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Abstract

Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent
evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are
generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the
relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and
categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in
response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical
features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph
signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse
submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature
set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues
was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets
of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph
analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale
subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence
and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by
inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this
analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale
feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to
distinguish between different states in developing tissues.
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Introduction

Morphological and functional development of organs necessi-

tates generation of multiple cell types and their coordinated spatio-

temporal arrangement. Branching morphogenesis is a fundamen-

tal process controlling the growth and functional development of

many mammalian exocrine glands such as the lung, kidney,

pancreas, prostate glands, mammary glands and salivary glands

[1]. During development of major exocrine organs, the process of

branching morphogenesis was adopted to satisfy the requirement

for efficient exchange of gases, nutrients, metabolites, and wastes

with the environment. Branching morphogenesis enables packing

of a large surface area of epithelium into a relatively small volume,

thereby increasing the surface area in contact with the environ-

ment. Important questions regarding the signals controlling

branching, what patterns are followed by the organs, and how

these movements are regulated at cellular and tissue level are just

beginning to be explored. Recent studies in another organ that

undergoes branching morphogenesis, the developing lung, iden-

tified a set of three stereotypical geometric subroutine patterns that

when reiteratively combined result in an adult lung [2]. The

branching pattern in the developing salivary gland is different than

in the lung since the gland undergoes a series of cleft formation

events rather than the bifurcation events that occur during lung

development [3]. Since the branching pattern in salivary gland is

different and the morphological patterns are less apparent at the

tissue level than in the lung, we investigated whether a

computational approach could be used to identify, quantify, and

specify the cellular and tissue level organization of developing

salivary glands as a first step in understanding the processes

controlling organogenesis.
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In the past several years, mapping out interconnectedness

within systems, or ‘Network analysis’, has revolutionized our

understanding of complex events that function not only at various

scales but with a multitude of players involved in multiple events.

The structure and function of multiple types of networks ranging

from internet-based social networks to biological networks can be

modeled by graphs. These graph theoretical models have been

used to extract information about the function of complex

biological networks, from protein-protein interactions [4],[5],

disease progression [6], metabolic networks [7],[8], genetic and

transcriptional regulatory systems [9], and neuronal connectivity

[10]. These studies have provided important insights into the

construction and function and regulation of these networks on

both global and local scales.

Network analysis is primed to decipher cellular interactions,

since cellular events comprise an intricate interplay between

protein-protein interactions, genetic changes, metabolic pathways

and chemical secretions. When extended at an organ level, the key

challenge would be to link local and global structural properties of

tissues to the overall morphology and function of a tissue. Only a

systems level understanding of the various cellular processes at

multiple biological levels will take into account the multi-

dimensional complexity of these processes. If the principles

governing biological organization in a morphological, spectral,

local and global scale can be deduced, the correlation between

structural and molecular signaling within the tissue can be

understood and be applied to inform and accelerate studies of

organ development and tissue regeneration.

In previous work [11–16], we developed a graph theoretical

method called cell-graphs to model cellular networks to classify

features in human pathological specimens. Cell-graphs capture the

characteristic structural properties that distinguish healthy,

damaged, and cancerous states of brain, breast, and bone tissues

[11–13]. We further extended this method to model mesenchymal

stem cells in three dimensional space [14], to ECM interactions

during cell-mediated compaction and collagen remodeling in 3D

[15]. We also showed preliminary results of the applicability of

cell-graph technique for capturing the distinctive epithelial and

mesenchymal features in an embryonic branching organ – the

salivary gland [16]. Application of graph theory to cellular

networks provides a rich set of computational features that

represent the structural characteristics of the underlying tissue

samples. Cell-graphs are generalizations of Delaunay Triangula-

tion used to model spatial distribution of cells in a tissue by

encoding a pair-wise spatial relationship between them [17],[18].

In a cell-graph, vertices (or nodes) represent cell nuclei and pairs of

vertices are connected by an edge (or a link), determined according

to a theoretical biological relationship between them which may

represent either a chemical or a physical association. These studies

demonstrated that two classes of cell graph features, global-

structural and spectral, can capture unique feature descriptions for

distinct tissue states.

We previously identified Rho associated coiled-coil kinase 1

(ROCK1), a serine-threonine kinase that is activated downstream

of Rho GTPase, to be a critical regulator of branching

morphogenesis in mouse salivary gland and demonstrated that

ROCK1 has a critical function in regulating morphological

change. ROCK1 regulates progression of clefts, or indentations,

in the smooth surface of the primary epithelial bud during

branching morphogenesis. We demonstrated that ROCK1 alters

organ shape by altering actin-myosin mediated contractility,

which is required for assembly of fibronectin in the basement

membrane during cleft progression [19] and regulation of focal

adhesion formation in the outer epithelial cell layer [20].

Additionally, ROCK stimulates changes in the cellular organi-

zation [21].

In the current study, we developed a cell-graph-based multiscale

feature analysis capturing changes in cellular behavior and

resulting organ shape upon treatment with ROCK1 inhibitor;

thus providing insight into the cellular dynamics of submandibular

gland (SMG) morphogenesis and the function of ROCK1-

mediated signaling in this process. We investigated the utility of

cell-graphs to understand the relationship between cellular-, tissue-

, and organ-level changes in response to molecular signaling. To

accomplish his, we developed new cell-graph feature sets capturing

the local characteristics of nodes and the morphological properties

of the tissues. The addition of these two different scales made it

possible to interrogate cellular, tissue, and organ shape changes

using a multi-scale analysis of salivary gland tissues in response to

disruption of ROCK signaling.To perform such a multiscale

study, we provide correlation analysis within and between the

scales, with and without ROCK1 treatment. We also performed a

3-way tensor analysis to find underlying cellular patterns. As in our

previous work we also test our modeling using classification and

feature selection methods to identify the cell graph features most

representative of cellular-, tissue-, and organ-level changes.

Results

Immunostaining and Image Acquisition
We probed for quantitative changes in mouse embryonic

submandibular gland (SMG) organ explants that were treated with

the ROCK1/2 inhibitor, Y27632, using cell-graph methods. To

do this, embryonic E13 SMGs were cultured ex-vivo for 24 hours

in the absence or presence of ROCK inhibitor, as shown in

Figure 1A, D. They were treated with Sybr Green total nuclei

marker (green) to detect total nuclei and immunostained with an

anti-E-cadherin antibody as an epithelial marker (red) to identify

epithelial cells. Cells not expressing the cell-cell adhesion protein

E-cadherin were classified as mesenchymal cells. Multiple

overlapping confocal images were captured from the center of

each explant at 206 magnification (Figure 1B, E). Each dataset

consists of 20 samples of vehicle control- and ROCK inhibitor-

treated organ explants each.

Image Registration and Nuclei Segmentation
Segmentation was performed on composite images represent-

ing entire organ explants. Overlapping confocal images were

computationally stitched together to generate composite images

(Figure 1C, F). These stitched images were segmented to identify

the epithelial and mesenchymal regions using active contours

without edges technique (Figure 2A, D). Nuclear segmentation

was performed using the Otsu thresholding algorithm followed by

the Watershed technique [22]. The results of the nuclei

segmentation for control- and ROCK1 inhibitor-treated epithe-

lial and mesenchymal tissues are shown in Figure 2B, C, E and F,

respectively.

Cell-Graph Construction and Feature Extraction
Cell-graph construction captures the pair-wise distance rela-

tionship between the cells to provide a structural modeling of the

tissue. Formally, a graph, G, is represented by G = (V,E), where V is

the vertex set and E is the edge set of the graph. In the cell-graph

representation of each tissue [11–16] each cell constitutes a vertex

in the graph, and an edge is set between two cells having

coordinates u~(ux,uy) and v~(v,vy) if the Euclidean distance

between them, d(u,v)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ux{vx)2z(uy{vy)2

q
, is considered

small enough to facilitate communication between these two cells.

