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Abstract: PM2.5 is one of the primary components of air pollutants, and it has wide impacts on
human health. Land use regression models have the typical disadvantage of low temporal resolution.
In this study, various point of interests (POIs) variables are added to the usual predictive variables
of the general land use regression (LUR) model to improve the temporal resolution. Hourly PM2.5

concentration data from 35 monitoring stations in Beijing, China, were used. Twelve LUR models
were developed for working days and non-working days of the heating season and non-heating
season, respectively. The results showed that these models achieved good fitness in winter and
summer, and the highest R2 of the winter and summer models were 0.951 and 0.628, respectively.
Meteorological factors, POIs, and roads factors were the most critical predictive variables in the
models. This study also showed that POIs had time characteristics, and different types of POIs
showed different explanations ranging from 5.5% to 41.2% of the models on working days or non-
working days, respectively. Therefore, this study confirmed that POIs can greatly improve the
temporal resolution of LUR models, which is significant for high precision exposure studies.

Keywords: particular matter; land use regression; point of interest; temporal resolution; exposure

1. Introduction

Air pollution problems are becoming increasingly serious worldwide. The primary
pollutants found in cities include sulfur dioxide, ozone, nitrogen oxides, and inhalable
and fine particulate matter. Fine particulate matter is an important air pollutant, which
is considered the primary environmental risk factor, and it is the fourth leading risk
factor for death and disability in China [1]. In particular, PM2.5 has the most significant
effect. Long-term exposure to PM2.5 pollution can have a severe impact on human health.
Numerous epidemiological studies have shown that PM2.5 is closely related to a variety
of cerebrovascular diseases, respiratory diseases, and immune system diseases, as well
as long-term or short-term mortality in hospitals [2–5]. According to a report in 2014, the
PM2.5 concentration in 90% of Chinese cities had exceeded the standard of 35 µg·m−3, and
the average number of exceeded days was 246. Therefore, studies that investigate PM2.5 are
of great significance for local pollution prevention and targeted health prevention measures.

Various modeling methods, such as spatial interpolation [6], the atmospheric dis-
persion model [7], satellite inversion [8], and deep learning [9–11], have been used to
simulate the distribution of regional pollutants. However, many methods, such as diffusion
models, require a large amount of data difficult to obtain, and it is difficult to achieve
high-precision under the condition of a lack of input data resources [12]. The land use
regression (LUR) model is a multivariate regression modeling method based on the ob-
servation concentration of air pollutants and its surrounding geographical factors. This
method is widely used to estimate the concentrations of outdoor air pollutants since it was
improved by Briggs et al. [13]. Due to its high accuracy and relatively low investment [14],
LUR models have a wide range of applications. Beelen et al. [15] used an LUR model in the
ESCAPE (European Study of Cohorts for Air Pollution Effects) project, which explained
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the variability of annual NO2 and NOx concentrations. Ma et al. [16] used multi-scale
LUR models to simulate the NO2 concentration in Auckland, which performed better than
the universal kriging (UK) model and the inverse distance weighting (IDW) and ordinary
kriging (OK) models. Yang et al. [17] developed LUR models to predict ultrafine particle
concentrations in London, and the results showed that the LUR models had moderate
to good performances within these areas. Saucy et al. [18] used warm and cold season
LUR models for NO2 and PM2.5 concentrations in peri-urban areas in South Africa, and it
was demonstrated that the models could be successfully applied in local areas. Weissert
et al. [19] developed a microscale LUR model for a heavily trafficked road in Auckland,
New Zealand. This research represented the expansibility of small-scale variability in
pollutant concentrations. In China, LUR modeling has been shown to have methodolog-
ical advantages and has become increasingly popular in air pollution studies in recent
years [20–22].

In human exposure and health risk assessment areas, LUR models are often used
to simulate exposure concentrations [23]. High temporal resolution pollution data can
improve the precision of epidemiological studies and human exposure research. Although
LUR is a reasonable and reliable modelling approach, to some degree it has the disadvan-
tages of low temporal resolution and poor spatial portability [16,24]. The most common
spatial predictors in LUR models include elevation, population, road network, and land
use. Many studies have confirmed that these predictors can explain most of the models
and have strong correlations with pollutant concentrations [20,25,26].

City pollution sources and functions vary from region to region due to the different
characteristics of urban layouts [27,28]. In particular, various urban functional areas are
comprised of various points of interest (POIs) [29]. Studies have confirmed that different
functional areas with different types of POIs have differences in air pollution characteristics
and attractiveness to populations [30–32]. POIs show typical functional features at different
times. For example, people tend to congregate in residential areas in the evening and gather
in office places for working during the daytime. Therefore, this may result in different POI
predictors related to pollutants at different times. That means that if POI predictors are
added into LUR models, this may improve the precision and temporal–spatial resolution.
Nori-Sarma et al. [26] used LUR models to predict urban NO2 exposure in Mysore, India.
The study showed industrial sites and religious POIs, and these high human activity POIs
were associated with higher levels of NO2. Lu et al. [33] developed three sets of LUR
models and the independent variables were common land use data, local business permit
data, and Google POI data. The results showed that models that used the Google POI data
performed the best.

Beijing is one of the cities with the worst air pollution measures in northern China.
Although Beijing has made phased progress in reducing the air pollution problem in recent
years, it still exceeds the minimum limit of the China national standard (GB 3095-2012). Un-
like previous studies that have used average annual and seasonal pollutant concentrations,
this study uses hourly pollution concentrations from the heating season, the non-heating
season, working days, and non-working days. In these LUR models, in addition to conven-
tional predictors, such as land use, meteorological factors, population and elevation, POIs
are also included. This study aims to improve the temporal resolution and model accuracy
and simulate the PM2.5 distribution in Beijing during different time circumstances, and to
provide guidance and reference value for continued LUR and exposure studies.

