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In neuropathic pain, the neurophysiological and neuropathological function of

the ventro-posterolateral nucleus of the thalamus (VPL) and the periventricular

gray/periaqueductal gray area (PVAG) involves multiple frequency oscillations. Moreover,

oscillations related to pain perception and modulation change dynamically over time.

Fluctuations in these neural oscillations reflect the dynamic neural states of the nucleus.

In this study, an approach to classifying the synchronization level was developed to

dynamically identify the neural states. An oscillation extractionmodel based on windowed

wavelet packet transform was designed to characterize the activity level of oscillations.

The wavelet packet coefficients sparsely represented the activity level of theta and

alpha oscillations in local field potentials (LFPs). Then, a state discrimination model was

designed to calculate an adaptive threshold to determine the activity level of oscillations.

Finally, the neural state was represented by the activity levels of both theta and alpha

oscillations. The relationship between neural states and pain relief was further evaluated.

The performance of the state identification approach achieved sensitivity and specificity

beyond 80% in simulation signals. Neural states of the PVAG and VPL were dynamically

identified from LFPs of neuropathic pain patients. The occurrence of neural states based

on theta and alpha oscillations were correlated to the degree of pain relief by deep brain

stimulation. In the PVAG LFPs, the occurrence of the state with high activity levels of

theta oscillations independent of alpha and the state with low-level alpha and high-level

theta oscillations were significantly correlated with pain relief by deep brain stimulation.

This study provides a reliable approach to identifying the dynamic neural states in LFPs

with a low signal-to-noise ratio by using sparse representation based on wavelet packet

transform. Furthermore, it may advance closed-loop deep brain stimulation based on

neural states integrating multiple neural oscillations.
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INTRODUCTION

Deep brain local field potentials (LFPs) contain rich information
regarding the function of subcortical nuclei in humans (Friston
et al., 2015). LFPs exhibit oscillatory behaviors in different
frequency bands. Such neural oscillations are simultaneously
involved in the neurophysiological and neuropathological
functions of nuclei in conditions such as neuropathic pain
(Ploner et al., 2017), Parkinson’s disease (Hammond et al., 2007;
Oswal et al., 2013; Brittain and Brown, 2014), and dystonia
(Neumann et al., 2012; Whitmer et al., 2013).

In patients with neuropathic pain, the levels of pain and pain
modulation are correlated with the power of oscillations in LFPs,
such as theta, alpha, and beta oscillations. LFPs from the ventro-
posterolateral nucleus of the thalamus (VPL) in neuropathic
pain exhibit increased power of 17–30Hz oscillations when pain
intensity increases (Green et al., 2009). Similarly, the activities
of 6–9 and 22–33Hz oscillations are significantly related to
the effects of deep brain stimulation (DBS) for the treatment
of neuropathic pain (Huang et al., 2016b). By contrast, the
periventricular gray/periaqueductal gray (PVAG) LFPs exhibit
increased power of 8–12Hz oscillations when pain intensity
increases (Green et al., 2009). The activities of both 6–9 and 10–
12Hz oscillations are significantly related to the DBS treatment
effect for neuropathic pain (Huang et al., 2016b). Subsystemsmay
operate at different frequencies and can form local oscillatory
networks in given nuclei (Priori et al., 2004).

In addition to the specific frequency bands, the dynamics
of neural oscillations are also related to neuropathic pain.
We previously found that the occurrence of 8–10Hz spindle-
shaped oscillations is correlated with pain intensity (Green et al.,
2009). The spindle-shaped oscillations can be characterized as
synchronization oscillations with higher power and more regular
patterns, which may arise from synchronization of neuronal
assemblies, i.e., the synchronization of activity within groups
of neurons (Buzsaki, 2004; Sarnthein and von Stein, 2009;
Buzsáki et al., 2012). The emergence and disappearance of these
synchronization oscillations can be thought of as a type of “neural
state” of the nucleus. Our previous studies have demonstrated
that neural activity features combining theta, alpha, beta, and
gamma oscillations are related to pain modulation (Huang
et al., 2016b, 2018). The dynamic identification of these neural
states would be useful in representing complex brain functions
and developing state-specific neuromodulation approaches. Pain
modulation may be more specifically related to neural states
in the high-dimensional feature space of amplitude, balancing
and coupling measures (Huang et al., 2016a), and such neural
states may be useful in representing complex brain functions.
Dynamic identification of neural states may also be beneficial
for studying brain functions in patients with neurological or
psychiatric diseases (Neumann et al., 2014). However, there are
three challenges to dynamically identifying the neural state: (1)
enhancing the representation of the synchronization features in
LFPs containing rich information, (2) adaptive discrimination
of the synchronization level in non-stationary LFPs, and (3)
reliable identification of the neural state in LFPs with a high
level of background noise. LFPs can be modeled as f (t) =

f̂ (t) + ε(t), which represents the dynamically synchronizing

oscillations f̂ (t) that are of interest but hidden in high levels of

background noise, ε(t). f̂ (t) can be characterized by a sparse
representation that has been used for neural signal processing
(Wen et al., 2016; Miao et al., 2017). The wavelet packet (WP)
transform provides an efficient way to characterize the dynamic

change of f̂ (t) (Donoho and Johnstone, 1994). It enhances the
oscillation representation compared to noise and captures the
oscillation of interest using a selective wavelet basis. Moreover,
the thresholding model in wavelet transformation provides a

statistically optimized estimation of f̂ (t) (Donoho and David,
1995).

