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Diet provides a safe and attractive alternative to available treatment options in a variety

of diseases; however, research has only just begun to elucidate the role of diet in

chronic diseases, such as the inflammatory bowel diseases (IBD). The chronic and

highly debilitating IBDs, Crohn disease and ulcerative colitis, are hallmarked by intestinal

inflammation, immune dysregulation, and dysbiosis; and evidence supports a role for

genetics, microbiota, and the environment, including diet, in disease pathogenesis. This

is true especially in children with IBD, where diet-based treatments have shown excellent

results. One interesting group of dietary factors that readily links microbiota to gut health

is dietary fibers. Fibers are not digested by human cells, but rather fermented by the

gut microbes within the bowel. Evidence has been mounting over the last decade in

support of the importance of dietary fibers in the maintenance of gut health and in IBD;

however, more recent studies highlight the complexity of this interaction and importance

of understanding the role of each individual dietary fiber subtype, especially during

disease. There are roughly ten subtypes of dietary fibers described to date, categorized

as soluble or insoluble, with varying chemical structures, and large differences in their

fermentation profiles. Many studies to date have described the benefits of the byproducts

of fermentation in healthy individuals and the potential health benefits in select disease

models. However, there remains a void in our understanding of how each of these

individual fibers affect human health in dysbiotic settings where appropriate fermentation

may not be achieved. This review highlights the possibilities for better defining the role of

individual dietary fibers for use in regulating inflammation in IBD.
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INTRODUCTION

The etiology of the chronic and severely debilitating Inflammatory Bowel
Diseases (IBD), Crohn disease (CD), and ulcerative colitis (UC), remains poorly
understood and incidence rates are increasing, especially in children (1–3).
Risk factors associated with IBD include urban lifestyle, lack of greenspace (4),
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genetic factors, heightened hygiene, dietary factors, and changes
in the microbiome (5–11). Gut microbes are critical to human
health as they mediate key functions of metabolism and
immunity (6, 12). It remains unclear whether the dysbiotic
microbial communities associated with IBD are a cause or
a consequence of the disease. However, both compositional
changes and reduced microbial biodiversity are hallmarks of
IBD and can even predict therapy failure in pediatric IBD (13).
Alterations in gut microbial composition are often associated
with more “proinflammatory” microbes, such as Proteobacteria
phylum and Ruminococcus gnavus species, and decreased
levels of butyrate-producing bacteria (e.g., Faecalibacterium
prausnitzii), which correlated strongly in the presence of disease
(10–12). Interestingly, dietary therapy is highly effective for
pediatric CD, likely mediated by microbes, but is challenging
to complete (14, 15). Increased incidence of IBD has been
associated with a Western diet (16), and several studies have
demonstrated the influence of diet on the gut microbiota (17–
20). A number of fantastic reviews have been recently published
(21, 22), illustrating the scientific evidence in support of the role
that diet plays in the pathogenesis of IBD. Fibers have attracted
specific attention and are generally considered beneficial to gut
health. However, the reality is much more complex as some
patients describe increased symptoms with fibers (23). Therefore,
in the following review we will delve deeper, discussing the
specific role of dietary fibers in health, and current evidence of
fiber effects in IBD cell lines, animal models, and clinical trials,
suggesting reasons why some IBD patients describe a sensitivity
and worsening symptoms following fiber consumption.

DIETARY FIBERS: STRUCTURES,
MICROBE INTERACTIONS, AND IMPACTS
ON THE HUMAN GUT

The term dietary fiber, first coined by Howeler, describes a
complex group of non-digestible components of cell walls
(Figure 1) (24). The term has grown to include non-starch
polysaccharides (e.g., cellulose, pectin), non-carbohydrate-
based polymers (e.g., lignan), resistant oligosaccharides
(e.g., fructooligosaccharides, galatooligosaccharides), and
carbohydrates considered to be of animal origin (e.g., chitin)
(25). These dietary fibers can be found in a variety of food
sources (Figure 2) and structurally differ in their chain length,
linkage type, sugar components, and ability to associate with
other chemical compounds (Figure 1) (25). Unlike most
dietary components, non-digestible dietary carbohydrates
(fiber and resistant starch) can withstand the acidity of the
stomach and do not undergo degradation in the human small
intestine (26); instead they are fermented by the gut microbiota
consortium within the large bowel (Figure 2) where one microbe
starts the fermentation and others continue the fermentation
process, thereby working together systematically. This microbial
consortium role thus highlights the potential implications of
dysbiosis, which could alter or even prevent fiber fermentation.
The colon houses one of the most complex (over 1,000 species)
and highest populated microbiomes in the human body (70%

