (Figure 1D).
Therefore, the preferential killing effect of manoalide is oxidative stress-dependent in oral cancer cells.
This finding also supports the rationale that ROS-modulating drugs provided preferential killing effects
against several types of cancer cells [27,40,41].

Manoalide displays a preferential killing against oral cancer cells with little damage to normal
oral cells. Similarly, betulinic acid (BA) selectively inhibits proliferation against a number of cancer
cells but not on normal cells (peripheral blood lymphoblast) [42,43], and therefore BA was chosen
as a positive control. Like manoalide, BA induces ROS generation, apoptosis, and proliferation,
and these effects are suppressed by NAC treatment [34]. As shown in Figures 5B and 6B, manoalide
induces more MitoSOX generation and MitoMP depletion (JC-1 monomers generation) than that of BA,
suggesting that manoalide is an effective oxidative stress inducer compared to BA in oral cancer cells.
The anticancer effect of BA was independent on p53 mutant or wild types [42,43]. In the current study,
all oral cancer cell lines harboring mutant p53 [44,45] and the role of p53 status warrants detailed
investigation in future.

3.3. Manoalide Induced Oxidative stress Contributes to Apoptosis and DNA Damage Against Oral
Cancer Cells

ROS-modulating drugs commonly induce apoptosis [29,40,41,46–49]. This is indicated by NAC
and Z-VAD as apoptosis inhibitors. In our study, both show the suppressing effect on manoalide-induces
subG1 accumulation and apoptosis (Figures 2B and 3B), suggesting that oxidative stress plays a vital
role in manoalide-induced apoptosis. Additionally, we found that Cas 8 and Cas 9 inhibitors suppressed
the manoalide-induced c-Cas 3 activation using flow cytometry (Figure 3E). Accordingly, the role of
extrinsic and intrinsic apoptosis may be involved in manoalide-induced apoptosis, and it warrants
detailed investigation in future.

It is noted that apoptosis inhibitor Z-VAD cannot completely recover the manoalide-induced
antiproliferation against oral cancer cells. Half and one-third of cell viabilities for Ca9-22 and CAL
27 cells were unable to be recovered (Figure 1D). These results suggest that apoptosis cannot completely
attribute to antiproliferation effects of manoalide-treated oral cancer cells. Detailed studies of the
involvement of other non-apoptosis mechanisms after manoalide treatment are warranted.

Moreover, oxidative stress is a high risk factor for inducing DNA damage [41,47].
Consistently, DNA double strand breaks (γH2AX) and oxidative DNA damage (8-oxodG) were induced
in oral cancer cells upon manoalide exposure. Both γH2AX and 8-oxodG levels in manoalide-treated
oral cancer cells were suppressed by NAC pretreatments (Figures 7B and 8B). DNA damage also has a
potential to induce apoptosis [50]. Accordingly, oxidative stress may induce DNA damage and lead to
apoptosis. It is noted that the manoalide-induced γH2AX/8-oxodG expressions (Figures 7B and 8B)
and ROS production (Figure 4B) were also suppressed by Z-VAD pretreatments, suggesting that
apoptosis may crosstalk to DNA damage in addition to oxidative stress.

It was reported that superoxide anion, such as MitoSOX, cannot cross the mitochondrial
membrane [51]. However, we found that manoalide-induced MitoSOX generation andγH2AX/8-oxodG
expressions (Figures 7C and 8C) were suppressed by MitoTEMPO pretreatment. Since MitoTEMPO is
the mitochondria-targeted superoxide inhibitor [52], the role of MitoSOX on DNA damage is explored
by MitoTEMPO pretreatment. Our finding suggests that MitoSOX may directly or indirectly induce
DNA double strand breaks and oxidative DNA damage. Accordingly, the validation and mechanism of
MitoSOX-induced DNA damage warrants detailed investigation in future. Therefore, both intracellular
ROS and mitochondrial superoxide (MitoSOX) may contribute to the manoalide-induced DNA damage
in oral cancer cells.
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The possible mechanism for preferential killing of manoalide against oral cancer cells but less
damage to normal oral cells is discussed as follows. In HGF-1 cells, the ROS production is few
(Figure 4A), leads to fewer annexin V-detected apoptosis (Figure 3A) and 8-oxodG DNA damage
(Figure 8A) than that of oral cancer cells, and causes the oral cancer cell death but keeps normal oral
cells alive.