The two issues to overcome in identifying synchronization of
neural oscillations are on-line processing and the influence of
high-level noise. First, there is a trade-off between time delay
and the accuracy of state identification in online processing.
Having fewer data leads to quicker real-time processing but
less-accurate state identification. Second, the noise is greater
than the synchronization oscillations, and most signal processing
approaches are sensitive to noise. In this study, a three-stage
hierarchical approach was developed by enhanced representation
of the neural oscillations with wavelet packet transform, adaptive
thresholding for synchronization level discrimination and binary
coding for neural state encoding. The current study aimed
to dynamically identify the neural states of nuclei based on
the sparse representation of the multiple neural oscillations
of the LFPs via a windowed WP transform. Oscillations were
sparsely represented in the WP domain, and their dynamic
synchronization states were discriminated by comparing WP
coefficients of oscillations to adaptive thresholds. Finally, the
synchronization state was coded by a binary coding method.
Then, the neural states of the PVAG and VPL were derived from
the binary coding by using synchronization states of theta and
alpha neural oscillations separately or together.

There have been several attempts at automatic detection of
neural oscillations, and the approaches mainly involve oscillation
extraction and state detection (Staba et al., 2002; Le Van
Quyen and Bragin, 2007). Both a band-pass filter and a wavelet
transform have been used for oscillation extraction (Wallant
et al., 2016). The wavelet transform provides an efficient way
to characterize the dynamic changing of neural signals as a
commonly used spare representation method (Wen et al., 2016).
However, most approaches have been used in off-line processing,
and the influence of the short window and level of noise on
sensitivity and specificity has been less well-investigated.

MATERIALS AND METHODS

Materials
Subjects
Sixteen patients with neuropathic pain were recruited (age, 47.3
± 11.3 years; mean ± SD). Ten patients underwent unilateral
implantation of deep brain stimulation electrodes in both the
VPL and the PVAG, one patient underwent bilateral implantation
in the PVAG, and the remaining five patients underwent
unilateral implantation in the VPL or the PVAG. All deep brain
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stimulation implantations were performed at the John Radcliffe
Hospital, Oxford. The study was approved by the Oxford Local
Ethics Committee (OxRec B), and informed written consent was
provided by all patients.

Deep Brain LFP Recording
The surgical procedures for targeting and implantation of DBS
electrodes (models 3387TM, Medtronic R©) have been previously
reported (Bittar et al., 2005; Green et al., 2006; Owen et al.,
2006b). The DBS target structures were localized on the
fused CT/MRI images using Radionics Image FusionTM and
StereoplanTM (Radionics, MS, USA) pre-operatively. Electrode
implantation was then performed under local anesthesia. The
final electrode placement and localization of each electrode
contact were confirmed for all patients using post-operative
stereotactic MRI or CT with fusion to the pre-operative MRI.

The LFPs were recorded from the VPL and/or the PVAG post-
operatively via the externalized DBS electrodes. There were 12
recordings from the VPL (either side) and 15 recordings from
the PVAG. The LFPs were recorded while the patients were off
medication and before the stimulation was turned on for trial
stimulation or after the stimulation was turned off overnight.
Bipolar LFPs were recorded from three adjacent pairs of deep
brain electrode contacts (contacts 0–1, 1–2, and 2–3) with a
common electrode placed on the surface of the mastoid. The
recordings were made when patients were seated at rest, and
any artifacts were carefully identified and excluded. The LFPs
were amplified using an isolated CED 1902 amplifier (×10,000,
Cambridge Electronic Design, Cambridge, UK), filtered between
0.5 and 500Hz, digitized using a CED 1401Mark II at a sampling
rate of 2000Hz, displayed on-line and saved onto a hard disk in
Spike2 (Cambridge Electronic Design, UK).

Pain Assessment
All patients were asked to rate their pain on a visual analog scale
(VAS, 0–10, 0 = no pain, 10 = worst pain ever experienced) in a
pain diary twice daily (am and pm) over a period of 7 consecutive
days. The assessment was performed both before and after DBS
surgery (Owen et al., 2006a; Pereira et al., 2010; Boccard et al.,
2013). VAS scores of pain assessment between 6 and 12 months
after surgery were used to quantify the pain relief as a result
of deep brain stimulation. The 14 VAS scores over 7 days were
averaged to yield the average pain scores of the pre-operative and
post-operative stages. Pain relief by DBS was computed as the
post-operative percentage change in the VAS score against the
pre-operative score for each patient. The clinical information for
all patients is provided in Table 1.

Pre-processing
The signals were first pre-processed. Segments of 50 s from each
LFP recording were selected for further analysis. Because the LFP
oscillatory activity energy ismainly concentrated in the frequency
band below 90Hz, the selected LFPs were low-pass filtered at
90Hz with a tenth-order Chebyshev Type I filter. All LFPs were
then down-sampled to 500Hz. An adaptive notch filter was
applied to remove 50Hz interference, and the LFPs were high-
pass filtered at 2Hz with a fifth-order Chebyshev Type I filter

to eliminate baseline shifting. Finally, the LFPs were resampled
to 384Hz so that the theta and alpha oscillations were situated
at the [6 3] and [6 2] nodes of the wavelet packet tree. The
frequency ranges of nodes [6 3] and [6 2] were 6–9 and 9–12Hz,
respectively.

Simulation Signal
The simulation signal was generated according to four types
of oscillatory characteristics of LFP (Huang et al., 2016b), i.e.,
frequency, signal-to-noise ratio (SNR), temporal changes and
duration. The simulation signal consisted of a sinusoidal signal,
a trapezoidal envelope and white noise. First, the frequency
of the sinusoidal signal was the central frequency of the theta
(7.5Hz) or alpha (10.5Hz) oscillations, and its value ranged
from −1 to 1. Second, to simulate the temporal change of
oscillations, a trapezoidal envelope was generated and multiplied
by the sinusoidal signal. The period of the trapezoidal envelope
was 2 s, its duty cycle was 0.5, and its amplitude range was 0
to 1. Finally, a certain amount of Gaussian white noise was
added to the amplitude-modulated signal to obtain a simulated
oscillation signal with a certain SNR. To evaluate the SNR of LFPs
for specific oscillations, the theta or alpha oscillations and the
background noise were separated by thresholding with the WP
transform. A total of 216 segments of 6 s from 27 LFP recordings
were used for the calculation. The results are listed inTable 2. The
mean SNR of theta oscillations was −9 ± 5.0 dB, and the mean
SNR of alpha oscillations was−11± 5.5 dB.