Multiscale Analysis of Branching Morphogenesis
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When the dataset is large, cross-validation techniques can be used

to identify the optimal threshold that might signify cell-cell

communication. In cases when the dataset is limited in size,

heuristics such as five times the average radius of a nucleus can be

used. A typical heuristic threshold value used in our modeling is 20

microns. The optimal threshold can be verified by a visual

comparison of the cell graph with the confocal image. In

Figure 2G, H, cell-graph modeling of both the epithelial and

mesenchymal tissue are depicted for control and ROCK inhibitor-

treated tissue samples, respectively.

Generation of New Features and Feature Extraction
From cell-graphs, quantitative metrics can be extracted to

predict relationships between the cells. A rich set of features was

computed from these cell-graphs, capturing multiple levels of

relationships between the cells and structural characteristics of

the tissue. Features capturing global structural characteristics

between the cells were calculated (Table 1). Spectral analysis of

cell-graphs was included to represent the spectral scale of the

cell-graphs (Table 2). Local structural features (Table 3)

capturing the local interactions between the cells were also

included. Shape-based features of the epithelial tissues were

extracted to capture the morphological properties of tissues

(Table 4). That is, the multi-scale features span four different

categories forming the basis for a multiscale feature analysis of

the organ properties.

We developed a rich set of features from different scales to

represent the branching morphogenesis from different perspec-

tives. Our previous feature set was mainly confined to global

structural features. Using this global structural feature set we

modeled and classified brain [11], breast [12], bone [13] and

salivary gland [16] tissues. However, in this study we developed

new features to address the patterns in salivary gland development

and capture the multiscale aspect of it. Specifically, we introduced

local structural and morphological features to analyze the local

behavior and shape characteristics of the tissues. We implemented

the degree, clustering coefficient, eccentricity, effective eccentric-

ity, closeness, betweenness, k-nearest neighborhood distance

statistics, physical k-nearest neighborhood distance statistics, edge

length statistics and number of hybrid edges for local structural

modeling.

The distances between a node and the nodes that are k hop

apart from it are calculated and mean, standard deviation,

skewness and kurtosis of these distances are measured and called

the k-nearest neighborhood (knn) distance statistics. Around the

clefts this distance is expected to be small compared to other parts

of the tissue. As the ROCK inhibitor-treated examples have a

greater number of small, initiated clefts, this local region in these

tissues will have greater knn (k-nearest neighborhood) values and,

therefore, knn values might be a good candidate for classification

between ROCK inhibitor-treated and untreated samples. A

slightly different version of this feature is also included in the

analysis, namely physical k-nearest neighborhood distance. In the

calculation of this feature, instead of using nodes that are k-hop

apart, nodes that are k times the link threshold distance apart from

each other are used. Statistics of this feature such as the first,

second, third and fourth moments (mean, std, skewness and

kurtosis) were included. Another feature we developed specifically

for this analysis is the number of hybrid edges. For an epithelial

cell, the number of mesencyhmal cells that it is connected to is also

calculated and used as the number of hybrid edges. Using these

features, the local view of the tissue is modeled and tissues are

Figure 1. Acquisition and image processing of confocal images. Organotypic culture of E13 SMGs (a) control or (b) treated with ROCK
inhibitor (140 mM Y27632), showing reduced branching with ROCK inhibitor treatment. Explants were immunostained with anti-E-cadherin antibody
as an epithelial marker (red) and SYBR green as a total nuclei marker (green). Multiple overlapping confocal images through the mid-section of (c)
control- and (d) ROCK inhibitor-treated explants were captured to cover the whole explant. Images were stitched using the inverse Fourier transform
of the phase correlation matrix and blended to provide composite images of (e) control (f) and ROCK inhibitor treated explants. Scale bars: 200 mm (a,
b), 100 mm (c), (d), and (e), and (f). In our study, the sublingual tissues were discarded and only the submandibilar gland was used, (Figure S2).
doi:10.1371/journal.pone.0032906.g001
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classified according to their local interactions. A detailed

description of how these features are calculated is given in the

materials and methods section.

Cell-Graph Calculations and Biological Validation
With any computational method, it is necessary to validate

computational results, whenever possible, with results obtained

more directly from the sample. Therefore, after extracting the full

set of cell graph features, we compared the values of a subset of these

cell-graph features to the corresponding values obtained using

conventional image analysis methods directly on the confocal

images and validated the cell-graph measurements. We calculated

the average area, perimeter, and circularity and the standard error

of the organ explants using standard image processing methods

directly from the confocal images for each treatment, as shown in

Figure 3A–C and directly compared these results with the values for

the same features derived from the morphological analysis. The

same trends were observed for this subset of features in control vs

ROCK inhibitor-treatment for the conventional and computational

analysis, calculated only for the epithelial tissue.

We previously observed that treating SMGs with the ROCK

inhibitor, Y-27632, an alternate ROCK inhibitor, H-1152, or

ROCK1 siRNA caused a decrease in intracellular contractility

and a subsequent decrease in cell proliferation [19]. Using

conventional image analysis methods, we verified that the average

diameter of the SMG increased and that the thickness decreased

following inhibitor treatment (Figure 4A), as we previously

reported [19], which are consistent with the overall decrease in

cellular contractility. Additionally, we verified that the total

number of cells also decreased with inhibitor treatment

(Figure 4B). This led us to predict that the overall compactness

of the explant decreases both at the tissue and at the cellular level

with ROCK inhibitor-treatment, which should be measurable

using specific cell-graph features. The values for cell-graph features

indicated that with ROCK inhibitor treatment, the clustering

coefficient in the control tissues was greater than in the ROCK

inhibitor-treated tissues. The clustering coefficient, gives a measure

of compactness of a tissue. That is, cells in the ROCK inhibitor-

treated tissues were further apart from each other and thus, had

fewer edges, or links, per unit area, measurable as a decreased

Figure 2. Generation of Cell Graphs. Stitched images were segmented using the active contour method to define epithelial (white) vs
mesenchymal tissue (black) in control (a) and ROCK inhibitor-treated explants (d). These masks were used to identify the epithelial nuclei (b, e) and
mesenchymal nuclei (c, f). Using each nucleus as a vertex, cell-graphs were constructed for control and ROCK inhibitor-treated tissues, respectively (g,
h), where zoomed regions of cell graphs corresponding to regions of the original images (shown as red boxes in a and d) are shown in detail.
Epithelial tissue is respresented by the blue graph and the mesenchymal tissue is represented by the red graph. We discarded the sublingual tissues
and only used the submandibilar gland, (Figure S2).
doi:10.1371/journal.pone.0032906.g002
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Table 1. Global structural features.

Feature Index Feature Name Feature Explanation

Connectedness and Cliquishness Measures:

1 Average Degree Average value of number of neighbors a node has.

2 Clustering Coefficient (C) of a Node The ratio of the links a node’s neighbors have in between to the
total number that can possibly exist.

3 Clustering Coefficient (D) of a Node The ratio of the links a node’s neighbors have in between to the
total number that can possibly exist.

4 Clustering Coefficient (E) of a Node The ratio of the links a node’s neighbors have in between to the
total number that can possibly exist.

12 Giant Connected Component Ratio Ratio of the size of the largest set of the vertices that are reachable
from each other to the number of vertices.

13 Number of Connected Components Total number of components that are reachable from each other.

14 Percentage of Isolated Points The ratio of number of vertices with degree equal to zero

15 Percentage of End Points The ratio of number of vertices with degree equal to one to the
total number of vertices.

Distance Based (Shortest-path related) Features:

- Eccentricity of a Node Maximum value of the shortest path from a given node to any
other node.