2. Materials and Methods
2.1. Study Area

The Beijing, Tianjin, and Hebei regions are the most polluted areas in northern China.
Beijing is the capital of China, and it has representativeness and data availability. It has
16 districts with a total area of 16,410.54 square kilometers at a latitude of 39◦26′–41◦03′

and longitude of E115◦25′–117◦30′. The permanent resident population is 21.536 million,
and the urban population is 18.65 million, accounting for 86.6 percent of the total urban
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population. The terrain of Beijing primarily consists of plains and mountainous areas, and
is high in the northwest and low in the southeast. Beijing is surrounded on three sides by
mountains to the west, north, and northeast, and to the southeast by a plain that slopes
gently toward the Bohai Sea. The terrain conditions make it easy for various pollutants
to accumulate and difficult to diffuse. Beijing has a warm temperate semi-humid and
semi-arid monsoon climate, with high temperatures and rain in summer and cold and dry
weather in winter.

2.2. PM2.5 Data

Beijing has 35 air quality monitoring stations. There are 24 environmental assessment
and control stations, six regional stations, and five traffic monitoring stations. Environmen-
tal assessment stations represent the overall level and variations in the regional environ-
ment. Six regional stations represent the level of regional concentrations, and the five traffic
monitoring stations were used to measure the influence of road traffic pollution sources on
the ambient air quality distributed in different ring lines and primary roads. The locations
of the monitoring stations are shown in Figure 1. The monitoring stations were primarily
concentrated in the central urban area and were distributed evenly in the suburbs. The
hourly PM2.5 concentration data came from the Beijing Municipal Environmental Protection
and Testing Center (http://www.bjmemc.com.cn (accessed on 10 December 2019)).

Figure 1. Study area and distribution of the monitoring stations.

Hourly pollutants concentration was used to develop LUR models. Because of its
high temporal resolution, PM2.5 distribution showed huge differences due to season and
time characteristics. Considering high time scale POI influence and corresponding to
meteorological condition variation, this study chose working days and non-working days
from winter heating season and summer non-heating season which were randomly chosen
at 0:00, 8:00, and 18:00. These corresponded to midnight, morning rush, and evening
rush. The average PM2.5 concentration at these three times on 3 August 2019 represented
a summer non-working day. 6 August 2019 represented a summer working day. In the
same way, 12 and 14 January 2019 represented a winter non-working day and working
day, respectively. Missing values from some stations at a particular moment were removed.
Given the above, 12 LUR models in total were developed.

http://www.bjmemc.com.cn
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2.3. Predictors and Data Source

Source apportionment studies have shown that PM2.5 pollutants are primarily caused
by various sources, including traffic, coal combustion, biomass burning, industrial sources,
and dust [34,35]. In addition, meteorological conditions, local emissions, regional transport,
and complex topography can also affect the formation of pollutants [36,37]. This study
summarized the common geographic variables used in previous studies. Buffer sizes with
radii of 300 m, 500 m, 600 m, 700 m, 800 m, 900 m, 1000 m, 1300 m, 1500 m, 2000 m, and
2500 m centered from the monitoring station were established. The predictors included land
use area, road length, number of different POIs, industrial pollution sources, meteorological
factors, elevation, and population. Specific details of these predictors can be seen in Table 1.

Table 1. Predictors in the LUR models.

Category Predictor Variable Unit Buffer Radius

Land use

Arable land m2

300 m, 500 m, 600 m, 700 m, 800 m, 900 m,
1000 m, 1300 m, 1500 m, 2000 m, 2500 m

Garden land m2

Woodland m2

Grassland m2

Commercial service land m2

Industrial and mining warehousing land m2

Road
Primary road m

Secondary road m

POIs

Catering services /
Scenic spots /

Public facilities /
Companies /

Shopping places /
Transportation /
Financial banks /

Science and education places /
Commercial and residential housing /

Life services /
Sports and leisure /

Medical care /
Government agencies /

Meteorological
factors

Temperature ◦C

/

Relative humidity %
Air pressure hPa
Wind speed m·s−1

Population Population /
Elevation Elevation m

Industry source Industry source /

LUR: Land use regression; POIs: Point of interests.

Land use data was obtained from the Chinese resource and environment data cloud
platform (http://www.resdc.cn/ (accessed on 10 December 2019)). Beijing primarily
contains the following six land types: arable land, garden land, woodland, grassland,
commercial service land, industrial and mining warehousing land, and residential land.
Meteorological data, including temperature, relative humidity, air pressure, and wind
speed, came from the China meteorological science data center (http://data.cma.cn/
en (accessed on 10 December 2019)). Meteorological data from 33 stations in Beijing
(15 stations) and its surrounding areas (18 stations in Hebei and Tianjin) were utilized.
The Kriging interpolation method was used to simulate the annual mean values of the
35 monitoring stations. The road network data came from the National Geomatic Center of
China (http://www.ngcc.cn/ngcc/ (accessed on 10 December 2019)). These data contained
the name, type, length, and other information on all the roads in Beijing. While vehicle

http://www.resdc.cn/
http://data.cma.cn/en
http://data.cma.cn/en
http://www.ngcc.cn/ngcc/
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flow information was not available, the length of roads within the buffer zone of the
monitoring station is a good substitute [17,38]. By considering traffic flow and geographical
location information, the roads were divided into two categories. Expressways, national
roads, provincial roads, county roads, and urban expressways were merged into primary
roads, township roads, and pedestrian roads, and the other roads were merged into the
secondary roads. The length of the various roads in each buffer zone were obtained as
road factors using the GIS spatial superposition method. The POI data was obtained using
an application called the Baidu map using Python. There were 13 types of POI, including
catering services, scenic spots, public facilities, companies, shopping places, transportation,
financial banks, science and education places, commercial and residential housing, life
services, sports and leisure, medical care, and government agencies. The Shuttle Radar
Topography Mission (SRTM) digital elevation data (90 m spatial resolution) was used as
digital elevation model (DEM). The population density data was based on the population
distribution dataset of a 1 km grid in 2015. The industrial pollution sources data was
obtained from the website of the Ministry of Environmental Protection. This contained
basic information on the national key monitoring enterprises of waste gas.