of all microbes in the body) (27–29). Diet has been shown to
be a key factor influencing the composition and functions of
intestinal microbes, and continues to be examined as a tool
in shaping the gut microbiota (30, 31). Studies suggest that
while the recommended daily fiber intake from the Institute of
Medicine (IOM) ranges from 19–38 g per day, dependent on age
and gender (32), typical western diets lack fibers, and typically
include roughly 13–20 g of dietary fiber per day, from which
the commensal microbes are reliant upon for a source of energy
and carbon (33–35). Most of the dietary fibers we consume
originate from plant cell walls making up fruits, vegetables, and
whole grains (25, 36). Dietary fibers consist of a variety of linked
monosaccharides creating a variety of diverse molecules with
varying side chains and physical variations, including physical
arrangement and solubility (25). While these dietary fibers can
be classified in a number of ways (37–40), the most common
method of classification for nutritional purposes in humans
segregates dietary fibers as water-soluble or insoluble (40).
Water solubility within the gastrointestinal tract is related to the
degree of fermentation by gut microbes (41). Soluble dietary
fibers can increase digesta viscosity, which in turn delays gastric
emptying and nutrient release, thus reducing glycaemic response
(40, 42, 43). Examples of soluble dietary fibers include pectin,
arabinoxylan, β-glucans, inulin, fructo-oligosaccharides, galacto-
oligosaccharides, and xyloglucans (36). Insoluble dietary fibers,
such as cellulose and lignin, on the other hand, are considered
to be less valuable to the gut microbes as their strong hydrogen-
binding networks reduce their accessible surface area to allow for
fermentation (44). The complex structures of these dietary fibers
require specific enzymes, such as carbohydrate-active enzymes
(CAZymes) found only in microorganisms for degradation and
utilization (25, 45). There are over 120 CAZenzymes identified to
date, which have been shown to cleave glycosidic linkages (25).
A number of key enzymes are highlighted in Figure 1, including
those that target the breakdown of arabinoxylan (46), β-fructans
(47, 48), cellulose (48), pectin (48), and lignin (49).

A variety of different microbes, that are able to utilize the
same dietary fibers, coexist within the human bowel, resulting
in a competitive environment that drives a variety of outcomes,
based on the utility of these fibers (50). These selective differences
in the microbiome of individuals results in distinct bacterial
responses to consumption of dietary fibers (51, 52). Studies have
demonstrated that this is likely because fermentation of dietary
fibers is dependent on microbial community composition,
wherein key microbes must be present for fermentation by their
partner organisms to take place (52–55).

The human gut microbiome consists of at least 7 key
phyla, predominated by Firmicutes (60–90%), Bacteroidetes
(8–28%), Proteobacteria (0.1–8%), and Actinobacteria (2.5–
5%) (56, 57). Studies suggest that a number of Bacteroidetes
are involved in the breakdown of larger polysaccharides into
smaller sugars, which can be utilized by Firmicutes that act as
cross-feeders for other microbes (44). These microbes utilize a
variety of complex pathways in the breakdown of dietary fibers
to byproducts essential for human health. Fiber fermentation
produces byproducts, such as short chain fatty acids (SCFAs) (58–
63). Enzymes such as polysaccharidases, glycosidases, proteases,
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FIGURE 1 | Not all Fibers are born equal; Structure, classification, and chemical features of key dietary fibers with key enzymes highlighted in red.
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FIGURE 2 | Metabolism of dietary fibers; Effects of dysbiosis on fermentation.
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and peptidases are utilized to break complex carbohydrates
or fibers into their sugar and amino acid components before
fermenting these smaller components into SCFA, carboxylic
acids, CO2, and H2 (64, 65).

The primary SCFAs produced by fiber fermentation
include acetate, butyrate, and propionate, which have been
generally shown to benefit the host through many mechanisms,
including providing energy for colonic mucosa cells, reducing
inflammation in IBD, and promoting differentiation and
apoptosis of colonic cancer cells (66–68). A recent review
by Williams et al. provides an excellent overview of the
health benefits of these byproducts in humans (36). The
precise mechanisms underlying the coordinated multi-
microbe breakdown of dietary fibers into their byproducts and
subsequent uptake within the gut continues to be illuminated
in various healthy host settings. Changes in fermentation
processes carry the potential to regulate changes in the gut
microenvironment (60), immune modulation (69), and altered
energy metabolism (70).