Methods
The state identification approach was developed to dynamically
identify the neural state of the VPL and the PVAG corresponding
to neuropathic pain by dynamically discriminating the
synchronization state of theta and alpha oscillations. As
shown in Figure 1A, the state identification approach includes
three models. In the oscillation extraction model, the WP
transform was applied to LFPs, and the theta and alpha
oscillations were sparsely represented in the WP domain. Then,
an adaptive threshold was estimated for discriminating the
synchronization state of theta and alpha oscillations in the state
discrimination model. Finally, the neural state of neuropathic
pain was represented by the synchronization states of the theta
and alpha oscillations using a binary encoding method, and the
relationship between neural states and pain relief was assessed.

Oscillation Extraction Model
The oscillation extraction model was constructed based on the
WP transform (for more information about the wavelet packet
transform, please see supplementary material) (Percival and
Walden, 2006), and the amplitude ofWP coefficients represented
the synchronization degree (Figure 1B). To better represent and
extract specific oscillations, the WP basis and running window
length were optimized, and the performance was validated
according to entropy and energy.

Optimal WP basis selection
To more effectively extract oscillations, the WP bases were
selected for theta and alpha oscillations of the VPL and
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TABLE 1 | Demographics, diagnosis, stimulation parameters, and pain assessment of patients.

Case Age/Sex Diagnosis Targets Stimulation parameters VAS

A (V) F (Hz) PW (ms) Pre-op Post-op Relief (%)

1 60/M Poststroke pain PAG 0.5 20 360 9.2 8.2 11

VPL 2 20 450

2 39/M Trigeminal neuralgia PAG 3 20 330 7.5 6 20

VPL 3.4 20 330

3 40/F Intractable forehead pain PVG 4.8 20 240 5 3 40

VPL 1.7 20 180

4 38/M Phantom limb pain PAG 2.5 30 120 8 6 25

VPL 2.4 30 120

5 43/M Phantom limb pain PVG – – – 5.6 2 64

VPL 4 25 60

6 53/M Brachial plexus injury PVG 2.1 20 240 4.8 4.5 6

VPL 0.7 20 270

7 54/M Poststroke pain PVG 1.2 10 270 6.7 5.1 24

VPL 2 10 180

8 58/M Facial pain PVG 3 40 120 9 7.5 17

VPL 0.8 40 120

9 42/M Radiculo-plexopathy PVG – – – 10 8 20

VPL – – –

10 35/M Cephalalgia PVG 1.8 50 330 9 8.5 5.56

VPL 2.8 90 240

11 58/M Amputation (phantom limb) PVG 1.5 7 120 7 6.2 11.4

12 57/F Amputation (phantom limb) PAG 4.5 30 450 6.4 6 6.25

PAG 3.5 30 450 6.4 6 6.25

13 31/M Radiculo-plexopathy PVG – – – 6.7 3 55.2

14 33/M Cephalalgia PAG 2.8 20 450 6.4 2 68.7

15 46/M Stroke VPL 1 15 300 9.8 3 69.4

16 69/M Brachial Plexus VPL – – – 8.3 8 3.6

The implant places of DBS electrodes (Targets) were given. Then, the electric stimulation parameters for treatment are the voltage (A), frequency (F), and power width (PW).The VAS

score before operation (pre-op) and after operation (post-op) are given. Then, the pain relief of DBS was calculated using VAS scores before and after DBS surgery.

TABLE 2 | The evaluated signal-to-noise ratio (SNR) of theta and alpha

oscillations in PVAG and VPL LFPs.

Oscillations Mean SNR (dB) Variance (dB)

Theta (PVAG) −9.01 4.99

Theta (VPL) −8.98 3.55

Alpha (PVAG) −11.12 5.38

Alpha (VPL) −11.12 5.49

PVAG LFPs. The VPL and PVAG LFPs exhibited specific
synchronization oscillations, which showed patterns with higher
regularity and periodicity. The neural oscillations are better
represented if the WP basis has similar patterns to the neural
oscillations, and the entropy of the WP coefficients has lower
value in such a condition. Entropy has previously been used as
a criterion for optimal WP basis selection (Samar et al., 1999).
There were three steps:

Step 1: General principles. A group of WP bases was chosen
according to characteristics of the wavelet basis function,

i.e., smoothness of the shape, compacted support,
orthogonality, symmetry, and high-order vanishing
moment (Banjanin et al., 2001; Peterson et al., 2015).

Step 2: Special principles. The WP coefficients of the theta and
alpha oscillations were obtained with the WP transform
using the chosenWP basis from step 1. Then, the entropy
of WP coefficients was calculated for each different basis.
The entropy of WP coefficients u={u(k)} is defined by:

H(u) =
∑

k

u(k)log(1/u(k))

where k is the number of WP coefficients over time.
Step 3: Compare the entropy of the WP coefficient for each WP

basis. The lowest entropy indicated the most suitableWP
basis among the selected group of bases.