2.4. Land Use Regression Modelling

The land use regression (LUR) model is based on the least square method to establish
a regression equation between air pollutants at monitoring points and the characteristic
predictors of the surrounding environment near these points. Then, by using the character-
istic predictors of the surrounding environment at unknown points, the model algorithm of
pollutant concentrations at unknown points can be estimated by the equation. The model
equation is as follows:

y = β0 + β1×1 + β2×2 + . . . + βnxn + α, (1)

where y represents the PM2.5 concentration value; x1, x2, . . . , xn represents the influence
factors in the model; and α is a random variable. First, a correlation analysis was conducted
between the PM2.5 data and corresponding predictors of the station. In this study, the
Spearman correlation coefficient was used as the standard to select these predictors. To
reduce the possibility of collinearity between variables belonging to the same category, the
predictor with the highest correlation coefficient in each category of the buffers was kept,
and the rest were eliminated [39,40]. A stepwise linear regression was performed on the
screened predictors to obtain the multiple linear regression equations. The significance level
(p-value < 0.05) and variance inflation factor (VIF < 5) of each predictor that remained in the
models were used to check their significance levels and ensure no issues of multicollinearity.
Finally, the models’ fitness degrees were judged using R2, and the root-mean-square error
(RMSE) was used to evaluate the prediction accuracy of the models. In addition, the partial
R2 of each predictor was used to judge the overall explanation of the model by this factor.

2.5. Validation and Evaluation

This study used the 10-fold cross validation method. The principle of the 10-fold cross
validation is to divide the entire data set into 10 parts, of which nine were selected as the
training set and one as the prediction set. The RMSE and the adjusted R2 were used to
evaluate the predictive accuracy and fitness of the models through many times of repeat
training. R software was used to conduct all of the statistical analyses.

When the final LUR model was obtained, the regression equation was used to simulate
the concentration of pollutants at non-monitored points. This process is called regression
mapping [41]. This method can better simulate the spatial distribution of air pollutants.
A grid of 3 km and 3 km within the research area was generated, and the corresponding
impact factor values of each grid point were obtained. These were then placed into the
obtained multiple regression equation to predict the PM2.5 concentration. Then, the Kriging
interpolation method was used to simulate and generate the spatial distribution of the
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predicted PM2.5 concentration at different times during working days and non-working
days in winter and summer in the study area.

3. Results
3.1. Descriptive Statistics for the PM2.5 Data

Table 2 shows the basic descriptive statistics of the PM2.5 at different times during
winter working days, non-working days, summer working days, and non-working days.
The PM2.5 pollutant data of each district at different times can be seen in Table S1. As a
whole, there was a large difference in the study area in the PM2.5 concentrations between
winter and summer. According to China’s GB 3095-2012, it can be seen that the pollution
concentration during the two winter days seriously exceeded the standard, and the average
PM2.5 value ranged from 95.9 to 323.4 µg·m−3. The median values of the six moments in the
two winter days were generally high, the upper and lower quartile intervals had a larger
span, and the PM2.5 concentration values of the different monitoring sites had a greater
degree of dispersion. In comparison, the PM2.5 concentration did not exceed the standard
at six times on two summer days. The average PM2.5 value was between 22.4–46.6 µg·m−3,
the maximum was between 42–69 µg·m−3, and the minimum was between 9–25 µg·m−3.
In general, the PM2.5 concentration at the different monitoring stations in the study area
was discrete.

Table 2. Summary of the descriptive statistics of the PM2.5 data in the study area.

Day Time Mean ± SD Max Min Median IQR

Winter working days
0:00 159.5 ± 95.6 271.0 13.0 207.0 53.8–237.8
8:00 95.9 ± 78.9 319.0 18.0 66.0 43.8–127.5

18:00 177.5 ± 107.8 376.0 10.0 184.0 84.0–258.0

Winter non-working days
0:00 213.5 ± 103.2 402.0 64.0 171.0 123.3–321.5
8:00 151.1 ± 84.7 373.0 73.0 118.0 105.5–152.0

18:00 323.4 ± 159.3 624.0 88.0 313.5 157.8–466.5

Summer working days
0:00 34.5 ± 10.6 50.0 15.0 35.0 27.5–43.0
8:00 46.6 ± 12.7 69.0 25.0 45.0 34.5–56.5

18:00 38.5 ± 7.5 49.0 9.0 40.0 37.5–42.5

Summer non-working days
0:00 30.4 ± 7.8 47.0 11.0 29.0 26.0–36.5
8:00 38.0 ± 12.9 62.0 15.0 37.0 28.0–49.8

18:00 22.4 ± 7.5 42.0 10.0 23.0 16.0–27.0
SD: Standard deviation; IQR: Interquartile range.