5 Average Eccentricity Average value of the eccentricity values for all the vertices.

6 Diameter Maximum eccentricity.

7 Radius Minimum eccentricity.

8 90 percent reachable Average Eccentricity of a Node Maximum value of the shortest path from a given node to any
other node.

9 90 percent Diameter Maximum eccentricity.

10 90 percent Radius Minimum eccentricity.

11 Closeness of a Node Average value of the shortest path from a given node to any other
node.

16 Number of Central Points Number of vertices that have eccentricity equal to radius.

17 Percent of Central Points Percentage of vertices that have eccentricity equal to radius.

18 Number of Vertices Number of cells in the tissue.

19 Number of Edges Number of hypothesized communications.

doi:10.1371/journal.pone.0032906.t001

Table 2. Spectral features.

Feature Index Feature Name Feature Explanation

20 Largest eigenvalue adjacency Largest valued eigenvalue

21 Second Largest eigenvalue adjacency Second largest valued eigenvalue

22 Trace of adjacency Sum of the eigenvalues of the adjancency matrix.

23 Energy of adjacency Squared sum of the eigenvalues of the adjancency matrix.

24 Number of zeros normalized Laplacian Number of eigenvalues that are 0.

25 Lower Slope The slope of the line for the eigenvalues that are between 0
and 1 when sorted and plotted.

26 Number of ones normalized Laplacian Number of eigenvalues that are 1.

27 Upper Slope The slope of the line for the eigenvalues that are between 1
and 2 when sorted and plotted.

28 Number of twos normalized Laplacian Number of eigenvalues that are 2.

29 Trace of Laplacian Sum of the eigenvalues

30 Energy of Laplacian Squared sum of the eigenvalues

doi:10.1371/journal.pone.0032906.t002
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clustering coefficient. The average path length, which measures

the average shortest path between two cells (Figure 4E), increases

with ROCK inhibition and number of connected components

(Figure 4F), which is the number of cell-linked cell clusters,

decreases. If the tissue is less compact, it should have a smaller

number of linked cells, an increased inter-cellular distance (longer

average path length) and, hence, a lower number of connected

components. Cell-graph features were thus able to predict known

ROCK inhibitor-induced global tissue changes.

We also observed local changes in tissue structure upon

treatment when ROCK was inhibited,. In the presence of the

ROCK inhibitor, Y27632, or in the presence of ROCK1 siRNA

Table 3. Local structural features.

Feature Index Feature Name, i = {1,2 3} Feature Explanation

31–33 Degree of the ith representative vertex Average number of neighbors for the ith representative
node

34–36 Clustering coefficient C of the ith representative vertex The ratio of the links of the ith representative node’s
neighbors have in common to the total number that can
possibly exist

37–39 Clustering coefficient D of the ith representative vertex The ratio of the links of the ith representative node’s
neighbors have in common to the total number that can
possibly exist

40–42 Clustering coefficient E of the ith representative vertex The ratio of the links of the ith representative node’s
neighbors have in common to the total number that can
possibly exist

43–45 Eccentricity of the ith representativeI vertex Maximum value of the shortest path values from the ith

representative node

46–48 Effective eccentricity of the ith representative Maximum value of the 90% reachable shortest path values
from the ith representative node

49–51 Closeness of the ith representative Average value of the shortest path values from the ith

representative node

52–54 Betweenness of the ith representative The number of times that ith representative node occurs on
a shortest path

55–57 Mean knn distance of the ith representative The mean of the physical distances between the ith

representative node and the nodes that are k hop apart
from it (knn: k nearest neighbourhood)

58–60 Standard deviation of the knn of ith representative The standard deviation of the physical distances between
the ith representative node and the nodes that are k hop
apart from it

61–63 Skewness of the knn of ith representative The skewness of the physical distances between the ith

representative node and the nodes that are k hop apart
from it

64–66 Kurtosis of the knn of the ith representative The kurtosis of the physical distances between the ith

representative node and the nodes that are k hop apart
from it

67–69 Mean of the physical knn distance of the ith representative The mean of the physical distances between the ith

representative node and the nodes that are at k times the
link threshold distance from it

70–72 Standard deviation of the physical knn distance of the ith

representative
The standard deviation of the physical distances between
the ith representative node and the nodes that are at k times
the link threshold distance from it

73–75 Skewness of the physical knn distance of the ith representative The skewness of the physical distances between the ith

representative node and the nodes that are at k times the
link threshold distance from it

76–78 Kurtosis of the physical knn distance of the ith representative The kurtosis of the physical distances between the ith

representative node and the nodes that are at k times the
link threshold distance from it

79–81 Mean edge length of the ith representative Mean edge length of the ith representative node to its
neighbors

82–84 Standard deviation of the edge length of the ith representative Standard deviation of the edge length of the ith

representative node to its neighbors

85–87 Skewness of the edge length of the ith representative Skewness of the edge length of the ith representative node
to its neighbors

88–90 Kurtosis of the edge length of the ith representative Kurtosis of the edge length of the ith representative node to
its neighbors

91–93 Number of hybrid edges of ithh representative For an epithelial cell, the number of mesencyhmal cells that
it is connected to

doi:10.1371/journal.pone.0032906.t003
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but not ROCK2 siRNA, the outer columnar cell layer that lines

the periphery of the buds is disorganized [21] (Figure S1B)

compared to the untreated control SMGs (Figure S1A). This

difference in cellular organization was detectable as an decrease in

the number of hybrid edges – which represents the link between

epithelial and mesenchymal cells – in ROCK inhibitor-treated

SMG compared to untreated control SMGs (Figure 4G). This data

indicates that cell-graphs are capable of detecting local subtle

changes in tissue organization.

Feature Correlation Analysis
We perform feature correlation analysis to observe how the

multi-scale relations for the epithelial and mesenchymal tissues

differ with and without inhibitor treatment. For all tissue samples

cell-graph features were clustered into four groups, based on the

similarity of their (signed) correlations with the whole cell-graph

feature set, using the k-means clustering algorithm. The optimal

number of clusters was found to be k = 4, as there are four different

scales. In Figure S3 A–D, re-grouped correlation maps of control

epithelial, control mesenchymal, ROCK inhibitor-treated epithe-

lial and ROCK inhibitor-treated mesenchymal tissues are

provided, respectively. The subset (5–11) of the shortest path

related features (5–11, 16–19) fall into the same correlation cluster

in all the four tissue samples (Figure S3A–D); and while these

correlation clusters contain the subset (22, 23, 29, 30) of the

spectral feature set (20–30) in the three tissue samples, control

epithelial, ROCK inhibitor-treated epithelial and control mesen-

chymal, (Figure S3A–C respectively), this is not the case in ROCK

inhibitor-treated mesenchymal tissue (Figure S3D). That is, the

multi-scale correlations between the spectral features and the

shortest path features disappear in the ROCK inhibitor-treated

mesenchymal tissues.

In epithelial tissues, the cluster that holds the shortest path-

related features (5–11) and the subset (22, 23, 29, 30) of the

spectral features (20–30) also holds the subset (95, 98, 99) of the

local features (31–93), as observed in a comparison of Figure S3A

and Figure S3B, This suggests that the global structural features, a

subset of the spectral features and a subset of the local structural

Table 4. Morphological (shape based) features.