Interestingly, fiber-rich diets are associated with healthy
growth of specific commensal microorganisms (71–76), many of
which are directly responsible for SCFA production, improved
gut mucosal barrier, and preventing inflammation. The amount
and rate of SCFA production is dependent on the species and
amounts of microbiota present within the gut (77), further
illustrating how an altered gutmicrobiome in the presence of IBD
impacts the production and absorption of protective SCFAs.

DIETARY FIBERS AND IBD: A DIFFERENT
STORY?

Although there is consistent evidence to support the general
concept that dietary fibers and their fermentation products are
likely beneficial in the setting of IBD (78), it is important to
recognize that much of this is an extrapolation of what we know
from healthy state and that there are fundamental factors that
would challenge this paradigm and potentially impact effects of
fibers on IBD. First, fiber intake prior to developing IBD has
been linked to risk of disease but having IBD has also been
shown to result in changes within the patient’s diet (79, 80). The
same is true for microbes, which are obviously highly relevant
to the impact of fiber on human health; they are thought to
play a role in disease pathogenesis, but are clearly altered by
having IBD (81). Surveys indicate that many patients (mostly
with UC) tend to avoid consumption of dietary fibers (23).
Some epidemiological studies, such as the EPIC-IBD cohort
study, suggest there are no clear associations found to correlate
development with IBD in relation to consumption of either total
fiber or fiber from select sources (82). Other clinical studies
suggest that long term intake of dietary fiber from fruits, and
to a lesser degree, vegetables, reduces the risk of developing
CD by up to 40%, with no effect on UC (83). These studies
suggest that the protective effect of fiber for CD patients is mainly
sourced from fruits and not associated at all with fiber intake
sourced from whole grain or legumes (84–86). A restriction of
dietary fiber consumption in “humanized” mice increases the

consumption of colonic mucosa by colonic microbes, which
has been suggested to contribute to reduced mucosa and
inflammation in IBD (87). Many of the specific microbes affected
by fiber-rich diets have been found to be less abundant in
IBD (88–95), supporting the idea that fermentation of fibers
may be altered in IBD patients. Additionally, animal studies
have demonstrated that dietary fibers can inhibit IBD-associated
inflammation (96–98), and clinical trials have shown that SCFA
can prevent intestinal atrophy in IBD patients, allowing for tissue
recovery (99).

FIBER THERAPIES IN IBD

Researchers continue to strive to understand the role that
individual dietary fibers play in human health and in IBD patients
to better appreciate how manipulating diet in these patients may
help to improve clinical outcomes. Patients with ulcerative colitis
showed a decrease in serum C-reactive protein (CRP) levels
when given a fiber-based prebiotic, as well as a reduction in
abdominal pain and cramping (100). A similar study by Fritsch
et al. demonstrated a reduction of inflammatory markers and
dysbiotic microbiome in patients with ulcerative colitis on a low-
fat, high-fiber diet (101). Similarly, mice given a probiotic and
fiber-based prebiotic displayed amelioration in disease activity
and histological score compared to a prebiotic alone, and a
reduction in serum CRP levels (102). Recent studies have shown
that Institute of Cancer Research (ICR) mice fed a fiber-free diet
displayed shortening of colon length, which was found to be an
indicator for IBD, and reduced microbial diversity (103). This
indicates that dietary fibers play an important role in mitigating
disease severity in IBD patients.

Current studies further support the SCFA butyrate as an anti-
inflammatory product of fermentation within the colon that
may improve epithelial barrier integrity (104–107). However, it
is important to also highlight that there remains contradictory
evidence from studies that have shown that butyrate had
no benefit in these patients (108, 109). Unfortunately, many
clinicians continue to promote reduced fiber consumption, or
fiber avoidance altogether, in IBD patients (particularly UC)
while there is no evidence to support this as a relevant therapeutic
intervention (110, 111). While it remains unclear exactly which
factors modulate the health benefits associated with dietary
fibers in IBD, results from studies performed to date suggest
that modulating diet through prebiotic/probiotic therapies to
promote select fiber fermentative microbes may aid in improving
IBD patient symptoms.

THIS SECTION REVIEWS SPECIFIC
FIBERS AND THEIR POTENTIAL ROLE IN
THE SETTING OF IBD

Key features of the following dietary fibers are summarized in
Table 1.