After a normality test of the several sets of data, a Student’s t-test and Mann–Whitney
U test were performed on the PM2.5 concentration at three times of the day according to
the normal distribution of the PM2.5 concentration. During winter, there was no significant
difference between 0:00 and 18:00 on winter workdays (p > 0.05). In addition, there were
significant differences between 0:00 and 8:00 and between 8:00 and 18:00 (p < 0.05). There
were significant differences in the PM2.5 concentration of the three non-working days in
winter (p < 0.01). It can be seen that in winter, whether it was a working day or a non-
working day, the PM2.5 concentration at the three times all presented a trend, with the
strongest at 18:00 and the lowest concentration at 8:00. There was no significant difference
between 0:00 and 18:00 in summer working days and non-working days (p > 0.05), but there
were significant differences between 0:00 and 8:00 and 8:00 and 18:00 (p < 0.05). This meant
that at different times in one day there were large differences in the PM2.5 concentrations at
the same station.

3.2. LUR Models

Correlation analysis results can be seen in Table S2. Table 3 shows the results of a
total of 12 LUR models at three times during winter working days, non-working days,
summer working days, and non-working days. Overall, the fitness of the LUR models
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at various moments in winter were better than in summer, with the adjusted R2 ranging
from 0.644 to 0.951, and the 10-fold cross-validation adjusted R2 ranging from 0.671 to
0.947. The adjusted R2 of the summer time models were between 0.312 and 0.628, and the
10-fold cross-validation adjusted R2 were between 0.299 and 0.605. In summary, the R2

varied greatly at different times, even in the same season. Compared with the summer
LUR models, the RMSE of the winter models were generally larger. The winter models’
RMSE ranged from 19.79 to 50.76 µg·m−3, and the 10-fold cv RMSE were between 14.52 to
55.42 µg·m−3. This was related to winter’s higher concentration of pollutants in the study
area. In the summer models, the RMSE were between 5.08–8.24 µg·m−3, and the 10-fold
cv RMSE were between 4.84–9.55 µg·m−3. For the working days and non-working days
during the same season, the R2 and RMSE gaps were not significant.

Table 3. Summary of the basic parameters of the different models.

Day Time R2 Adjusted R2 Adjusted 10-Fold
cv R2

RMSE
(µg·m−3)

10-Fold cv RMSE
(µg·m−3)

Winter working day
0:00 0.955 0.951 0.947 19.79 29.39
8:00 0.675 0.644 0.671 43.68 52.64

18:00 0.829 0.818 0.800 45.48 27.33

Winter non-working day
0:00 0.803 0.777 0.783 44.71 55.42
8:00 0.732 0.706 0.698 42.75 14.52

18:00 0.892 0.886 0.880 50.76 32.19

Summer working day
0:00 0.668 0.628 0.592 5.08 9.55
8:00 0.567 0.510 0.466 8.24 4.84

18:00 0.354 0.312 0.299 7.72 7.92

Summer non-working day
0:00 0.468 0.434 0.435 5.64 6.51
8:00 0.635 0.598 0.605 7.87 9.23

18:00 0.593 0.567 0.574 7.71 6.62

RMSE: Root-mean-square error.

Tables 4–7 show the final predictors of 12 LUR models. The final predictors retained
in the LUR models included meteorological factors, roads, land use types, POIs, and
elevation according to the correlation analysis. The partial R2 represented the contribution
of the predictive variables in each model to the model. The meteorological factors were
included in nearly all the models. During winter, the LUR models at different times
and relative humidities were included in all six models, and this explained 54–86% of
the variations. The second meteorological factor was temperature. Unlike the winter
models, the meteorological factors had little effect on the summer LUR models, although
the relative humidity and temperature were both included. This may have been due to
the different dominant factors of the PM2.5 concentration in the different seasons. At
0:00 on the summer working days, the temperature explained 19.3% of the variations in
the model. However, at 0:00 and 8:00 on non-working days in summer, the temperature
and relative humidity only explained 6.9% and 6.3%, respectively, of the variations in
the models. Land use and road data also explained a large portion of the model results.
Grassland was included in the winter and summer models, accounting for 5.6% and 6.3%
of the variations in the models, respectively, both of which were negatively correlated with
the PM2.5 concentrations. Road data were included in both the winter and summer models;
at 8:00 a.m. on winter and summer working days, and at 18:00 on summer non-working
day. The models that included road data were both in the morning and evening peaks and
explained 3.5%, 15.6%, and 8.3% of the variations in the models.
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Table 4. The LUR models at different times during a winter working day.

Time Variable Coefficient β t Sig VIF Partial R2

0:00

Intercept −673.896 −15.482 0.000 NA NA
Relative humidity 13.277 19.098 0.000 1.683 0.867

Sports and leisure_2500 0.121 7.653 0.000 1.145 0.073
Elevation 0.114 3.249 0.003 1.729 0.015

8:00

Intercept −813.746 −6.303 0.000 NA NA
Relative humidity 13.137 7.280 0.000 1.521 0.608
Primary road_1500 0.001 2.451 0.020 1.334 0.035

Elevation 0.139 1.750 0.090 1.805 0.032

18:00
Intercept −384.327 −7.126 0.000 NA NA

Relative humidity 13.117 11.583 0.000 2.987 0.549
Temperature 46.992 7.126 0.000 2.987 0.280

LUR: Land use regression; VIF: Variance inflation factor.

Table 5. The LUR models at different times during a winter non-working day.