Feature Index Feature Name Feature Explanation

94 Elongation The ratio of major axis length to minor axis length

95 Area The number of pixels in the region

96 Orientation The angle between the x-axis and the major axis of the region.

97 Eccentricity The ratio of the distance between the foci of the ellipse and its major axis length.

98 Perimeter The distance around the boundary of the epithelial region.

99 Circularity Perimeter squared over 4*Area

100 Solidity The ratio of the area to the convex hull area

101 Fractal Dimension The limit of the ratio of ln(N) to ln(s) as s goes to zero where N is the number of
boxes with side s that covers the shape

doi:10.1371/journal.pone.0032906.t004

Figure 3. Direct validations of cell-graph features using standard image analysis methods. Plots of (a) area, (b) perimeter and (c)
circularity from images using conventional image analysis methods and plots of cell-graph-derived raw data pertaining to (d) area, (e) perimeter and
(f) circularity are shown. Control refers to untreated epithelium and Y27632 refers to the ROCK inhibitor treatment. The same trends for control vs
ROCK inhibitor treatment were observed for the features obtained using image analysis and cell-graphs. The percent differences between the
conventional image analysis and our image segmentation technique are found to be 1.16% and 0.73% for the area; 5.66% and 5.94% for the
perimeter; 11.0532 and 16.1463 for the circularity of the control and ROCK inhibitor-treated samples, respectively.
doi:10.1371/journal.pone.0032906.g003
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features are correlated with each other, and that this correlation is

not affected by the ROCK inhibitor-treatment. Likewise,

comparison of Figure S3A and Figure S3B shows that in epithelial

tissue, the correlation cluster that holds most of the local structural

features (31–93) is preserved in the ROCK inhibitor-treated

epithelial tissues. That is, the correlation cluster of the subset (37,

43–47, 49, 50, 55–60, 64–66, 71, 79, 81, 88, 89, 90) of the local

feature set is the same for both the ROCK inhibitor treated and

untreated epithelial tissue samples. This suggests that the

correlation structures of these features are independent of the

treatment and that the inhibitor treatment does not affect the

multi-scale relation of local features in epithelial tissues

Feature correlation cluster changes
The changes in the correlation clusters, which were found by

the k-means algorithm in the previous section, are studied in a

systematic way through bi-partite graph analysis, as shown in

Figure 5A and B. Here, a link between two clusters of the

compared tissue samples means that there is at least one common

cell-graph feature in the two linked correlation clusters and the

indices of the common cell-graph features are written above the

links connecting the correlation clusters. Indices of the features

that are in the same feature category are grouped together in the

same bracket. For each correlation cluster, the number of features

it contains from each of the four feature categories, global

structural, morphological shape-based, spectral, and local struc-

tural, are also shown next to the correlation cluster.

The bi-partite graph analysis indicates that ROCK inhibitor-

treatment affects the correlation cluster structure of cell-graph

features of the epithelial and mesenchymal tissues equally but

differently: the number of links in Figure 5A and B differs by one,

meaning they are affected almost equally by the treatment.

However, the features that are affected, as depicted on the

bipartite graph edges, within each correlation cluster differ.

Through Figure 5A–B, feature subsets that are in the same

correlation clusters in both control epithelial and ROCK

inhibitor-treated epithelial tissue samples can be identified (from

Figure 5A) and how this correlation cluster structure differs in the

case of mesenchymal tissues (from Figure 5B) can be tracked. For

instance, while the subset (5–11,18,19) of the global structural

feature set (1–19) and the subset (22,23,29,30) of the spectral

feature set (20–30) continue to be in the same correlation cluster

after ROCK inhibitor-treatment in epithelial tissue (from

Figure 5A); these two subsets of features, which also belong to

one correlation cluster in control mesenchymal tissue, are

distributed over two different links in Figure 5B), meaning they

belong to two different correlation clusters in ROCK inhibitor-

treated mesenchymal tissue. This suggests that the multi-scale

relationship between the global-structural features and the spectral

features is preserved in epithelial tissues with the treatment,

Figure 4. Indirect validations of cell-graph features using standard image analysis methods. Control refers to untreated epithelium and
Y27632 treated epithelium. (a) Diameter of explants was measured using MetaMorph image analysis tools from single confocal images (b) Total
nuclei were measured from single confocal images. (c) Thickness was measured from confocal Z-stacks of images. With Y27632 treatment, diameter
of the explants increases and thickness and number of cells decreases thus reducing the overall compactness of the tissue structure. Cell-graph-
derived features, such as clustering coefficient (d), average path length (e) and number of connected components (f) show that Y27632 treatment
increases the distance between two cells, thereby lowering the number of linked cells and decreasing the overall compactness in the epithelial and
mesenchymal regions.
doi:10.1371/journal.pone.0032906.g004
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whereas in the mesenchymal tissues this relationship disappears

with the ROCK-I inhibitor treatment.

Another difference between the effect of the treatment on the

correlation clusters is that the second correlation cluster in the

control epithelial tissues is preserved with little changes in the

ROCK inhibitor treated epithelial tissues, e.g. in the control

epithelial tissue feature indexed with 68 belongs to the second

correlation cluster whereas in the treated case this feature is

dropped from the cluster and 15 and 69 are added to the same

cluster. However, in the comparison of mesenchymal tissue, all the

correlation clusters change after the inhibitor treatment. That is,

the changes in mesenchymal tissue correlation clusters are more

diverse and the multi-scale relationships in mesencymal tissues

change more compared to the epithelial tissues with the treatment.

Significant feature correlations
To analyze only the significant relationships of the four feature

categories to each other, we applied statistical analysis to the

pairwise feature correlation results to identify correlations having

95% significance. The four correlation maps provided in Figure

S4A–D show only correlations having 95% or greater signifi-

cance. The entries in these correlation maps are ordered in

parallel with the ordering of the indices in Table 1, 2, 3, 4 to

facilitate identification of significant correlations between the four

feature categories in each tissue sample. The changes that occur

in correlations between the feature categories under ROCK

inhibitor-treatment of epithelial and mesenchymal tissues are also

analyzed. In Figure S4A–D, the lower left corners correspond to

tissue connectedness and cliquishness features (1–4, 12–15) and to

shortest path-related features (5–11, 16–19) and the right top

corners correspond to local structural features (31–93) and shape-

based morphological features (94–101). The most informative

values in these correlation maps are located in the off-diagonal

entries. The correlations are provided as absolute values,

meaning that a value of 1 indicates either a perfect positive

correlation or a perfect negative correlation. In this and the

remaining sections, indices of the referred to features will be

indicated in parenthesis.

Feature correlation analysis between epithelial and
mesenchymal tissues

Comparison of the control epithelial and mesenchymal tissue

feature correlation maps (Figure S4A and Figure S4C respectively)

shows indeed that while the spectral-based feature set (20–30) lacks

significant correlation with the other feature categories in the

mesenchymal tissue, in the epithelial tissue, it is significantly

correlated with other feature categories, such as the subset (5–11)

of the shortest path-related features (5–11, 16–19) and the local

structural feature set (31–93).

In the case of the ROCK inhibitor-treated epithelial tissue

versus inhibitor-treated mesenchymal tissue correlation compari-

son, the number of significant correlations within the spectral

feature set is higher for the mesenchymal tissues. Moreover, the

subset (5–11) of the shortest path-related features (5–11, 16–19) is

more correlated with the subset (40–50) of the local structural

feature set in the case of inhibitor-treated mesenchymal tissue.

While the spectral feature set lacks significant correlation with the

local structural feature set (31–93) in the inhibitor-treated

epithelial tissue, the correlations between these two sets of features

increase in the inhibitor-treated mesenchymal tissue.

Figure 5. Bipartite graph analysis. The changes in the correlation clusters of the four tissue samples are studied through bi-partite graph analysis
for the untreated vs. treated epithelial tissue comparison in (a) and for the untreated vs. treated mesenchymal tissue comparison in (b).
doi:10.1371/journal.pone.0032906.g005
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Feature correlation analysis in epithelial tissue: After treatment

of the epithelial tissue with ROCK inhibitor, a reduced correlation

between the local structural feature set (31–93) and spectral feature

set (20–30) is observed (Figure S4B). Here, a reduced correlation

between two sets refers to a decrease in the number of pairwise

correlated features and/or a decrease in the absolute value of

correlation coefficients across the referred sets. Similarly, the

number of pairwise significant correlations within the local

structural feature set (31–93) decrease with the ROCK inhibitor-

treatment. Apart from these, an increase in the correlation of the

global structural features (1–19) is observed. Likewise, shape-based

features (94–101) correlate with each other more in the presence of

the ROCK inhibitor-treatment. An increase in the correlation of

the global structural features and local structural features is also

observed under these conditions. After treatment of the epithelial

tissue with ROCK inhibitor, most of the pairwise correlations that

existed between the local structural feature set (31–93) and global

structural features (1–19), spectral features (20–30), local structural

features (31–93) and shape-based morphological features (94–101)

are altered.