We will first present soluble fibers, followed by insoluble.
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TABLE 1 | Summary of sources, fermentation, products, and potential impacts of dietary fibers.

Fiber Common diet Source Fermenting microbes Products of Fermentation Impact on Host

Arabinoxylan Cereal grains, rye, wheat, oats,

barley, rice, sorghum, legumes

Streptococcus, Bifidobacteria Acetate, propionate,

butyrate

Anti-inflammatory in mice via IFN-γ Th cells.

Anti-inflammatory in cell lines via COX-2.

Reduced mucin-degrading microbes

Saccharomyces Ethanol

β-glucan Oat, barley, rice, mushrooms Lactobacilli, Enterococcus,

Bifidobacteria

Variable amounts of SCFA

depending on source and

microbes present

Pro-inflammatory response to fungal cell wall

β-glucan. Reduced IBD symptoms in DSS mice

β-fructans Chicory root, agave, artichokes,

banana, wheat, onion, garlic

Bifidobacteria, Lactobacillus,

Streptococcus, Flavobacterium

SCFA, primarily butyrate As a prebiotic they reduced intestinal

inflammation in mice. Reduced IBD symptoms

in DSS mice

Pectin Fruits, vegetables, nuts Bacteroides, Prevetella, Bacillus,

Agrobacterium, Pseudomonas,

Ralstonia, Dickeya

Variety of SCFA and gases,

including CO2, H2, H2S,

CH4

Directly inhibits pro-inflammatory cytokines in

mice. In vitro studies showed reduce

pro-inflammatory cytokines

Cellulose Plant cell walls including fruit and

vegetable skins

Bacteroides, Clostridium,

Fibrobacter, Ruminococcus

Succinate; a variety of

SCFA, predominantly

acetate

Shifts gut microbiome in mice. Protective

against colitis and anti-inflammatory in mice

Lignan Grain, vegetables, flax seeds Bjerkandera, Fomitopsis,

Schizophyllum

Ethanol Improved lipid abnormalities and reduced

systemic inflammation in mice

Rhodococcus, Pseudomonas,

Sphingobacterium

Lipids

Detailed information available in the text.

Arabinoxylan
Arabinoxylan (AX) is a hemicellulose molecule composed of a
β-(1,4)-linked xylose backbone containing arabinose side chains
(112, 113). The detailed structure of AX is dependent on
several factors, such as its source, enzymes used for hydrolysis,
and methods of extraction (114). AX is a large component
of dietary fiber found in cereal grains and other plant and
animal food sources (115–117). The fermentation of AX by gut
microbes such as Streptococcus and Bifidobacteria results in the
production of SCFAs, including acetate, propionate, and butyrate
(115, 118–121). Furthermore, downstream fungal microbes, such
as Saccharomyces cerevisiae result in fermentation processes
producing biomass and ethanol (122).

Due to the previously stated structural differences that can
exist within AX molecules, it is important to consider the
polymer side branching and source of AX fiber when discussing
immunomodulatory properties of this fiber (123–125). Studies
have shown that oral administration of corn-husk AX fiber
has anti-inflammatory effects in mice, through the activation of
an INF-γ dependent T helper 1-like immune response (126).
AX can also stimulate COX-2 through TLR-4 upregulation,
as well as contributing to a reduction in pro-inflammatory
cytokines IL-8 and TNF-α in colon cancer cell lines (127).
Prebiotic administration of long-chain AX resulted in decreased
abundance of mucin-degrading microorganisms and led to a
three-fold increase of cecal mucin levels in rats (128). This is
especially important in the context of IBD as the protective
mucin layer within the gut that aids in providing a healthy
barrier against environmental threats, is greatly diminished in
IBD patients (129).

An AX enriched food, germinated barley (GB), was used
in a clinical trial, in which 59 UC patients in remission were

divided into two groups; 37 individuals in the control group
received a conventional drug for 1 year and the other 22
patients in the GB group received a conventional drug plus 20 g
of GB daily. GB significantly ameliorated the disease activity
index and reduced the recurrence rate compared to control
group, and no significant side effects were observed (130).
Neyrinck et al. reported that the abundance of Bacteroides and
Roseburia spp., as well as Bifidobacteria, were increased with
wheat AX supplementation, and that the gut barrier function
was strengthened while serum pro-inflammatory markers were
reduced (131). In another 8-week clinical trial, 19 UC patients
with wheat bran AXs and resistant starch treatments were shown
to shape the microbial community composition, which increased
diversity within the Clostridium cluster XIVa compared to the
control group (132). Clostridium cluster XIVa and Bifidobacteria
have gained much attention recently due to their contribution to
gut homeostasis, by preserving gut barrier functions and exerting
immunomodulatory and anti-inflammatory properties (133).