Time Variable Coefficient β t Sig VIF Partial R2

0:00

Intercept −531.070 −6.734 0.000 NA NA
Relative humidity 10.770 8.755 0.000 1.055 0.574

Shopping places_2500 1.814 5.122 0.000 4.116 0.143
Financial banks_3000 −0.122 −2.897 0.007 4.020 0.058

Woodland_1300 4.649 × 10−5 2.058 0.048 1.145 0.028

8:00

Intercept −303.577 −4.439 0.000 NA NA
Relative humidity 6.838 7.460 0.000 1.053 0.620

Catering services_900 −0.402 −3.131 0.004 1.124 0.055
Grassland_800 −2.017 × 10−4 −2.543 0.016 1.088 0.056

18:00
Intercept −499.405 −9.598 0.000 NA NA

Relative humidity 14.742 15.132 0.000 1.010 0.824
Shopping places_3000 0.604 4.486 0.000 1.010 0.068

LUR: Land use regression; VIF: Variance inflation factor.

Table 6. LUR models at different times during a summer working day.

Time Variable Coefficient β t Sig VIF Partial R2

0:00

Intercept −130.226 −3.097 0.005 NA NA
Residential housing_500 0.296 3.296 0.003 1.230 0.412

Temperature 6.581 3.860 0.001 1.079 0.193
Grassland_3000 −3.780 × 10−6 −2.179 0.039 1.147 0.063

8:00

Intercept 36.019 14.212 0.000 NA NA
Secondary road_300 0.009 4.374 0.000 1.908 0.363
Financial banks_3000 −0.023 −3.168 0.004 3.397 0.082

Government
agencies_300 0.294 2.099 0.044 2.050 0.065

Life services_300 1.148 3.706 0.001 1.425 0.058

18:00
Intercept 40.454 20.623 0.000 NA NA

Residential housing_300 0.665 2.634 0.013 1.114 0.257
Scenic spots_3000 0.024 2.157 0.039 1.114 0.097

LUR: Land use regression; VIF: Variance inflation factor.

The POIs were included in the models of both seasons and had a certain influence on
the PM2.5 concentrations. Eleven types of POIs were included: residential housing, catering
services, life services, scenic spots, medical care, public facilities, science and education
places, sports and leisure, shopping places, government agencies, and financial banks.
The results showed that on working days or non-working days in the different seasons,
different POIs had a certain influence on the PM2.5 concentration, and their relationships to
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the pollutants at specific moments had diversity. Compared with the summer results, the
number of POIs included in the winter models was smaller because the relative humidity
contributed most to the winter models. At 0:00 on a winter working day, sports leisure
within 2500 m explained 7.3% of the variation in the model. At 0:00 on non-working days
in winter, such POIs explained 20.1% of the variation in the model. At 8:00 and 18:00 on
non-working days in winter, catering services and shopping places were included in the
models, which explained 5.5% and 6.8%, respectively, of the variation. Furthermore, POIs
were included in all the summer models, and these explained a great deal of the variations.
At 0:00 on summer working days and non-working days, commercial residences explained
41.2% and 39.8% of variation in the model, respectively. This was consistent with the feature
that most people gather in residential areas at midnight. At 8:00 on a summer working
day, financial banks within 3000 m, government agencies within 300 m and life service
within 300 m explained 8.2%, 6.5%, and 5.9% of the variation in the model, respectively. At
18:00 on a summer working day, all of the contributions to the PM2.5 pollutants came from
the POIs, including commercial residences and scenic spots, explaining 25.7% and 9.7%
of the variation in the model, respectively. At 8:00 on a non-working day in summer, the
POIs were still important sources of PM2.5 pollutants. Medical care and public facilities
explained 45.6% and 11.6% of the variation in the model, respectively. At 18:00 on summer
working days, science and education places explained 51% of the LUR model. In summary,
POIs have greatly improved the time resolution of LUR models for different moments.

Table 7. LUR models at different times during a summer non-working day.

Time Variable Coefficient β t Sig VIF Partial R2

0:00
Intercept −32.405 −1.142 0.262 NA NA

Residential housing_2500 0.009 2.382 0.023 1.738 0.398
Temperature 2.553 2.041 0.050 1.738 0.069

8:00

Intercept −55.293 −1.501 0.144 NA NA
Medical care_300 1.154 3.411 0.002 1.330 0.456

Public facilities_2000 0.036 2.883 0.007 1.185 0.116
Relative humidity 1.049 2.283 0.030 1.188 0.063

18:00
Intercept 25.358 9.394 0.000 NA NA

Science and education
places_500 0.188 3.192 0.003 1.710 0.510

Primary road_2500 5.723 × 10−5 2.559 0.015 1.710 0.083
LUR: Land use regression; VIF: Variance inflation factor.

3.3. PM2.5 Evaluation and Distribution

The center value of each grid point in the study area was estimated according to the
regression equation of the LUR models. The Kriging interpolation method was used to
predict the spatial distribution of PM2.5 in the study area. Figure 2 shows the temporal and
spatial distribution of the PM2.5 at different times during winter working days and non-
working days in Beijing. It can be seen that distribution of PM2.5 in study area had obvious
temporal and spatial heterogeneity. Even in the different seasons, the pollutants were
higher in the southeast and lower in the central urban and northwest mountainous areas.
This was consistent with the high terrain in the northwest and gentle terrain southeast of
the study area. This feature was more significant in winter. In summer, the high PM2.5
concentration is primarily concentrated in urban areas and south of the city, but it was
more obvious in urban centers.
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Figure 2. Spatial distribution of PM2.5 during the different seasons and times. (a–c) show the spatial distribution of PM2.5