Feature correlation analysis in mesenchymal tissue: There are

some similarities between the effect of ROCK inhibitor-treatment

on mesenchymal and epithelial tissues. As in the case of the effect

of ROCK inhibitor-treatment on the epithelial tissues, the

pairwise correlations within the local structural feature set (31–

93) are decreased for the inhibitor-treated mesenchymal tissues.

rically, this means that the local behavior and characteristics of the

nodes, or cells, in the network are different from each other; that

is, they are more random with the treatment (Figure 6). Here, the

number of pairwise significant correlations within the local

structural feature set (31–93) decreases mainly for the features

with indices 45–65 (Figure S4D). Furthermore, correlations within

the global structural feature set decrease both in number and in

value. A decrease in the correlation of global-structural feature set

implies that the overall design principles of the network have been

altered and the tissue samples do not resemble each other globally.

In the presence of the ROCK inhibitor in mesenchymal tissue,

shortest path-related features (5–11) of the global structural feature

set (1–19) become more correlated with the spectral feature set

(20–30) and with the subset (40–50) of the local structural feature

set (31–93) (Figure S4D). It is also important to note that

significant correlations within the spectral feature set (20–30)

become more uniform after ROCK inhibitor treatment (Figure

S4D). As the shape-based features are calculated only for the

Figure 6. Geometric interpretation of changes in cell-graph features. A geometrical understanding of example cell-graph features is
provided together with corresponding representative tissue samples. Geometrical interpretations of the changes for the example features are
studied.
doi:10.1371/journal.pone.0032906.g006
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epithelial tissues, no correlation changes for the shape-based

morphological features are reported for mesenchymal tissues.

Analysis of changes of correlations within and between the four

feature categories suggests that inhibition of ROCK function

affects epithelial and mesenchymal tissues through distinct

mechanisms.

Multi-way Tensor Analysis
We next performed multiway modeling and analysis [23] of

our dataset that enables exploration of the data from different

modes to model the dataset as a higher order array, to capture

the multilinear structures in it, and to find underlying hidden

patterns. Multiway arrays, often referred to as tensors, are

higher-order generalizations of vectors and matrices. This

modeling and analysis enables us to explore the features as well

as the tissue types and the samples together by including each of

these in the multiway analysis. In this analysis, we extracted 101

features from 20 tissue samples consisting of the four different

tissue types: control epithelium, ROCK inhibitor-treated epi-

thelium, control mesenchyme, and ROCK inhibitor-treated

epithelium. This dataset is organized into a third order tensor of

20|101|4 dimensions. A 3-way tensor can be modeled as

shown in Figure 7.

In the tissue type mode analysis, a clear differentiation between

the treated and untreated samples exists, as shown in Figure 8A.

From the sum-squared residuals vs the Hotelling’s T2 value in

Figure 8A, we can identify the tissue types that are distinct from

the rest as those that appear above the diagonal line. Control

epithelial and mesenchymal tissues and treated mesenchymal

tissues, shown as ‘‘c_epi’’, ‘‘c_mes’’ and ‘‘y_mes’’ respectively, are

grouped all below this line whereas ROCK inhibitor-treated

epithelial tissue, shown as ‘‘y_epi’’, is scattered apart. We can

conclude from this analysis that the ROCK inhibitor-treatment

has a significant effect on the morphology and structure of the

epithelial tissues and that the effect of the treatment is different on

the epithelium and the mesenchyme, in support of the hypothesis

that different cellular mechanisms are involved in development of

each tissue.

Tensor analysis also provides information regarding the

significance of each feature in the overall analysis. For instance,

in features mode analysis, as displayed in Figure 8B in 2

dimensions from the sum-squared residuals vs the Hotelling’s T2

value, we can identify all features that are distinct from the rest as

those that appear above the diagonal line. One striking

observation is that the skewness of the knn (k-nearest neighbor-

hood) distances of all the representative nodes are chosen

Figure 7. Illustration of a Tucker3 model for tensor analysis.P,Q and R indicate the number of components extracted from the first,
second and third mode (PƒI ,QƒJ,RƒK), respectively, and A [ <I|P,B [ <J|Q and C [ <K|R are the component matrices.
G [ <P|Q|R is the core tensor and E [ <I|J|K represents the error term.
doi:10.1371/journal.pone.0032906.g007

Figure 8. Multiway modeling by tensor analysis. Our dataset is modeled as a higher order array to capture the multilinear structures. (a) Tissue
type analysis reveals that the untreated epithelial, untreated mesenchymal and treated mesenchymal tissues are grouped together. (b) Hotelling’s T2
versus sum squared residuals to reveals features that the tensor analysis cannot fit with the model.
doi:10.1371/journal.pone.0032906.g008
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(61,62,63) as well as the mean of the physical knn distances of all

the representative nodes (67,68,69). We also see that the standard

deviation of the physical knn distance and the skewness of the

physical knn distance of the second and the third representative

nodes are identified by the tensor analysis. That is, k-nearest

neighborhood-related features, which are in the local structural

feature set, are identified by the tensor analysis.

Supervised Learning of Control and ROCK Inhibitor
Treated Tissues and Their Learning Accuracies

Next, we aimed to identify the minimal number of cell-graph

features that could describe the structural difference between

ROCK-inhibitor treated and untreated salivary glands. To

accomplish this, we identified four tissue classification problems,

control tissue classification (epithelium vs mesenchyme), ROCK

inhibitor-treated tissue classification (epithelium vs mesenchyme),

epithelial tissue classification (control vs ROCK inhibitor- treated),

and mesenchymal tissue classification (control vs ROCK inhibitor-

treated), and performed feature selection. Formally, feature

selection is defined as the problem of reducing the dimensionality

of the data to remove the irrelevant features and increase the

learning accuracy. Since there are multiple feature selection

algorithms available, and it is not readily apparent which would be

most appropriate for our classification problems, we tested six

different feature selection algorithms: no feature selection at all,

relief method [24], symmetrical uncertainty attribute evaluation

[25], consistency subset evaluation method [26], F-score feature

selection [27], and correlation-based feature subset selection [28].

Since each of the selection algorithms uses different criteria for

optimization, the features they select vary significantly. That is, a

feature selection algorithm that tries to pick uncorrelated features

e.g. consistency subset, might pick a different feature set than that

of a feature selection algorithm that uses Fisher’s criteria. Since the

ultimate goal of any feature selection algorithm is to achieve the

best learning accuracy using as few features as possible to define

the problem, we reasoned that the features that were most often

selected by the feature selection algorithms would be the optimal

ones for recognizing the differences between the tissue states.

The four classification problems we defined were solved using

support vector machines (SVM) and K-fold cross validation

techniques, which have been used successfully for classification

purposes [29]. SVM algorithm classifies the data by mapping it

into a higher dimension and constructing an optimal separating

hyperplane between data points such that the data points of

different classes fall onto the opposite sides of this hyperplane. In

the case that no such hyperplane exists (i.e. if the data is not

linearly separable in this higher dimension), it constructs a

hyperplane that leads to the least error. The learning accuracy

of each solution is computed using the leave one out technique,

which is a special case of K-fold cross validation technique. K-fold

cross validation partitions the dataset into K disjoint subsets called

folds. Of these K folds, K-1 are used to train the model, and the

remaining fold is used to test the model. This constitutes one

iteration of the K-fold cross validation. Repeating this process K

times, each time leaving out one fold for validation and using the

other folds as the training set, the accuracy of each run is

calculated and then averaged and reported as the cross validation

accuracy. Typical choices for K are K = 1, K = 5 and K = 10. When

the data is limited in size, using leave one technique, K = 1, to

ensure that enough data is used for learning is a common practice.