Optimal signal running window length
The neural oscillations were dynamically captured with a running
window over the LFPs, i.e., the wavelet packet transform was
consecutively performed within a short window with 20ms
overlap (Figure 1B). The length of the running window (Lrunning)
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FIGURE 1 | (A) Composition of the neural state identification approach. (B) Neural state identification. The WP transform is performed with a running window (the red

solid box in the first row) on LFPs to calculate the latest WP coefficients. Then, the a priori window (the green solid box at the second row) is updated with these WP

coefficients (red line in the second row) to calculate the latest threshold (green lines in the second row). The latest neural state (shown in the purple box) is identified by

comparing the latest WP coefficients with the latest threshold synchronization state. For each identification, the running window slides forward in 20ms steps (the red

dashed box at the first row).

was optimized by evaluating the signal representation abilities
of running windows of different lengths. To evaluate the
representation ability of a running window of a certain length,
two types of signals were generated. The first type of signal x(k)
was obtained by reconstructing the WP coefficients of one node
on the WP tree after performing the WP transform on a 6-s
LFP signal without a running window. The second type of signal
y(k) was obtained by reconstructing WP coefficients of the same
node on the WP tree after performing the WP transform on
the same 6-s LFP signal with a certain length running window.
Consider x(k) as the reference signal and y(k) as the experimental
signal. A relative error (Zalay et al., 2009) between x(k) and
y(k) was the representation ability of this running window. The
relative error was designated as the percentage rootmean squared
deviation between the experimental signal y(k) and reference
signal x(k), which was normalized by the mean value of the
reference signal, x̂:

e =
1
x̂

[

1

N

N
∑

k=1

(y(k)− x(k))∧ 2

]½

· 100%

In this study, a total of 96 6-s LFP segments from the PVAG
and 120 segments from the VPL were used. The WP transform
of LFPs was performed with different length running windows,
and the experimental signals were the theta and alpha oscillations
reconstructed from all of the WP coefficients at nodes [6 3] and
[6 2], respectively. The reference signals were the oscillations
reconstructed from the WP coefficients at nodes [6 3] and
[6 2] obtained after the WP transform without a running
window. Then, the experimental signals were compared to the
reference signals to calculate the relative error between them. The
performance was evaluated running windows of lengths ranging
from 32 to 200 points.

For the real application, to perform a real-time calculation, the
moving step of the running window was 20ms.

State Discrimination Model
In the state discrimination model, the synchronization state
of each neural oscillation was discriminated using an adaptive
threshold. The adaptive threshold was calculated with the WP
coefficients from the a priori window, and the WP coefficients
from the current running window were compared to the
threshold to determine its synchronization state (Figure 1B).

Threshold estimation
The “minimaxi” method was used to estimate the threshold
due to its advantages of lower estimation variance and greater
robustness to noise for short data segments (Tikkanen, 1999;
Vidakovic, 1999). The threshold T is defined as follows:

T = σ (0.396+ 0.1829 · log2N)

where σ is the standard deviation of noise and N is the number
of WP coefficients. σ was estimated from the median of the WP
coefficients u(k):

σ ≈ 1/0.6745 ·Med(|u(k)|)

where Med(|u(k)|) is the median value of the data sequence
{|u(k)|}.

Optimal length of the a priori window
An a priori window over theWP coefficients was used to calculate
the adaptive threshold for state discrimination in the current
running window. The length of the a priori window (Lpriori)
affects the reliability of estimation of the adaptive threshold.
A longer window length leads to less adaptation to temporal
changes of the signal, and a shorter window length leads to less
robustness and accuracy of the estimation.

The optimal a priori window length was selected by achieving
a high sensitivity and specificity of state identification with
simulation signals. In this experiment, five different Lpriori
window lengths, 1, 2, 4, 6, and 8 s, were compared. The state was
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classified as synchronization if at least one of the WP coefficients
was beyond the threshold. By contrast, the state was classified
as de-synchronization if there was no coefficient beyond the
threshold.

The sensitivity and specificity were calculated as:

Sensitivity = ts/Ts · 100%

Specificity = td/Td · 100%

where Ts and Td are the timings of true synchronization and
de-synchronization states, respectively, and ts and td are the
timings of identified synchronization and de-synchronization
states, respectively. The true synchronization state was defined
as an amplitude of simulated oscillations greater than 0.5, and
the de-synchronization state was defined as an amplitude less
than 0.5.

The a priori windowwas updated every 20ms with themoving
step of the running window.

Optimal discrimination strategy
The synchronization state of the signal within the current
running window was discriminated by comparing the WP
coefficients with the adaptive threshold. To improve the
sensitivity and specificity, the discriminant strategy was further
optimized using additional parameters. The state was classified
as “synchronization” if there was at least one WP coefficient
in the current running window beyond the threshold, and
similar occurrences were observed for the next n1 consecutive
running windows. Otherwise, the state of the current window
was considered to be the same as that of the previous window.
By contrast, the state was classified as “de-synchronization” if
there were no coefficients beyond the threshold and similar
occurrences observed for the next n2 consecutive running
windows. Otherwise, the state of the current window was
considered to be the same as that of the previous window. The
parameters n1 and n2were designed to reduce noise interference,
thereby improving the discrimination accuracy.

The parameters n1 and n2, each ranging from 1 to 6, were
compared, and the sensitivity and specificity were calculated
to evaluate the discrimination performance based on each
simulated signal.

Dynamic Neural State for Pain
The neural states related to neuropathic pain can be represented
by one or more neural oscillations. In this study, binary encoding
was used to encode the synchronization. A value of 1 indicated
the synchronization state of the neural oscillations, and a value
of 0 indicated the de-synchronization state. The symbols α

0, α1,
θ
0, and θ

1 represent the alpha and theta oscillations of the de-
synchronization and synchronization states, respectively. If the
states were defined according to both theta and alpha oscillations,
there were four states, i.e., α0θ0, α0θ1, α1θ0, and α

1
θ
1.

In this study, theta and alpha oscillations were both used to
encode the states related to neuropathic pain. Therefore, there
were a total of six states: α

1, θ
1, α

0
θ
0, α

0
θ
1, α

1
θ
0, and α

1
θ
1.

The relationships between the occurrence frequencies of these
six states, the pain level before surgery and the pain relief by

DBS were quantified by Spearman correlation. The occurrence
frequency was defined as the percentage of the occurrence of that
state:

foccurrence = tstate/T · 100%

where tstate is the total occurrence time of the synchronization
state and T is the total time of LFPs.