during winter working days at 0:00, 8:00, and 18:00; (d–f) show the spatial distribution of PM2.5 during winter non-working
days at 0:00, 8:00, and 18:00; (g–i) shows the spatial distribution of PM2.5 during summer working days at 0:00, 8:00, and
18:00; and (j–l) shows the spatial distribution of PM2.5 during summer non-working days at 0:00, 8:00, and 18:00.
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Figure 3 shows the Kriging’s predicted PM2.5 data compared with the actual val-
ues. The scatter plots of the predicted versus observed PM2.5 data are displayed. Al-
though there were some outliers, as a whole it can be seen that the explanatory abil-
ity of the Kriging expansion was basically the same or slightly improved compared
to that of the LUR models, according to a comparison of the PM2.5 concentration pre-
dicted values with actual values by Kriging interpolation. By using the linear regres-
sion prediction of the PM2.5 concentration at the different moments, the prediction val-
ues of 0:00, 8:00, and 18:00 on winter working days ranged from 9.27–288.29 µg·m−3,
15–236.51 µg·m−3, and 10–373.33 µg·m−3 respectively, with mean values of 160.11 µg·m−3,
106.98 µg·m−3, and 180.02 µg·m−3, respectively. The relative error between the forecast
mean value and the actual value was −0.94%, 11.63%, and 1.66%, respectively. The pre-
diction value at 0:00, 8:00, and 18:00 during the winter non-working days ranged from
39.46–423.12 µg·m−3, 67.60–322.18 µg·m−3, and 85.89–612.17 µg·m−3 respectively, with
mean values of 205.84 µg·m−3, 150.53 µg·m−3, and 323.52 µg·m−3, respectively. The rel-
ative error between the predicted means and actual values were −2.77%, 0.35%, and
0.06%, respectively. In the winter models, the monitoring stations for the predicted max-
imum and minimum PM2.5 values were consistent with the monitoring stations for the
actual maximum and minimum values. However, there were more outliers in summer
working days and non-working days which illustrated summer models ‘predictive ef-
fect. The prediction effect during summer time was worse than the original LUR models.
The prediction ranges of the PM2.5 concentration at 0:00, 8:00, and 18:00 during the sum-
mer working days were 12.22–47.91 µg·m−3, 33.46–72.21 µg·m−3, and 39.87–59.56 µg·m−3,
with mean values being 33.36 µg·m−3, 52.04 µg·m−3, and 45.98 µg·m−3, and relative pre-
diction errors of −3.26%, 11.68%, and 0.36%, respectively. The predicted range of the
PM2.5 concentration at 0:00, 8:00, and 18:00 on the non-working days during summer were
20.87–40.87 µg·m−3, 22.50–55.43 µg·m−3, and 25.73–55.47 µg·m−3, with mean values of
30.36 µg·m−3, 37.31 µg·m−3, and 37.01 µg·m−3, respectively. The relative errors with the
actual values were −0.03%, −1.82%, and −2.82%, respectively. In summary, the prediction
accuracy of the summer models was relatively high, but the predicted maximum and
minimum PM2.5 stations were not completely consistent with the actual stations due to
the small difference in the overall PM2.5 concentration distribution during summer in the
study area.

Figure 3. Cont.
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Figure 3. Scatter plots of the PM2.5 predictions from the Kriging method and the monitoring observations.

4. Discussion

The LUR models in this study well explained the temporal and spatial variations in
the PM2.5 pollution in the study area, and hourly time precision was achieved. The winter
models fitted best, and the explanatory degree of the models at several different moments
ranged from 67.5% to 95.5%. These models were highly comparable compared with the
LUR models utilized in previous studies. The explanation of these models was higher than
the 53% explanation of the annual PM2.5 LUR simulation for the United States [42] and
higher than 11.4–46.5% of the seasonal average PM2.5 models for Bangkok, Thailand [43].
In China, the model explanations were higher than that of Cai et al. [44] to explain 65% of
the spatial variability in the PM2.5 in Taizhou, China and higher than the explanation of
61% of the PM2.5 of the Liaoning central urban agglomeration in the model of Shi et al. [20].
This difference can typically be explained by the measuring concentrations, predictive
variables, and original variability of the geographical and socio-economic characteristics of
the study area [45].

The models for the two seasons were quite different. PM2.5 pollutants in Beijing
primarily originated from man-made emissions, including coal combustion, gasoline and
diesel vehicle emissions, secondary source pollution, and straw burning on farmlands.
Winter is heating season in Beijing. Due to coal combustion from Beijing and its surrounding
areas, as well as less vegetation than in summer [46], the concentration of PM2.5 in winter
was significantly higher than in summer. In addition, Beijing is affected by the high pressure
from Mongolia during winter, which leads to the local accumulation of pollutants. During
summer, the source of fine particulate matter primarily originates from regional traffic
sources, of which there is also a portion from cross-regional transportation. Lv et al. [47]
conducted a high-time resolution particle source apportionment in Beijing showed that
Baoding and Langfang in Hebei Province contributed significantly to the short-distance
transportation, and this portion was not included in these models. This demonstrated
that the explanation of several summer models in this study ranged between 35.4% and
66.8%, which was worse than that in winter. These results were consistent with the seasonal
models of Shi et al. [20] in which their LUR models explained 61% of the variability in
winter and 52% of the variability in summer. The cross-regional transport of traffic pollution
sources also explained why the models at 0:00 were greater than 8:00 on the same working
days in this study. This was because during the morning rush hour at 8:00, many people
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from the surrounding areas enter Beijing for work, and the traffic influence produced
by this portion could not be included in the models. However, the PM2.5 pollutants at
0:00 were primarily from local sources, and nearly each impact factor was included in
the model.