We examined the learning accuracy for the first two

classification problems. For the first problem of distinguishing

between control tissues (epithelium vs mesenchyme), the resulting

learning accuracies for each of the six different feature selection

algorithms are given in Table 5. All feature selection techniques,

except the consistency subset evaluation technique, gave 100%

learning accuracy. A similar test was performed for the ROCK

inhibitor treated tissues (epithelium vs mesenchyme) and the

learning accuracies for this second classification problem are given

in Table 6. In this case, the best learning accuracy was also 100%,

Table 5. Epithelial vs Mesenchymal comparison in control tissue samples.

Feature Selection Algorithm Selected Features Best CV rate

SVM with No Feature Selection 100.0

SVM with F-score Selection 52,71,72,80 100.0

Correlation Based Selection 1,3,7,12,13,14,15,24,28,39,43,57,63,68,72,77,78,93 100.0

Relief Attribute Evaluation 39,52,71,72,80 100.0

Symmetrical Uncertainty 12,13,14,15,24,39,72 100.0

Consistency Subset Evaluation 12 97.5

doi:10.1371/journal.pone.0032906.t005

Table 6. Epithelial vs Mesenchymal comparison in ROCK-inhibitor-treated tissues.

Feature Selection Algorithm Selected Features Best CV rate

SVM with No Feature Selection 95

SVM with F-score Selection 3,6,7,9,10,39,52,57,59,60,72,80,81,89,90 100.0

Correlation Based Selection 3,6,10,12,14,15,37,39,59,69 100.0

Relief Attribute Evaluation 7,39,56,57,59,60,80,81,89,90 97.5

Symmetrical Uncertainty 15,39 100.0

Consistency Subset Evaluation 15 100.0

doi:10.1371/journal.pone.0032906.t006
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and 4 of the 6 feature selection algorithms achieved this accuracy.

Thus, the multi-scale features, regardless of the feature selection

method, are effective in distinguishing between the epithelial and

mesenchymal tissue types, regardless of the inhibitor treatment.

The obvious structural and morphological differences between the

ROCK inhibited and untreated explants are reflected in the fact

that this classification problem has 100% accuracy for almost all of

the feature selection algorithms tried (Table 5 and Table 6).

The remaining sets of classification problems were designed to

examine the effects of ROCK signaling within both tissue types.

We separately compared the epithelial cell-graphs of the ROCK

inhibitor-treated and control samples, as well as the cell-graphs

corresponding to the mesenchymal tissues of inhibitor-treated and

control samples. The results of the ROCK inhibitor versus control

comparison for epithelial tissues are reported in Table 7. The best

learning accuracy achieved was 100% achieved by the correlation-

based subset evaluation technique and the symmetrical uncertain-

ty technique. The mesenchymal comparison had 87.5% accuracy

using the consistency subset and relief attribute evaluation

technique Table 8. Not surprisingly, the cell-graphs were most

effective in distinguishing between the two different tissue types.

However, the cell-graphs were also able to distinguish between the

control and ROCK inhibitor treated samples effectively, 100%

and 87.5%, respectively.

Feature Selection
The features selected by the feature analysis algorithms provide

informative quantitative descriptions of alterations in cellular and

tissue-level changes for each classification problem. For the six

feature selection algorithms explored in the epithelial vs mesen-

chymal analysis in the untreated samples, features indexed with

12, 39 and 72, which are giant connected component, clustering

coefficient of the third representative node and the standard

deviation of the knn distance of the same representative node, were

commonly selected by the algorithms as the minimum number of

features needed to distinguish between these two tissue types, see

Table 5. In this classification, a global and two local structural

features were found to be the most informative.

In the presence of the ROCK inhibitor, features indexed with

15, 39 and 59, which are namely: percent of end points, local

clustering coefficient and standard deviation of the knn distance are

the most informative features, as shown in Table 6. The local

clustering coefficient measures cliquishness and the connectivity of

the tissues and gives a measurement of how addition of ROCK

inhibitor affects the connectivity of the epithelium and mesen-

chyme differentially, which was not previously known. Also in the

ROCK inhibitor-treated case, the percent of end points, which are

the nodes that have only one neighbor, and that also measures the

connectivity of the tissue was important. These findings are

consistent with the biological observation that the cellular

organization of epithelium is different than the cellular organiza-

tion of the mesenchyme.

The comparison in which we expected to observe the greatest

change in tissue shape based on biological studies [19,20,21], was

the comparison between control- and ROCK inhibitor-treated

epithelium. We previously demonstrated that SMGs treated with

ROCK inhibitors showed an inhibition of branching morphogen-

esis, which was associated with a distended appearance of the

gland [19], measureable as an increase in the tissue diameter

(Figure 4A). When ROCK inhibitor-treated epithelial tissue was

compared to control epithelial tissue, the features 1,3,15,65,68,92

and 99 were identified, where 1,3,15 are average degree (1),

clustering coefficient (3) and percent of end points (15) (Table 7).

Interestingly, all of the feature selection algorithms selected

average degree and global clustering (1,3). The difference in

cellular compactness predicted by the cell-graphs is significant and

consistent with the biological predictions. Alteration of cellular

connectivity is thus a direct effect of the ROCK inhibitor in

epithelial tissue, as expected based on previous results ([21]). The

rest of the selected features were local features representing the knn

distances between the cells and the number of hybrid edges. This

suggests that some form of epithelial-mesenchymal interactions

captured by the hybrid edges, are regulated by ROCK1. Also in

the control- versus ROCK inhibitor-treated epithelial tissue

comparison, three out of the five feature selection algorithms

selected the 99th feature. The feature indexed with 99 is a shape-

based feature, thus taking into account the change in overall shape

of the explants upon addition of the ROCK inhibitor. This is

consistent with the comparison of the perimeter values calculated

by the cell graphs (Figure 4E) and by conventional image analysis

(Figure 4B).

When mesenchymal tissue was compared between ROCK

inhibitor-treated and control explants, the feature selection

algorithms that achieve the highest accuracy picked features 2

Table 7. Control vs ROCK-inhibitor-treated comparison of epithelial tissues.

Feature Selection Algorithm Selected Features Best CV rate

SVM with No Feature Selection 100.0

SVM with F-score Selection 1,3,15,21,68,99 95.0

Correlation Based Selection 1,3,15,65,68,92,99 100.0

Relief Attribute Evaluation 1,3,15,21,32,41,50,56,92,98,99,100 97.5

Symmetrical Uncertainty 1,3,15,65,68,92,99 100.0

Consistency Subset Evaluation 1,3,65 92.5

doi:10.1371/journal.pone.0032906.t007

Table 8. Control vs ROCK-inhibitor-treated comparison of
mesenchymal tissues.

Feature Selection Algorithm Selected Features Best CV rate

SVM with No Feature Selection 72.5

SVM with F-score Selection 1,2,3,15,20,21 80.0

Correlation Based Selection 1,2,3,21,55,65 80.0

Relief Attribute Evaluation 1,2,3,4,15,20,21,83,91 87.5

Symmetrical Uncertainty 1,2,3,21,65 82.5

Consistency Subset Evaluation 2,3,65 87.5

doi:10.1371/journal.pone.0032906.t008
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and 3 in common, which are the two different global clustering

coefficients. Cell-graphs thus predict that previously unappreciated

differences in cellular compactness are also significant in ROCK

inhibitor treated versus control treated mesenchymal tissue.