All of the signal processing, data analysis, and statistical
analysis were performed in MATLAB (Version 7.1 MathWorks
Inc., Natick, MA, USA).

RESULTS

Wavelet Packet Basis Selection
A total of 11 WP bases were compared (“sym4,” “sym5,” “sym8,”
“bior3.7,” “bior1.5,” “db4,” “db8,” “rbio3.7,” “rbio1.5,” “dmey,”
“coif4”). The entropy of WP coefficients of theta and alpha
oscillations was computed. As illustrated in Figure 2, there
was minimum entropy with the antibiorthogonal wavelet basis
“rbio3.7” for the theta band and minimum entropy with the
biorthogonal wavelet basis “bior3.7” for the alpha band. This may
be because biorthogonal and antibiorthogonal bases are useful
for the detection of synchronization oscillations (Supplementary
Figure 3). Therefore, in the oscillation extraction model, the
“rbio3.7” basis was selected to extract the theta oscillation, and
the “bior3.7” basis was selected to extract the alpha oscillation.

Examples of LFPs from the PVAG and VPL were WP
transformed with “rbio3.7” and “bior3.7.” The theta and
alpha oscillations were reconstructed using their respective WP
coefficients (Figures 3A,C). The time-frequency spectrogram of
LFPs calculated by the WP transform is shown in Figures 3B,D.
According to Figure 3, the wavelet basis strongly influences the
characterization of the oscillations in LFPs.

Running Window Length Selection
The length of the running window was selected based on the
reconstruction method. Figure 4 shows the average relative error
over LFP segments that was calculated between the reconstructed
oscillations with and without the running window.

As Figure 4 demonstrates, there were similar results when
selecting the running window length in LFPs from both the
PVAG and the VPL. For theta oscillations, there was local
minimum error when the window length was a multiple of 64
points, i.e., 64, 128, and 192. There was relatively less error at
certain positions, i.e., 96 and 160 points. For alpha oscillations,
there was also local minimum error when the window length was
a multiple of 64 points, i.e., 64, 128, and 192 points. Moreover,
the local minimum errors for alpha oscillations were found with
more running window lengths than for theta oscillations, e.g., 80,
144 points. The minimum error was achieved when the window
length was a multiple of 64 points, which may be related to the
level of decomposition. Six-level decomposition was used in this
study, and the down-sampling rate of WP decomposition is 64
(2∧6).

The window length of 128 points was finally determined
for the theta and alpha oscillation extraction by comparing the
performance and temporal resolution.
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FIGURE 2 | Wavelet packet basis selection based on the entropy of wavelet packet coefficients when characterizing theta and alpha oscillations in the VPL and PVAG

LFPs.

A Priori Window Length Selection
The a priori window length was optimized by comparing the
performance of the state identification approach in theta and
alpha simulation signals. The sensitivity and specificity were
computed when the window lengths were 1, 2, 4, 6, and 8 s.
As the a priori window length was increased, the sensitivity of
theta and alpha oscillation synchronization state discrimination
decreased, and the specificity increased (Table 3). The rate of
sensitivity decrease was faster than the rate of specificity increase.
Therefore, the length of the a priori window had a greater
effect on sensitivity than on specificity. Shorter a priori windows
yielded higher sensitivity, while the specificity was near 0.9.
Finally, a 2-s window was selected for state discrimination for
both the theta and alpha oscillations.

Selection of the Parameters n1 and n2
There were two parameters in the state discrimination strategy,
i.e., n1 and n2. For theta oscillations (Table 4), the sensitivity
decreased as n1 increased, while the sensitivity increased as n2
increased. The sensitivity exceeded 0.8 when n1 was 1 or when n1
was 2 and n2 was larger than 3. The specificity exceeded 0.8 for
all combinations. The specificity was ∼0.87 when n1 was 1 or 2.
For alpha oscillations (Table 5), a similar trend was found. The
sensitivity was 0.8 only for the combination n1 of 1 and n2 of 6,
and the specificity was near 0.9 for most combinations. Finally,
n1 was set to 1, and n2 was set to 6 for both theta and alpha
oscillation discrimination.

All selected parameters are listed inTable 6 for theta and alpha
oscillation synchronization state identification.

Method Validation
The performance of the approach was further evaluated by 1,
investigating the influence of noise on the performance of the

state identification approach and 2, testing the advantage of the
adaptive thresholding by comparing it with global thresholding.

The sensitivity and specificity of the state identification
approach was computed with an SNR of theta oscillations varying
from −4 to −14 dB and an SNR of alpha oscillations varying
from−6 to−16 dB in the simulated signals (Figure 5). For theta
oscillations, the sensitivity decreased from 98.4 to 78.5%, and the
specificity increased from 80.2 to 89.5% as the SNR decreased.
For alpha oscillations, the sensitivity was more influenced by
the noise, and it markedly decreased as the SNR decreased. The
specificity was between 80 and 90% and gradually increased
as the SNR decreased. Figure 6 shows the construction of the
simulation signal and the performance of the state identification
approach for theta and alpha simulation signals. Although the
state identification approach identified almost synchronization
oscillations, there is still some time delay for identifying.

The performance of adaptive state identification was
compared with that of global state identification with a fixed
threshold (Figure 7). A running window of 128 points was used
to compute the WP coefficients, and an a priori window of 2 s
was used to calculate the adaptive threshold. The fixed threshold
was calculated using all WP coefficients of the entire signal and
was then used to discriminate the state of each oscillation in the
simulated signals. For theta oscillations, the state identification
with a fixed threshold achieved 23.7% sensitivity and 97.7%
specificity, while the adaptive state identification achieved 87%
sensitivity and 87% specificity. For alpha oscillations, the state
identification with a fixed threshold achieved 12.5% sensitivity
and 98.2% specificity, while the adaptive state identification
achieved 79.6% sensitivity and 88.8% specificity. The adaptive
strategy greatly improved the sensitivity but compromised the
specificity to a certain degree. Moreover, the adaptive strategy
increased the stability of the states by reducing the frequent
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FIGURE 3 | The wavelet packet transform was applied to LFPs. (A) From top to down are LFPs recordings of PVAG, the WP coefficients at the theta frequency band

with the basis “rbio3.7” and the reconstructed theta oscillation. (B) Time-frequency analysis by WP transform with “rbio3.7”; the color bar indicates the absolute value

of WP coefficients. (C) From top to bottom are the LFPs of PVAG, the wavelet coefficients at the alpha frequency band with the basis “bior3.7” and the reconstructed

alpha oscillation. (D) Time-frequency analysis by WP transform with “bior3.7”; the color bar indicates the absolute value of WP coefficients.