3.4. Potential Target Molecules of Manoalide

Manoalide is known as an irreversible inhibitor for PLC [16] and PLA2 [53], as well as calcium
channel blockers (CCBs) [17]. PLC inhibitors, such as U73122, were reported to induce apoptosis
of human umbilical vein endothelial cells (HUVEC) [54]. PLA2 inhibitors, such as quercetin, were
also summarized to inhibit inflammation and cancer proliferation [55]. CCBs, such as verapamil and
diltiazem, have been reviewed for antiproliferation against several types of cancer cells in vitro and
in vivo [56]. Accordingly, PLC, PLA2, and CCBs are the potential targets for manoalide. It warrants
detailed investigation to explore the role of these potential targets between oral cancer and normal oral
cells in future.

4. Materials and Methods

4.1. Cell and Drug Information

All human oral cancer cell lines (Ca9-22, CAL 27, HSC-3, OC-2, and SCC-9) and a normal oral cell
line (HGF-1) were used from Health Science Research Resources Bank (HSRRB) (Osaka, Japan) and
American Type Culture Collection (ATCC; Manassas, VA, USA) except for OECM1 [57], a generous gift
from Dr. Wan-Chi Tsai (Kaohsiung Medical University, Taiwan). Cells were cultured in 5% CO2 at 37
◦C with humidity and maintained by regular formula (Gibco, Grand Island, NY, USA) with 10% fetal
bovine serum as previously described [49].

Manoalide (CAYMAN CHEMICAL, Ann Arbor, MI, USA) was dissolved in dimethyl sulfoxide
(DMSO) for treatment. A ROS scavenger N-acetylcysteine (NAC) [58] (Sigma-Aldrich; St. Louis, MO,
USA) was dissolved in double distilled water. The mitochondrial superoxide inhibitor MitoTEMPO [59]
(Cayman Chemical, Ann Arbor, MI, USA), panapoptosis inhibitor Z-VAD-FMK [60], Cas 8 inhibitor
Z-IETD-FMK, and Cas 9 inhibitor Z-LEHD-FMK (Selleckchem.com; Houston, TX, USA) was dissolved
in DMSO. All experiments contain the same concentration of DMSO.

4.2. Cell Viability Assay

After drug treatment, the mitochondrial activity-based cell viability was determined by MTS assay
(CellTiter 96 Aqueous One Solution, Promega, Madison, WI, USA) at 24 h [61], and the 3D microtissue
spheroids viability of oral cancer cells was measured by the CellTiter-Glo® 3D Cell Viability Assay
(Promega, Madison, WI, USA) coupling with ATP level detection at 72 h [62].

4.3. Cell Cycle Assay

7AAD (Biotium, Inc., Hayward, CA, USA), a DNA dye, was applied to cell cycle analysis [63].
Briefly, drugs-treated cells were stained with 7AAD (1 µg/mL, 37 ◦C, 30 min). Finally, the cell cycle
change was analyzed by Accuri™ C6 flow cytometry (Becton-Dickinson, Mansfield, MA, USA).

4.4. Annexin V/7AAD Assay for Apoptosis

Annexin V (Strong Biotech Corporation, Taipei, Taiwan) coupled with 7AAD was used for apoptosis
analysis [64]. Briefly, drugs-treated cells were incubated with the mixture of annexin V-fluorescein
isothiocyanate (FITC) (10 µg/mL) and 7AAD (1 µg/mL) at 37 ◦C for 30 min. Finally, the apoptosis
expression was analyzed by Accuri™ C6 flow cytometry.
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4.5. Western Blotting and c-Cas 3-Based Flow Cytometry for Apoptosis

Detailed steps of western blotting were previously described [60]. Briefly, the primary apoptosis
antibodies (diluted 1:1000) including cleaved caspase-3 (c-Cas 3) rabbit mAb (Cell Signaling Technology,
Inc., Danvers, MA, USA) were used. The internal control primary antibody (diluted 1:5000) was
mAb-β-actin (Sigma-Aldrich, St. Louis, MO, USA). Following secondary antibody treatment, these
protein signals were detected using enhanced chemiluminescence (ECL) substrate (WesternBright™
ECL HRP, Advansta, Menlo Park, CA, USA).