Interestingly, four of the feature selection algorithms picked a

spectral feature (21) and three of them picked the kurtosis of the

knn distance. Significantly, features derived from different scales

were important in the mesenchymal tissue comparison.

Multiscale Feature Analysis
Since the feature selection algorithms selected features repre-

senting multiple categories (Table 1, 2, 3,4) for the defined

classification problems, this result implied that multiscale feature

analysis is advantageous for identification and classification of

tissues, moreso than unidimensional cell-graph analysis. To

confirm this hypothesis, for the four classification problems

defined previously, we calculated the learning accuracy using

only the global graph features, local graph features, spectral

features, or morphological features, and compared these results

with those obtained using all classes of features, which we defined

as multiscale feature analysis. Using multiscale feature analysis, the

learning accuracy was the highest for all of the classification

problems (Table 9).

For the epithelial versus mesenchymal comparison in control

samples, the accuracy was 100% using the multiscale set of

features, which was also achieved by local structural features and

the global features. In ROCK-inhibitor-treated epithelium versus

mesenchyme, multiscale feature analysis also achieved 100%

accuracy, followed by 97.5% accuracy of global structural

features alone. In ROCK inhibitor-treated vs control for

epithelial tissue samples, multiscale feature analysis was able to

achieve again 100% learning accuracy, which was not achieved

by any of the other set of features alone. The closest accuracy was

performed again by the global structural graph features alone

with 97.5% accuracy. In this comparison, shape-based morpho-

logical features alone achieved 90% accuracy. In ROCK

inhibitor-treated versus control mesenchymal tissues, multiscale

features were 87.5% effective, but none of the individual feature

sets were able to achieve a better accuracy. From these analyses,

we conclude that multi-scale feature analysis achieves the highest

levels of accuracy for discriminating between tissue types and is

more effective than any type of unidimensional cell-graph

analysis group.

Discussion

We report utilization of a novel multiscale feature analysis to

capture morphological and cellular changes accompanied with

perturbation of a ROCK1-mediated signaling pathway in both

epithelial and mesenchymal tissue types in developing salivary

glands. Using six different feature selection algorithms, we

identified specific subsets of features that most efficiently and

effectively define differences between ROCK inhibitor-treated vs

control glands in two tissues at multiple biological levels and at

local and global scales. Tensor analysis demonstrated that the

ROCK inhibitor affects the epithelial tissues the most significantly.

Clustering analysis revealed significant correlations between

structural, morphological, local and spectral features. Similarly,

comparison of multiscale feature analysis vs unidimensional

analysis revealed that a multiscale feature analysis more accurately

models each tissue under both conditions than does any uniscale

analysis.

Through this study we identified a multiscale features signature

for both epithelial and mesenchymal salivary gland tissues and a

specific ROCK inhibitor-induced signature for each tissue type.

Some of the cell graph features provide insights into specific

biological parameters. That cell graphs can distinguish between

the different cell types (epithelium and mesenchyme) is interesting

and significant, especially since these cell populations are complex.

The embryonic epithelial cell type described here is assumed to be

composed of equivalent cells at this early stage of development and

will later develop into saliva-secreting acinar cells, saliva-

producing and modifying ductal cells, and tissue regenerating

progenitor cell populations. The mesenchymal cell compartment

at these developmental stages is complex and includes fibroblasts,

neuronal cells, and arterial cells. It will be interesting to use cell-

graphs of increasing complexity to distinguish between these

distinct cell sub-populations in future studies. That cell-graphs can

distinguish between cell populations that have been treated with

ROCK inhibitors is significant. The features that were selected

using feature analysis indicate that the epithelial cell clustering, or

cell spacing, increases in the absence of ROCK signaling.

Biologically, this could be indicative of a decrease in cell-cell

adhesions, an increase in cell size, or decrease in proliferation. In

light of previous research indicating that ROCK affects cellular

contractility and cell proliferation [19], the change in cell shape is

most likely. Interestingly, recent work indicates that effects of

ROCK inhibitor are context dependent and that basement

membrane prevents ROCK signaling from affecting cell-cell

adhesions in epithelial cells that contact it. It will be interesting to

use cell-graphs to examine sub-sets of cell populations at distinct

time periods in future studies.

Since this study has demonstrated the utility of the cell-graph

modeling for understanding organogenesis at multiple biological

scales, future studies can address the specific contributions of

additional signaling pathways, which would be predicted to have

their own signature for each specific tissue type. Branching

morphogenesis is a dynamic process leading to establishment of a

functional tissue, and it is likely that each developmental stage will

have a specific cell-graph signature. In future studies that will

Table 9. Comparison of the learning accuracies using all the multi-scale features or only global graph features, spectral features,
local graph features or morphological features.

Feature Selection Algorithm
Multiscale
Feature Set

Global Graph
Features

Spectral
Features

Local Graph
Features

Shape Based
Features

Epithelial vs Mesenchymal in control 100 100 97.50 100 -

Epithelial vs mesenchymal in ROCK treated 100 97.50 90 95 -

ROCK Treated vs control in epithelial 100 97.50 77.50 82.50 90

ROCK treated vs control in mesenchymal 87.50 85.00 77.50 70 -

doi:10.1371/journal.pone.0032906.t009
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model the process of branching morphogenesis over time, the

challenge will be to integrate cellular dynamics, tissue-level

patterning events, with the intercellular signaling mechanisms

across multiple time scales in dynamically changing cell popula-

tions. By developing a cell-graph signature for each incremental

change in tissue state when specific signaling pathways have been

disrupted, cell-graphs will provide a quantitative method to

facilitate building of multiscale cell-based simulations of organ

development.

The cell-graph analysis presented here represents the first

attempt to model cellular behavior as a component of the

process of branching morphogenesis. Lung morphogenesis was

modeled previously using a continuous free-boundary method in

which only two factors influencing the boundary were consid-

ered: diffusion of growth factors and concentration of nutrients

[30]. Previous studies modeling salivary gland morphogenesis

focused on hypothetical modeling of physical forces, based on

physical parameters, such as tissue viscosity, and neglected a

cellular component. In one study, a two-dimensional model of

salivary gland branching morphogenesis was generated where

epithelium and mesenchyme were modeled as immiscible Stokes

fluids of constant viscosities [31]. Later, a three-dimensional

model was developed in which mesenchymal cells were more

realistically considered using fluid mechanics to model hypoth-

esized mesenchyme-generated traction forces [32]. Notably, in

these studies, cells were not accurately modeled and the actual

shape of the epithelial tissue was not achieved by the

mathematical simulations, leaving open the possibility that

accurate modeling of cellular rearrangements may contribute

significantly to a realistic model. The most realistic models of

branching morphogenesis will incorporate physical, cellular, and

molecular signaling to create both descriptive and predictive

models.

Mathematical modeling is currently being employed to better

understand and predict multiple biological problems [33]. This

study provides the first step towards using ‘‘multiscale feature

analysis’’ to understand development of complex branching

tissues. If we can understand the design principles that govern

biological organization locally and globally and understand the

correlation between molecular signaling, cellular response, and

structural and morphological alterations in the tissue, these

principles can be used to inform and accelerate studies of tissue

morphogenesis, development, differentiation, and organ forma-

tion. Thus, we present the utility of multiscale feature analysis in

developing salivary gland tissue, suggesting that these methods will

be useful in future modeling efforts of this complex process of

branching morphogenesis and other developmental processes.