β-glucan
β-glucans are a family of naturally occurring glucose
polysaccharides that make up the cell wall of select bacteria
and fungi, but are also found in dietary plant cells, such as
oat and barley (134, 135). Interestingly, studies focused on the
immune response to fungal infection indicate that β-glucan
on the surface of fungal cells interacts with host immune cell
receptors (e.g., Dectin-1), inducing a pro-inflammatory response
(47–49). Dietary β-glucans differ from those found in fungal cell
walls by level of solubility and downstream effects (136, 137).
Dietary β-glucans have been shown to be fermented by microbes
such as Lactobacilli, Enterococcus, and Bifidobacteria, forming a
variable amount of SCFAs, depending on the source of fiber along
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with the microbial species involved (138, 139). Furthermore,
production of the β-glucan receptor, Dectin-1, has been shown
to be increased in dextran sodium sulfate (DSS)-induced colitis
model mice (140). Inhibition of Dectin-1 has been shown to
ameliorate colitis in this model (141). The DSS mouse model
was recently utilized to examine inflammatory responses to
a series of different glucan preparations (142). Findings from
this study suggest that histology disease scores were reduced in
response to fungal extracted glucans, which were associated with
Dectin-1. Specifically, the glucans most effectively associated
with reduction of IBD-like symptoms in DSS mice were
those collected from the edible mushroom Pleurotus eryngii
(142). Meanwhile other studies have demonstrated that oral
administration of various other isolates of β-glucan in fact
worsened intestinal inflammation in DSS-induced colitis models
(143). These results highlight the importance of understanding
the chemical structures of different dietary fibers and their direct
interactions within the bowel to potentially aid in developing
dietary recommendations to promote improved gut health in
IBD patients.

B-Fructans
The β-(2→ 1) linked fructose oligo- and poly-saccharides known
as β-fructans (inulin and oligofructose/FOS, respectively), are
commonly found in plant sources including chicory root, agave,
and artichokes, while other sources (banana, wheat, onion, garlic)
contain lesser amounts (144). Microbes such as Bifidobacteria,
Lactobacillus, Streptococcus, Flavobacterium, and a variety of
baking yeast have been shown to be responsible for fermentation
of β-fructans (144, 145). Butyrate-producing bacteria have
primarily been demonstrated to be positively affected by these
fibers, resulting in a wide variety of health benefits (146–149).
As a prebiotic, these fibers have demonstrated benefits for the
treatment of intestinal inflammation in mouse models of IBD, as
described in a recent series of review articles (150–153). Overall,
DSS-induced IBD-like symptoms were reduced in mice fed with
β-fructans, or relapse was prevented, through the mediation
of antioxidative defense mechanisms, identified in more recent
studies in animal models and cell lines (154, 155). β-fructans
have also been shown to interact with carbohydrate receptors
(GLP-1R), affecting reactive oxygen species (ROS) production
and associated inflammation (144, 156–158). Interestingly, while
inulin has been demonstrated to have positive effects on
inflammation in select situations, a number of studies have also
suggested inulin can exacerbate the severity of colitis in an
IL10−/− and DSS-model of colitis (159), and promote HCC-
progression in mice (160).

Galactooligosaccharides
Galactooligosaccharides (GOS) are oligosaccharides composed
of different galactosyl residues (from 2 to 9 units) and terminal
glucose molecules linked by β-glycosidic bonds (161). They
naturally are found at low concentrations in the milk of
many animals, including humans and cows, but they also
can be produced by chemical glycosylation or biocatalysis of
lactose (162). In a human randomized, double-blind, placebo-
controlled study, the effect of 6-weeks daily intake of 5 g GOS