FIGURE 4 | The average relative error over LFP segments was calculated between the reconstructed oscillations with and without the running window. The minimum

error was achieved when the window length was a multiple of 64 points. The window length selected was 128.
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switching between two discriminant states of synchronization
and de-synchronization.

Dynamic Neural State Identification of
LFPs
Finally, the state identification approach was applied to encode
neuropathic pain by analysis of 27 LFP recordings from the
VPL and the PVAG. The WP coefficients of the theta and
alpha oscillations were simultaneously extracted by the WP
transform, and the adaptive thresholds were calculated for the
theta and alpha oscillations (Figure 8A). The synchronization
and de-synchronization states of each oscillation were adaptively
discriminated. The states for the combination of the theta and

TABLE 3 | The performance of synchronization state discrimination for theta and

alpha simulation signals using different lengths of a priori windows.

Lpriori (s) Theta Alpha

Sensitivity Specificity Sensitivity Specificity

1 0.73 0.89 0.64 0.88

2 0.78 0.89 0.66 0.90

4 0.71 0.91 0.54 0.93

6 0.69 0.92 0.50 0.94

8 0.65 0.93 0.45 0.94

Lpriori is the length of the a priori window length.

alpha oscillations were computed, and four states were identified,
i.e., α

0
θ
0, α

0
θ
1, α

1
θ
0, and α

1
θ
1. The dynamic states are further

illustrated in Figure 8B, which shows that the α
0
θ
0 and α

0
θ
1

states occurred more frequently. The relationships between the
occurrence timing of the six states and pain relief are listed in
Table 7. These results illustrate that the occurrence frequency of
the α

0
θ
1 state in the PVAG was significantly positively related

to pain relief. However, none of the states in the VPL were
significantly related to pain relief. Figures 9, 10 indicate that
the correlation between the state α

0
θ
1 and the pain relief level

showed clustering and was more regular than those of other
neural states. When the neural state becomes α

0
θ
1, it will be

maintained temporarily, but this does not occur in other neural
states. For example, the distribution of the neural state α

0
θ
0 over

time is random.

DISCUSSION

In the VPL and the PVAG nuclei, the theta, alpha, beta,
and gamma neural oscillations of LFPs are associated with
neuropathic pain. These oscillations can be characterized by
measures of amplitude, spectra, and other parameters, which
have been used to investigate the association of neural activities
with pain and pain relief. One study used alpha and beta
oscillation power to automatically classify pain levels (Zhang
et al., 2013).

Neurophysiological or pathological processes are
simultaneously related to time-varying neural oscillations.

TABLE 4 | The performance of the discrimination strategy for theta oscillations with different n1 and n2 values.

Sensitivity Specificity

n1

n2
1 2 3 4 5 6 1 2 3 4 5 6

1 0.82 0.85 0.87 0.89 0.91 0.93 0.91 0.88 0.87 0.87 0.86 0.86

2 0.76 0.77 0.79 0.80 0.81 0.83 0.91 0.88 0.88 0.87 0.87 0.87

3 0.75 0.75 0.75 0.78 0.78 0.79 0.93 0.88 0.88 0.88 0.87 0.87

4 0.74 0.75 0.75 0.75 0.77 0.78 0.94 0.90 0.88 0.88 0.87 0.87

5 0.73 0.74 0.74 0.74 0.74 0.77 0.94 0.90 0.89 0.88 0.87 0.87

6 0.72 0.74 0.74 0.74 0.74 0.74 0.96 0.91 0.90 0.89 0.87 0.87

Bolded values indicate that both the sensitivity and specificity are larger than 0.8.

TABLE 5 | The performance of the discrimination strategy for alpha oscillations with different n1 and n2 values.

Sensitivity Specificity

n1

n2
1 2 3 4 5 6 1 2 3 4 5 6

1 0.68 0.72 0.74 0.76 0.78 0.80 0.91 0.90 0.89 0.89 0.89 0.88

2 0.67 0.68 0.71 0.72 0.75 0.76 0.91 0.90 0.89 0.89 0.89 0.89

3 0.64 0.66 0.66 0.69 0.70 0.72 0.93 0.90 0.90 0.89 0.89 0.89

4 0.62 0.64 0.65 0.65 0.68 0.68 0.93 0.92 0.90 0.89 0.89 0.89

5 0.60 0.62 0.63 0.63 0.63 0.66 0.94 0.92 0.91 0.90 0.89 0.89

6 0.58 0.60 0.61 0.61 0.61 0.61 0.95 0.93 0.92 0.91 0.89 0.89

Bolded values indicate that both the sensitivity and specificity are larger than 0.8.
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TABLE 6 | The optimal parameters of the state identification approach for theta

and alpha oscillations, respectively.

Oscillation WP basis Lrunning Lpriori n1 n2

Theta rbio3.7 128 points 2 s 1 6

Alpha bior3.7 128 points 2 s 1 6

There is a demand for the development of a framework to
integrate multiple oscillations to construct neural states in high
dimensions. We explored the features of multiple oscillations
correlated with neuropathic pain in three dimensions (Huang
et al., 2016b). In this study, we further enriched the framework
by developing approaches to identify the dynamic neural states
of multiple oscillations with sparse representation and adaptive
discrimination. Such an approach is useful for neural coding,
neurophysiological mechanistic research in neuropathic pain,
and other neurological diseases, such as Parkinson’s disease,
epilepsy (Cotic et al., 2011; Wu et al., 2013), and other psychiatric
diseases (Neumann et al., 2014). Ultimately, it could be valuable
for the development of a neural state-dependent adaptive DBS
system.