For c-Cas 3-based flow cytometry, cells were fixed with 70% ethanol, washed, and incubated
with 1 µg/mL of c-Cas 3 (Asp175) rabbit mAb (Cell Signaling Technology) at 4 ◦C for overnight.
After washing, cells were incubated with a secondary polyclonal antibody conjugated with Alexa
Fluor 488 (ThermoFisher Scientific, San Jose, CA, USA) at room temperature for 1 h. Finally, the c-Cas
3 expression was analyzed by Accuri™ C6 flow cytometry. Cas 8 inhibitor Z-IETD-FMK (100 µM, 2 h)
or Cas 9 inhibitor Z-LEHD-FMK (100 µM, 2 h) were applied to examine the involvement of Cas 8 and
Cas 9 in apoptosis.

4.6. ROS Assay

DCFH-DA (Sigma-Aldrich; St. Louis, MO, USA) was used for ROS detecting dye [32].
Briefly, drugs-treated cells were incubated with DCFH-DA reagent (10 µM, 37 ◦C, 30 min).
Finally, the ROS level was analyzed by Accuri™ C6 flow cytometry.

4.7. MitoSOX Assay

MitoSOX™ Red (Molecular Probes, Invitrogen, Eugene, OR, USA) was used as mitochondrial
superoxide detecting dye [33]. Briefly, drugs-treated cells were incubated with MitoSOX reagent [48,49]
(5 µM, 37 ◦C, 30 min). Finally, the MitoSOX level was analyzed by Accuri™ C6 flow cytometry.

4.8. MitoMP Assay

JC-1 (Merckmillipore) was used to detect mitochondrial membrane potential (MitoMP).
JC-1 aggregate form generated red fluorescence indicating the normal function for MitoMP [35].
In contrast, JC-1 monomer form generated green fluorescence, indicating the dysfunction for MitoMP.
Therefore, green fluorescent signals were counted as the decrease of MitoMP. Briefly, drugs-treated cells
were treated with JC-1 (0.1 mM, 37 ◦C, 30 min). Finally, the MitoMP level was analyzed by Accuri™
C6 flow cytometry.

4.9. γH2AX Assay

DNA double strand break marker (γH2AX) was detected by antibody-based flow cytometry [40].
Briefly, drugs-treated cells were incubated with mouse primary antibody p-Histone H2A.X (Ser 139)
(Santa Cruz Biotechnology, Santa Cruz, CA, USA) (1:100 dilution, 4 ◦C, 1 h) and washed for incubation
with the secondary antibody-labeled with Alexa Fluor 488 (Cell Signaling Technology) (1:10000 dilution,
4 ◦C, 1 h). Finally, the γH2AX level was analyzed by Accuri™ C6 flow cytometry.

4.10. 8-oxodG Assay

8-oxodG was detected by antibody-based flow cytometry using a fluorometric OxyDNA assay kit
(#500095; EMD Millipore, Darmstadt, Germany) [65,66]. Briefly, drugs-treated cells were incubated
in antibody-labeled with FITC (10× dilution, 4 ◦C, 1 h). Finally, the 8-oxodG level was analyzed by
Accuri™ C6 flow cytometry.
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4.11. Statistical Analysis

Using JMP® 12 software, the significance of multiple comparisons between different treatments
were analyzed by one-way ANOVA with Tukey HSD Post Hoc Test. Data showing no overlapping
same small letters represent significant difference.

5. Conclusions

This study confirmed the hypothesis that manoalide may preferentially inhibit the proliferation of
oral cancer cells. We found several types of results supporting that oxidative stresses were induced by
manoalide. The oxidative stresses, such as intracellular ROS and MitoSOX/MitoMP, were also involved
in manoalide-induced apoptosis and DNA damages in oral cancer cells. Finally, these mechanisms
may contribute to preferentially inhibit the proliferation of oral cancer cells (Figure 9). Taken together,
this study firstly shows that manoalide preferentially kills oral cancer cells without cytotoxic side
effects to normal oral cells.
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