on intestinal barrier function and gut microbiome composition
was evaluated in 114 obese individuals. The GOS showed
a bifidogenic effect on the resident gut microbiota, and
improvement on colonic permeability (163). Bifidobacteria have
gained emerging attention recently because of their contribution
to gut homeostasis, by preserving gut barrier functions and
exerting immunomodulatory and anti-inflammatory properties
(133). Thus, Bifidobacteria are generally considered to be health-
promoting organisms and constitute one of the main groups
of organisms targeted by prebiotics. A human study reported
the positive effects of GOS with daily dosage 5 or 10 g on
Bifidobacterium strains from these genera have been elucidated,
while a lower dose of 2.5 g showed no significant effect (164). GOS
has also been demonstrated to enhance F. prausnitzii levels (165).
F. prausnitzii is a commensal bacterium with suggested anti-
inflammatory effects, supported by gut microbiota analysis of CD
patients and functional studies (166). A decrease of F. prausnitzii
abundance in the gut is typically recognized as a signature of gut
dysbiosis in CD, compared to healthy people (167). Furthermore,
44 patients with irritable bowel syndrome (IBS) were randomized
to receive 3.5 g/day GOS, 7 g/day GOS, or 7 g/day placebo
over 12 weeks. Results showed that GOS acted as a prebiotic
via stimulating gut Bifidobacteria in IBS patients, and effectively
alleviated IBS symptoms (168). Given that several important
symptoms, including pain and diarrhea, overlap in IBD and IBS,
these interventions may also provide references to use prebiotics
for IBD treatment or adjuvant treatment, but this needs to be
proven in studies. Together, recent evidence suggests that the
prebiotic effects of GOS on the specific gut microbiota, such
as Bifidobacterial consortia and F. prausnitzii with the resulting
oligosaccharide degradation, might offer a potential mechanism
to improve gut barrier function, and suppress inflammation.

Pectin
Pectin is a complex polysaccharide found in the cell wall
of fruits and vegetables (169). It is made up mostly of α-
1,4-linked D-galacturonic acid residues with variable levels of
esterification between plant species that results in different
effects on fermentation, SCFA production, and effects on the
immune profile (170, 171). A variety of microorganisms (e.g.,
Bacteroides, Prevetella, Bacillus, Agrobacterium, Pseudomonas,
Ralstonia, Dickeya, and yeast) utilize enzymatic processes (e.g.,
isomerase) or oxidative pathways, in the almost complete
fermentation of pectin within the colon, resulting in the
production of a wide variety of SCFAs along with a number of
gases, including CO2, H2, H2S, and CH4 (169, 172–177). Pectin
directly inhibits the pro-inflammatory cytokine toll-like receptor
(TLR)1&2 pathways and prevents ileitis in mice (53). In vitro
studies have shown that pectin reduces the pro-inflammatory
cytokine IL-1β and interacts with and down regulates TLR-4
signaling (178). Dietary pectin also moderates the production
of pro-inflammatory cytokines and immunoglobulins, working
to downregulate inflammatory response in the colon of mice
(179). A recent study examining the variable effects of pectin side
chain content on colitis induced C57BL/6 mice demonstrated
that a diet high in pectin (orange pectin) ameliorated disease
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compared to low pectin (citrus pectin) or no-pectin diet
supplementation (180).

Insoluble Fibers
Cellulose
Cellulose is the main structural component of plant cell
walls and is composed of linear chains of β(1→ 4) linked
glucose monomers (181, 182). While insoluble fibers are
considered to be much less important for the production of
healthy byproducts of fermentation due to the limitations in
breaking down these components, microbes (e.g., Bacteroides,
Clostridium, Fibrobacter, Ruminococcus, and anaerobic fungi)
have been demonstrated to utilize cellulose for the production
of intermediate byproducts of fermentation, such as succinate,
along with a variety of SCFA byproducts, predominantly acetate
(149, 183–185). Thismeans that degradation of cellulose provides
the opportunity for a variety of responses within the bowel;
however, in the context of IBD it is important to highlight that
the byproduct succinate has been associated with inflammation,
suggesting one reason that may help explain why some patients
experience sensitivity to dietary fibers (186, 187). Mice fed a
high-cellulose diet were shown to have increased expression
of Mt1 and Mt2 genes (188, 189), which have been found to
play a protective role in inflammation (188, 190) and a colitis
model through anti-apoptotic and immune-modulating effects
(188, 191). Experimental studies in mice have demonstrated that
dietary supplementation of cellulose contributes to substantial
shifts in the gut microbiome, which were associated with
transient trophic and anticolitic effects (192). A recent study has
indicated that a high-cellulose diet maintains gut homeostasis
and ameliorates gut inflammation by altering gut microbiota
and metabolites in mice, and can be protective against colitis
(188). In this study, low-cellulose diets were found to cause
crypt atrophy, goblet cell depletion, and upregulation of pro-
inflammatory genes in the colon (188). Additionally, dietary
cellulose is thought to be associated with increased abundance
of Akkermansia, which promote gut barrier function, and
enhanced mucin secretion by goblet cells (188). Interestingly,
cellulose has been found to improve survival in the murine
model of sepsis through systemic anti-inflammatory effects.
High-fiber cellulose diets were associated with a decrease in
serum concentration of pro-inflammatory cytokines, reduced
infiltration of neutrophils in the lungs, and decreased hepatic
inflammation (193).