In the state identification approach, the windowed WP
transform provides more flexible decomposition to extract
multiple neural oscillations, and its simplicity makes it easier to
implement in real time (Li et al., 2016), which will be valuable
for the development of closed-loop deep brain stimulation (Priori
et al., 2012). The inter-related parameters of the feature extraction
model and the state discrimination model were systematically
optimized to improve the neural state identification in terms of
sensitivity and specificity. The key parameters were the WP basis
and the running window length for specific neural oscillations
in the oscillation extraction model, and the key parameters
were a priori window length and discriminant strategy for the
discrimination model. The state identification approach was
evaluated with simulated signals. The functional relevance of
neural states was investigated by correlating the measures of
the neural states with pain relief by DBS. The performance of
state identification was improved with systematic optimization.
First, the sparse representation method of the WP transform
was chosen to represent the activity of oscillations, as it provides
a more flexible frequency division to meet the frequency band
shift of neural oscillations. In this paper, it has been found
that “bior3.7” worked significantly better than other bases in
alpha oscillations of LFPs. This may be due to its specific shape,
which is similar to the neural oscillations. More importantly,
it demonstrates that the sparse representation with a specific
basis could be able to significantly enhance the representation of
certain neural oscillations. Bases can be trained from the LFPs
of individual subjects with lifting (Subasi and Erçelebi, 2005),
and the sparse representation with such an individualized basis
could be a more efficient coding strategy. The WP transform
has been well-developed, and its simplicity makes it possible to
implement in real time (Zandi et al., 2010). By transforming the
neural oscillations from the time domain to the wavelet domain,
the random and irregular signals were represented by evenly

FIGURE 5 | The influence of SNR on the performance of the state

identification approach.

distributed coefficients with low values, while the oscillations
and regular signals were represented by sparsely distributed WP
coefficients with high values (Donoho and Johnstone, 1994). The
synchronization oscillations became a series of high-value WP
coefficients, in contrast to other de-synchronization oscillations
with low values. The WP transform enhances the representation
of the synchronization oscillations and therefore highlights the
contrast with de-synchronization oscillations.

Moreover, the oscillation extraction model was developed
to capture the synchronization neural oscillations with the
enhanced sparse representation in the wavelet domain. The
performance of the oscillation extraction model was improved
by optimizing the wavelet basis and the length of the running
window for specific oscillations. The proper running window
balanced the timing resolution and accuracy of the identification
performance.

Wavelet packet transform is one method used to achieve
sparse representation. The significance of sparse representations
is that a small amount of signal can be used to represent
a large amount of data. Sparse representations have been
widely used in information coding (Cocchi et al., 2001),
data compression (Walczak and Massart, 1997; Meyer et al.,
1998), and de-noising (Tikkanen, 1999; Fathi and Naghsh-
Nilchi, 2012). Previous studies have demonstrated that neural
activities exhibit transient, spindle-shaped dynamic oscillatory
behaviors. These activities of interest usually exhibit more
regular patterns than background activity, and therefore,
sparse representation is able to efficiently characterize these
neural oscillations. For neural state identification, the sparse
representation should be combined with a discrimination model.
The WP transform provides a solution for both (Hou and Shi,
2016), and the computation cost is lower than for dictionary-
based methods (Chang et al., 2016). In the future, improved
sparse representation approaches, such as shapelet-based sparse
representation (Roscher and Waske, 2016), global regularization
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FIGURE 6 | The construction of the simulation signal and the performance of the state identification approach for theta and alpha simulation signals. (A) The

construction of the theta simulation signal and its synchronization state identified by the state identification approach. (B) The construction of the alpha simulation

signal and its synchronization state identified by the state identification approach. The pictures, from top to bottom, correspond to the sinusoidal signal (the frequency

of the sinusoidal signal is 7.5Hz for theta simulation and 10.5 for alpha simulation), the trapezoidal envelope, a certain amount of white noise (−9 dB for the theta

simulation signal and −11 dB for the alpha simulation signal), the simulation signal by merging the sinusoidal signal, the envelope signal and the noise signal, the

coefficients of oscillation and their adaptive threshold, and the performance of the identification compared to the theoretical state of the simulation signal.

FIGURE 7 | The advantage of adaptive thresholding compared to global thresholding. (A) The performance for theta oscillation simulation signal (with −9 dB noise)

synchronization state discrimination using an adaptive threshold and a global threshold. (B) The performance for alpha oscillation simulation signal (with –11 dB noise)

synchronization state discrimination using an adaptive threshold and a global threshold. The pictures, from top to bottom, correspond to the simulation signal; the WP

coefficients of the oscillation, with its adaptive threshold and global threshold; the synchronization state discrimination performance of the adaptive threshold

compared to the theoretical state; and the synchronization state discrimination performance of the global threshold compared to the theoretical state.

(Shu et al., 2016), or match pursuit (Cui and Prasad, 2016), could
be combined withmachine learning approaches, such as Bayesian
approaches (Liu, 2016).