Previous studies have generally used the RMSE to determine the accuracy of the
models [45], but for LUR models with different spatial and temporal scales, a direct
comparison of the RMSE values may have great variability. In this study, the RMSE
in the winter models was generally larger than that in summer, which was due to the
different background values of the pollutants in the different seasons and the spatial
differences of the pollutants. Since the terrain in Beijing is high in the northwest and low
in the southeast, the different topography and underlying surface affect the transmission
of air pollutants [48]. In the suburbs, human activities are less affected, and the high
concentration areas are primarily in the main urban area and the southern plain. As a
result, the PM2.5 concentration fitted by this model in winter reached the highest level of
nearly 700 µg·m−3, while the minimum area was less than 10 µg·m−3. The RMSE of our
summer models ranged from 5.08 µg·m−3 to 8.24 µg·m−3, which was not significantly
different from previous studies in China [20], but was larger than the figures from other
global research [45]. This was because the background level of PM2.5 in China is several
times or even dozens of times higher than that in Europe and the United States. The RMSE
of the winter model was also larger than summer due to above reasons.

The predictive variables in the different LUR models are typically not constant due to
city-specific conditions and the availability of data. Generally, most LUR studies have used
annual or seasonal values. One reason is that the non-contemporaneous measurements
of monitoring stations may cause temporal variability [44]. Therefore, one significant
drawback of LUR models is their low temporal resolution. The simplest method to cali-
brate pollutant concentrations are using observations from fixed continuous monitoring
stations [49]. This combined with meteorological, satellite data or adding other time-
dependent predictive variables [50,51] can also improve the temporal resolution. Since the
POIs presented different functional characteristics at different times, this study assumed
that different types of POI variables also have time characteristics, and hourly LUR mod-
els were developed. The results showed that POIs explained the variation in pollutant
concentrations at different times. Before modeling, the 13 types of POIs included in this
study were all correlated with PM2.5 concentration, and 11 types of POIs were finally
included in the models. The association between POIs and pollutants and its temporal
characteristics are better reflected by the attractions of POIs to the crowd [29], which will
affect the behavior of the crowd, thus explaining the variability of air pollution at that
moment. The POIs included in the models, such as shopping, entertainment, medical care,
science, education and culture, all have a large traffic flows near these places in daily life.
The pollution produced by these vehicle traffic sources contributes to the PM2.5 pollution
at this moment to a large extent.

In terms of the time characteristics of POIs, it can be seen from the results that at
0:00 on summer working days and non-working days, the commercial and residential
housing variables were included. This was due to the poor mobility of people in the urban
area at this moment, and the crowd being concentrated near the residences. Hence, there
will be some traffic source emissions. However, commercial residential areas contain a
lot of commercial office buildings. In many high-tech industrial companies in Beijing, it
is a normal phenomenon to work and commute after 0:00. For example, in areas such
as Xierqi and Houchangcun in the Haidian District, the taxi rush often occurs after 0:00,
and this is also a particular social phenomenon in China. It was also confirmed that
on weekdays, commercial residence explained 41.2% of the PM2.5 at that time, while
on non-weekdays, the explanation was 39.8%. At 18:00 on summer working days, the
commercial and residential variable explained 25.7% of the model. This was because people
got off work during evening rush hour, and the traffic flow around business buildings
and residential areas increased. In addition, there were many buses stops nearby, and this
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also caused pollutant increases. At 0:00 on working days and non-working days in winter,
the POIs explained little of the model ranging from 5.8% to 14.3%. This was primarily
because the higher background concentration of pollutants during winter is several times
higher than the same time in summer. Compared with meteorological conditions, the POIs
contributed a smaller proportion to the PM2.5. Catering service POIs were also included
in these models. Previous LUR models for Vancouver, Canada, and Europe have also
considered the number of restaurants near the monitoring sites [38,52]. Like automobile
exhaust, cooking fumes are also a major source of air pollution [53]. The emission inventory
performed by Jin et al. [54] showed that in 2017, the catering industry in China released
approximately 38.2 kt PM2.5 and 47.8 kt PM10. In this study, at 8:00 on non-working days
in winter, the catering POIs explained 5.5% of the model. On non-weekdays, the passenger
flow of various restaurants was more than weekdays, which also increased the emissions
of restaurant lampblack. At other times during the non-working day, such as in shopping
places, medical care and public facilities were also included in the model. This was because
on holidays, people tend to go to these places, and many people will drive private cars or
take a taxi, which cause large increases in traffic flow near these POIs and this explains the
contribution of the above POIs to the entire model. For example, at 8:00 on non-working
days in summer, medical care POIs explained 45.6% of the model, and public facilities
POIs explained 11.6%. However, there were several types of POIs included in the model
that had no obvious correlation with the places where people gather at that time. For
example, at 18:00 on non-working days in summer, there should be few people in schools,
but science and education POIs at that time explained 51% of the model. This is because
Beijing’s super-large city characteristics lead to POI overlaps in the region. Many schools
and educational institutions in Beijing are primarily located in urban areas. These POIs are
not independent, and there will be other functional areas nearby, which make the pollutant
source unclear. In conclusion, this study confirmed that POIs had a temporal attribute
because various POIs show different attractions to the crowd.