Lignan
Lignan is a complex polymer containing ∼40 oxygenated
phenylpropane units that have undergone a dehydrogenative
polymerization process and is a non-carbohydrate component of
cell walls (182). Lignan can be found in many plants including
grains and vegetables, and the highest concentration is found in
flaxseed (194). Much like cellulose, the breakdown of lignan is
complex and difficult to achieve. Certain wood-degrading fungi
(e.g., Bjerkandera, Fomitopsis, and Schizophyllum) have been
shown to utilize peroxidase, ligninase, and laccase enzymes in the
degradation of lignin, producing ethanol (Figure 1) (195–197).
Interestingly Rhodococcus, Pseudomonas, and Sphingobacterium

are able to use the aromatic components of lignan during
its breakdown process in order to produce high levels of
lipids for biofuel production (198–201). These data suggest
that there may also be some gut microbiota capable of
some level of lignin fermentation processes. Lignan was
found to contribute to decreased white blood cell counts
and proinflammatory/profibrogenic cytokine levels, as well as
decreased gene expression of cytokines and cytokine receptors
in mice exposed to asbestos (202). A study conducted on
hemodialysis patients showed that supplementation of flaxseed in
the diet contributed to improved lipid abnormalities and reduced
systemic inflammation (203).

These studies highlight the importance of studying the
variability in response to specific dietary fibers (or similar
molecular structures), while most studies continue to evaluate
fiber diets in a holistic manner, lumping all dietary fibers
into one.

RECOMMENDATIONS FOR IBD PATIENTS
BASED ON CURRENT EVIDENCE

Based on the studies published to date, there remains clear
evidence for the importance of high intake of dietary fibers
overall with no current evidence to support restriction of dietary
fibers in patients without intestinal strictures or obstructions
(21). However, the benefits of the specific types and sources
of dietary fibers remain poorly understood, and the research
paradigm has begun to shift toward examining the direct effects
of individual fiber types in IBD. As many patients describe a
sensitivity to dietary fibers (23), it seems wise to recommend
that the increased source of dietary fiber come from those fibers
with clear evidence to support anti-inflammatory or preventative
effects as speculation remains surrounding the negative impact
of certain fibers on patient health during IBD flares (110). A
recent review of current literature by Levine and colleagues
suggests that there is an acceptable amount of data to support
recommended moderate to high amounts of fruit and vegetables
in CD patient diets, while there remains insufficient evidence to
support these recommendations in UC patients (21). Notably,
the evidence we have discussed in the previous sections suggests
that gut microbes more readily ferment soluble dietary fibers, and
the SCFA, butyrate, seems to be the most beneficial byproduct
studied to date, providing a source of carbon and energy for the
colon epithelium (204). It could be said that specifically those
fibers utilized for the production of increased butyrate should be
included in greater quantities in the diet of IBD patients, while
due to a lack a consistent evidence to support a beneficial effect
in IBD patients, insoluble fiber consumption should perhaps
be avoided or reduced, especially for those patients with active
disease (21). Specifically, arabinoxylans, β-glucans, β-fructans,
and pectins, which are all found in vegetables, fruits, and
grains, have been shown to be valuable sources of SCFAs by
butyrate-producing microbes (21). So what is the easiest means
of increasing consumption of these dietary fibers while limiting
insoluble fiber consumption? Food products such as bananas and
broccolis, nuts, tomatoes, and carrots, mushrooms, and peeled

Frontiers in Pediatrics | www.frontiersin.org 8 January 2021 | Volume 8 | Article 620189

https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org
https://www.frontiersin.org/journals/pediatrics#articles


Armstrong et al. Dietary Fibers in IBD

apples and citrus fruits contain high levels of soluble dietary fibers
while limiting insoluble fiber intake (205). It is important to note
that the evidence in support of this includes very limited numbers
of human studies, and a number of contradictory animal and in
vitro studies, however, these recommendations may help certain
individuals. Interindividual variability in microbial composition
and function will also need to be considered, as further discussed
below (118).