Second, in the state discrimination model, three aspects
were incorporated to improve the discrimination performance:
a thresholding strategy, an a priori window, and a customized
discrimination strategy. Time-varying thresholding ensured that
the discrimination model was adaptive to dynamically changing
oscillations. The a priori window balanced robustness and time
resolution and provided a robust threshold prediction for future
data. The customized discrimination strategy based on a post-
hoc test further improved the performance by reducing the
occasional influence with optimized selection of the n1 and n2
values. Such a posteriori discrimination provided a compromise

between sensitivity and specificity, and this improved the
specificity and made the discrimination model robust against
noise. Although the a posteriori discrimination induced a time
delay for state identification, it could be compensated for by re-
aligning the on/off timing of the states for off-line applications.
The mean time delays for identifying the synchronization state
were found to be 45 ± 54 and 109 ± 88ms for theta and alpha
simulation signals, respectively. For de-synchronization states,
the mean time delay was 165 ± 59 and 158 ±76ms for theta and
alpha simulation signals, respectively. Nevertheless, it was still
short enough for adaptive deep brain stimulation in real time.
In the future, the Bayesian method could further improve the
discrimination performance by statistically incorporating a priori
and a posteriori information.
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FIGURE 8 | The application of the state identification approach in LFPs and the distribution of neural states based on alpha and theta oscillations. (A) The

synchronization states of alpha and theta oscillations were discriminated at the same time. From top to bottom, the images correspond to the LFPs; WP coefficients

of alpha oscillation and its adaptive threshold; WP coefficients of theta oscillation and its adaptive threshold; and the distribution of the de-synchronization theta

oscillation and synchronization theta oscillation over time. (B) The distributions of four neural states (α0θ
0, α

0
θ
1, α

1
θ
0, and α

1
θ
1) based on theta and alpha oscillations

in the nucleus over time.

TABLE 7 | The relationships between the average frequency of neural states and

pain relief by deep brain stimulation.

Nucleus Correlation Theta Alpha Alpha-Theta

θ
1

α
1

α
0
θ
0

α
0
θ
1

α
1
θ
0

α
1
θ
1

VPL r −0.29 −0.15 0.36 −0.16 −0.23 0

p 0.33 0.63 0.26 0.61 0.46 1

PVAG r 0.50 −0.09 −0.44 0.64 −0.19 0.01

p 0.05* 0.74 0.11 0.01** 0.49 0.96

The values were calculated as the Spearman correlation (*p < 0.05, **p < 0.01).

Pain is an integrative phenomenon that results from dynamic
interactions between sensory and contextual processing (Melzack
and Casey, 1968). Pain processing may be related to complex
neural states. In this study, pain relief was correlated to the
neural states of theta and alpha oscillations with binary encoding.
Pain relief was not only related to the synchronization timing
of theta oscillations but was also specifically related to the α

0
θ
1

state.
In the current study, the amplitude was used as a

synchronization feature for neural state identification. However,
the neural states may also be related to other types of
features. Phase synchronization and coupling between multiple
oscillations were also found to be associated with pain (Sarnthein
and Jeanmonod, 2008). Patterns of neural oscillations have
also been measured with Lempel-Ziv complexity (Geng et al.,
2017), coefficients of variance (Little et al., 2012), and entropy
(Darbin et al., 2016). When features in multiple domains are
used to encode neural states, the binary coding method may
become no longer intuitive or applicable, and non-linear coding
with Bayesian and artificial neural network methods would be
needed.

The state identification approach could be generalized for
neural state identification in other neurological diseases. The

approach in this study dealt with a more challenging situation
in that the PVAG and VPL LFPs have higher background random
neural activities than the subthalamic LFPs in Parkinson’s disease.
Previous research has shown that beta oscillations in subthalamic
LFPs exhibit more regular patterns (Ray et al., 2008) resulting
from resonant subthalamo-cortical circuits (Eusebio et al., 2009).
Our preliminary research has shown that beta oscillations can
be reliably identified using the state identification approach
(Zhang et al., 2017), which will provide an essential step
toward closed-loop stimulation adaptive to the rhythms of neural
activities.

The state identification approach may be valuable for the
development of closed-loop DBS in the future. The approach
provides a method to capture multiple oscillations comparable
to online processing. The state identification approach may be
more robust than the solely amplitude-based methods (Little
et al., 2013) in situations with high level noise because the
patterning oscillations are enhanced, and the thresholding is
adaptive with the change of oscillations. Moreover, the approach
is flexible in adjusting the sensitivity and specificity, which
would be valuable for balancing the efficacy and side effects
of the treatment. The higher sensitivity may lead to better
relief of the symptoms by more accurately modulating the
neural oscillations of interests, while the higher specificity
may reduce the potential side effects with less stimulation at
states irrelevant to the pathological origin. However, there are
some potential limitations to translating the state identification
approach into closed-loop DBS. The main potential limitation
will be the quality of LFPs for long-term recording. Both the
impedance of the implanted electrode and stimulation artifacts
will influence the quality of LFPs. However, the impedance of
implanted electrodes varies among different studies and patients
(Abosch et al., 2012; Lungu et al., 2014; Satzer et al., 2014).
Researchers have found that the influence of impedance is not
significant (Steiner et al., 2017). The more challenging issue is
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FIGURE 9 | (A) The distributions of the four states in one neuropathic pain patient’s PVAG over time; α
0
θ
0 (blue dots), α

0
θ
1 (pink dots), α

1
θ
0 (yellow dots), and α

1
θ
1

(black dots). (B) Distribution of the α
0
θ
1 state over time.

FIGURE 10 | The significantly linear correlation between pain relief and the occurrence timing of the θ
1 state in the PVAG (A) and of the α

0
θ
1 state in the PVAG (B).

stimulation artifacts, especially those arising from low frequency
stimulation.When 20Hz stimulation is used in neuropathic pain,
preprocessing of a low pass filter should be applied, and the filter
needs to be purposely designed, and independent component
analysis may be useful to further reduce stimulation artifacts.
Alternatively, recording from cortical or subcortical electrodes

may be used to develop closed-loop deep brain stimulation
(Rosin et al., 2011).

In summary, this study provides a robust approach to
identifying the dynamic neural states of deep brain nuclei. In the
future, this workmay advance closed-loop deep brain stimulation
based on neural states integrating multiple neural oscillations.
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