Meteorological variables also had time attributes in the models. Meteorological
conditions are the primary factors that affect the variability of pollutants with high time
resolution. Studies have shown that meteorological conditions contribute greater than
70% of the daily average concentration of pollutants in China [55]. In this study, nearly
every model included meteorological variables. The relative humidity was included in all
the winter models, and temperature and relative humidity were included in the summer
models. Generally, except in the case of precipitation, the greater the relative humidity,
the more particles attach to the water vapor, which increases the mass concentration. In
the winter models, the relative humidity explained the PM2.5 concentration between 54.9%
and 86.7%, and all of them were positively correlated. The influence of air temperature
on pollutants is complex and often plays a role in combination with wind speed, terrain,
atmospheric junction, and other factors. The results of this model showed that temperature
at 0:00 in summer was positively correlated with PM2.5 concentration, which may have
been due to air cooling at night, but land surface temperatures are higher, which makes it
difficult for pollutants to diffuse. Statheropoulos et al. [56] analyzed the air pollution factors
in Athens, and the results showed that the pollutants had a significant relationship with
relative humidity and wind speed. However, in many annual LUR models, meteorological
variables are not included [44,57]. This may be due to the large temporal and spatial
variability of meteorological conditions, and the impact on pollutants is more reflected at
daily or hourly concentrations.

Road data also had a temporal attribute in these models. Theoretically, traffic load and
vehicle density data may be significant indicators that reflect vehicle exhaust emissions
during a short period of time. However, due to their complexity and unavailability, road
lengths were used to represent the traffic emissions. Actually, this method has achieved
good results in many studies [17,38,58]. In this study, the road variables were divided
into primary roads and secondary roads according to the width and vehicle capacity, and
these two types of roads were all included in the models. The models containing this
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variable were all at 8:00 and 18:00, when the traffic flow was in the peak period and a
large number of vehicle exhaust emissions become an important source of air pollutants.
As can be seen from the results, the included variable buffers of the primary road were
relatively large, 1500 m and 2500 m, while the buffer of the second road was only 300 m.
The differences in the buffer radius reflected the characteristics of primary and secondary
pollutant emissions. For the PM2.5, both primary and secondary emissions can significantly
increase its concentration [59]. Different road types were reflected using their functions. The
primary roads included urban expressways, national highways, and provincial highways,
and they are mainly busy suburban roads. Due to various and complex types of motor
vehicle emissions and high traffic densities, large buffer radii may be the result of the
secondary discharge of pollutants. However, the secondary roads primarily included a
wide distribution of roads, with a small flow of motor vehicles that resulted in a smaller
possibility of pollutants spreading in a large area [60]. Thus, they tended to affect the
monitoring data in a small area.

Different from previous LUR studies, land, population, and elevation had little influ-
ence on the models in this study. This was because these models were based on the hourly
time scale of PM2.5 concentration, while predictors such as land use and population were
more represented in annual or seasonal models. Son et al. [61] improved the LUR models
on an hourly time scale in Mexico, which primarily included temporal variables, such as
hourly traffic density, meteorological, and holiday variables. Factors such as land use and
population had no significant effect. This is consistent with the results of this study.

There currently exist few LUR studies based on hourly pollutant concentrations. In the
short-term or more precise individual exposure studies, using annual or seasonal models
may lead to deviations [62]. The biggest breakthrough of this research was the realization of
the hourly temporal LUR models, which provided a more accurate method for short-term
exposure studies and more accurate micro-environment individual exposure studies. High-
resolution simulation of regional pollutant concentrations is of great significance for travel
prevention and control of residents. Currently in China, there are hourly concentration
limits for pollutant emissions. In the future, there may be more precise timescale upgrades
to healthy concentration standards. In addition, more pollution emission sources were iden-
tified within a short period of time, and this proved the temporal characteristics of the POIs
in the models, which has significance for more accurate pollution prevention and control
measures. Though we carried out LUR models for PM2.5 and there still many researches
focused on multiple pollutants, this study provides a new methodological perspective for
other types of high-resolution pollutant models which is the most important significance.

However, this study still has some limitations. The best explanation of variability
in the summer models was only 66.8%. Hence, there are other factors that remain to be
explored during a short period of time. Second, only 35 monitoring data were used in this
study, and some data were missing. Hoek et al. [45] recommended using 40–80 pollutant
monitoring stations. Additional modeling was performed at other times, but not each
model could be successfully applied due to the models’ high time resolution and large
pollutants variability. More accurate time variables are required to be explored to optimize
the LUR models. Finally, due to the progressive linear regression principle of the LUR
model itself, the model assumes a linear relationship between all predictive variables and
pollutants, which is inherently limited for some variables. All of these problems require
further study.

5. Conclusions

In this study, 12 high-resolution LUR models based on the hourly PM2.5 concentration
were developed. The results showed that, even within the same day and at different times
in different seasons, the PM2.5 concentration at the same monitoring station varied greatly.
The fitness of the winter models at various times were better than that in summer, and
the model explanation varied between 67.5% and 95.5%. The summer models explained
35.4–66.8% of the variability. The model results of the different seasons and times were
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quite different, and the model fitness were not robust. The RMSE of the winter models
ranged from 19.79 µg·m−3 to 50.76 µg·m−3, while the RMSE of summer models ranged
from 5.08 µg·m−3 to 8.24 µg·m−3. The final predictive variables showed that there were
differences in explanations of the PM2.5 during the different seasons, and the explanations
of the meteorological factors to the winter models were the most significant, ranging from
54% to 86%. The road length and POIs also contributed to the winter models, but the
explanations were not significant due to winter’s high background value. The summer
models showed that the POIs and road length were the primary contributors to the PM2.5
pollutants. Pollutant’s transportation is also an important reason. POIs have temporal
characteristics, and the contribution of different POIs to the air PM2.5 is different on working
days or non-working days. In these models, the POIs explained 5.5–51.0% of the variability.
This study confirmed that POIs can improve the temporal resolution of LUR models,
and this is significant for short-term exposure studies and microenvironment individual
exposure studies.
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