The Pediatric Angle to the Fiber Story
Some of these considerations require additional attention in
the pediatric setting. First, the first-line therapy for pediatric-
onset CD, as recommended by the revised ECCO-ESPGHAN
guidelines, exclusive enteral nutrition (EEN) (206), is based on
liquid diet that does not include fiber in most cases. Would
selective addition of soluble fiber to these controlled diets further
improve their effect? The Crohn disease exclusion diet (CDED)
has utilized some of the principles discussed in this review in the
design of the food-based diet (19). CDED has shown at least equal
success to EEN, but even better tolerance, which is also coupled
by some of the expected changes in microbial composition (20,
207). However, as many of the origins of IBD pathogenesis are
likely related to early life events, including early commensal
engraftment of the infant gut, it is possible that what we feed
our microbes (i.e., fibers) may have an impact on developmental
immune responses related to many chronic conditions, including
IBD. This might explain the beneficial effect of breastfeeding
(through human milk oligosaccharides, such as GOS), as well as
other links to diet (208). Once the science linking diet through
microbes to chronic disease is further developed, we would
expect that better guidance on early life fiber exposure could help
prevent IBD at a later age.

CONCLUSIONS

With an increasing focus on nutritional interventions, especially
in children with Crohn disease, and the interest (but still limited
supportive research) on specific use of probiotics and prebiotics
in IBD, it is important that we broaden our understanding of
how foods affect the bowel, especially in regards to the fiber
fermentation processes that occur in the bowel. Results from
hundreds of studies to date have demonstrated the ability of select
individual microbes or whole microbe cultures, in rats, mice,
rabbits, swine, poultry, and even select studies in humans, to
manipulate fermentation of dietary fibers (209–213). But how do
these in vitro and in vivo studies translate to the complex system
of the human bowel? As this review highlighted, differences in
microbial composition and dietary factors present can result
in substantial differences in host inflammatory response (21).
Taking into account that each select microorganism utilizes a
variety of different environmental sources from the host diet
and microenvironment for carbon and energy, along with the
dysbiotic nature of the microbiome of IBD patients, there
is a clear possibility that incomplete fermentation, potentially
due to dysbiotic microbiome, can result in buildup of pro-
inflammatory byproducts such as succinate (214). Evidence also
suggests an alternative option; specifically, when macrophage

cells are stimulated by lipopolysaccharide (LPS), such as that
found on pathobionts, a metabolic shift occurs, resulting in
accumulation of succinate (214, 215). This in turn promotes
biological pathways responsible for the production of pro-
inflammatory cytokines, such as interleukin (IL) 1β, suggesting
possible avenues for future therapeutics (66, 216). However, with
the right combination of microbes and environmental factors,
each of these fiber subtypes have been shown to provide anti-
inflammatory benefits as highlighted above. It is important to
re-highlight here that the gut microbes work in consort and
therefore, it is not just one microbe species performing these
fermentative processes in isolation; this adds to the complexity
of the gut environment.

Research Gaps and Future Directions
The precise interaction of whole chain fibers with the human
bowel remains under-studied and complete answers to many
questions still remain. How does the dysbiotic nature of
IBD affect fiber fermentation? And how does this relate
to the sensitivity that patients experience to dietary fibers,
especially during disease flare ups? While sequencing and culture
techniques continue to improve our ability to examine these
system interactions, there remains a gap in understanding how
these factors all align when it comes to microbes, nutrition,
and gut health. Considering it is the gut microbiome that
is responsible for the fermentation of dietary fibers, and
that there is a great deal of variability among individuals,
let alone IBD patients, one of the keys to understanding
the role of dietary fibers in IBD, is likely in understanding
which microbes must be present and/or absent for the healthy
fermentation and production of SCFA to occur (18, 213, 217–
219). This idea highlights the importance of patient-specific
medicine. In this instance, future therapies will likely begin with
profiling the gut microbiota of individuals and identifying a
specific combination of dietary recommendations, prebiotic, and
probiotic therapies, directed toward re-establishing a healthy,
balanced microbiome capable of providing the appropriate
sources of carbon and energy via fermentation. We believe
that it is imperative to advance our understanding of fiber
fermentation within the IBD gut to aid in improving dietary
guidelines and therapeutic options, in order to promote the
growth of a healthy microbiota and increase beneficial SCFAs
in patients.
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