Materials and Methods

Organ Culture and Inhibitor Treatment
Ex vivo organ culture: Mouse SMGs were dissected from

timed pregnant female mice (strain CD-1, Charles River

Laboratories) at embryonic day 13 (4 to 5 buds), with the day

of plug discovery designated as E0, following protocols approved

by the University at Albany IACUC committee (protocol 09–

013). SMGs were microdissected from mandible slices and

cultured, as described previously [19], [34–37]. SMG organ

cultures were exposed to the ROCK inhibitor dissolved in

culture media at 140 mM (Y27632, 6888000 Calbiochem), or

vehicle control media for 24 hrs prior to fixation in 4%

paraformaldehyde in 16 phosphate buffered saline (PBS), as

described previously [19]. Greater than 20 SMG organ explants

were included in each treatment group.

Whole-Mount Immunocytochemistry
Whole-mount immunocytochemistry was performed using

SMGs fixed in 4% paraformaldehye (PFA) in 16 phosphate-

buffered saline (1XPBS) containing 5% (w/v) sucrose for 20 min at

room temperature. SybR Green I (Invitrogen) was used to detect

nuclei. Epithelium was detected using an antibody recognizing E-

cadherin (1:100, BD Biosciences) and a Cy3-conjugated Donkey

F(ab)2 secondary antibody (1:100, Jackson ImmunoResearch Lab).

Confocal Imaging
Immunostained glands were imaged using a laser scanning

confocal microscope (Zeiss 510 Meta) at 206 (Plan APO/0.75

NA) using identical settings for all samples. Multiple images

overlapping each other by approximately 10% were acquired at

the center of each explant (Z-dimension) such that the entire

explant was imaged.

Image Registration
To image complete biological specimens with relatively high

resolution, images having overlapping regions were captured and

computationally stitched together. For stitching, the same

approach described as in [38] was followed. A correlation matrix

Q(F (A),F(B)) of the phases of the Fourier transforms of the

images was calculated. The peaks of the inverse Fourier transform

of the phase correlation matrix, F{1(Q), give highly correlated

regions of the images. In cases in which there was more than one

highly correlated region in the image, the correct shift was found

by cross-correlation on the overlapping areas of the input images.

After finding the correct shift, a non-linear blending image fusion

technique was also performed to compensate for intensity non-

uniformity in the source images.

Image Segmentation
Prior to image segmentation, stitched images were examined

manually, to exclude whole or partial sublingual glands that were

included in the image by manually drawing a line in the

mesenchyme to separate the two organs Figure S2. The

submandibular gland image was kept and the 20 most represen-

tative images containing non-damaged submandibular glands

were included in the subsequent analysis.

A coarse initial segmentation of the epithelium was performed

using the Otsu thresholding algorithm [39]. The result of this step

was then used for the initialization of the active contours without

edges technique [40]. In the active contours approach, the image

f0 is assumed to be formed by two regions of approximately

piecewise-constant intensities f0
o, f0

i corresponding to inside and

outside of a curve C in V, where v denotes the region inside the

curve C, and V\�vv denotes the region outside the curve C. Using

the area and the length of this curve as regularization terms, the

Chan and Vese approach introduces the following energy

functional

F(c1,c2,C)~mLength(C)znArea(v)z

l1

ð
v

f0(x,y)� c1j j2dxdyzl2

ð
V\v

f0(x,y)� c2j j2dxdy

and solves the problem of minimizing it over the curves C and the

average intensity values c1,c2 inside and outside the curves, where

m§0,n§0,l1,2§0 are fixed parameters used for weighting the

length, the area, the average intensity inside the curve, and the

average intensity outside the curve respectively. We set these

parameters equal to m~0,n~0,l1,2~3.
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The Otsu algorithm, followed by morphological watershed

technique was used to segment the nuclei [22],[39]. The Otsu

thresholding algorithm assumes that there are two classes of pixels

in the observed image and finds a threshold value that will

automatically separate the foreground pixels (defined as epitheli-

um by the presence of E-cadherin signal) from the background

(defined as lacking E-cadherin signal). The algorithm searches for

the threshold value that minimizes the intra-class variance. After

finding this optimal threshold, the intensity values of each pixel

were compared against the threshold and the pixels with intensity

values higher than the threshold were assigned as foreground

pixels. Using the mask obtained, the nuclei were marked as

epithelial nuclei or mesenchymal nuclei depending on whether

they resided in the mask or not.

Conventional Image Analysis
For biological validation, MetaMorph Advanced (Version

7.7.0.0) (Molecular Devices Inc.) was used to measure diameter,

area, and perimeter of the explants using calibrated confocal

images imported into the program as tiff files. An outline of the

gland was manually drawn and thresholding was performed to

include the highest number of pixels in that region. The region

statistics tool was used to calculate area, perimeter, and the

diameter of the images. Circularity was calculated based on the

formula:

Circularity~
Perimeter2

4pArea
:

Cell-Graphs
The colored cell-graph construction algorithm [13],[16] was used

to model the structure of the salivary gland tissues. In colored cell-

graphs, a relationship between two vertices is hypothesized when

those vertices are touching or if they are close to each other and they

are of same tissue type. Biologically, an edge between two vertices

might mean that these cells are touching to each other and are

connected by cell-cell adhesions. In salivary gland modeling, two

different cell-graphs, one representing epithelial and the other

representing mesenchymal tissues, are built capturing the spatial

organization of cells in the two tissue comparments. We find the

center of mass for each nucleus and store the x-y coordinates.

We hypothesize a communication by setting a link between

two vertices if the Euclidean distance between them, d(u,v)~ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(ux{vx)2z(uy{vy)2

q
, is less than a threshold that ensures a

physical contact between the corresponding cell membranes.

The choice of distance threshold was determined by using a

cross-validation technique whenever possible. In K-fold cross

validation, the dataset is divided into K folds, and of these K folds,

K-1 are used to train the system using the specific threshold. The

accuracy is then calculated by testing the learning system on the

remaining fold. Free parameters such as distance threshold can be

accurately found and set using K-fold cross validation. The cell-

graph representation of the tissue was also visually compared to

the original confocal images to confirm that the resulting cell

graph was reflective of the images in our analysis.

Feature Extraction
In our previous work, we primarily focused on the global

structural modeling of the tissues and therefore did not include

shape-based or local-structural features [11–16]. Here, in this

study, to capture changes that take place at different scales of the

salivary gland we also calculated shape metrics and extracted

features representing local properties. As a result, our feature set

consists of four different types of features namely global-structural,

local-structural, morphological/shape-based, and spectral features.

Global Structural Features. A variety of features were

calculated from the spatial distribution of the cells (Table 1). The

simplest features are those defined by counting the number of cells

and the number of communication links between the cells. The

average number of communication links gives the average degree

metric. Giant connected component, number of connected

components, and percentage of isolated points features quantify

the connectedness and denseness of the tissue. Features that

quantify how far the vertices are apart from each other are also

calculated. The shortest path between two vertices is defined as the

minimum number of hops between them. Using this definition, the

eccentricity of a node u is given as the maximum shortest path

distance from node u to any of the vertices in the graph. After the

calculation of the eccentricities of each node, the diameter of the

graph is simply given by the maximum eccentricity. The minimum

eccentricity is defined as the radius feature, and the vertices that

have eccentricity equal to the radius are called central points. The

complete list of these features is given in Table 1 and a geometric

understanding of the features are provided in Figure 6.

Spectral Features. The spectral analysis of graphs [41]

focuses on the eigenvalues of the matrix representation of the

graphs and gives insight into structural organization of the tissue.

A biological explanation of each and every spectral metrics is not

always possible though some of them have direct explanations. For

instance, the number of zero valued eigenvalues in normalized

Laplacian matrix gives the number of connected components. We

included spectral features extracted from both the adjacency and

normalized Laplacian matrices. The normalized version of the

Laplacian matrix reads

L(G(i,j))~

1

{1=
ffiffiffiffiffiffiffiffi
didj

p
0

if i~j and di=0,

if i and j are adjacent,

otherwise:

8><
>:

The spectral decomposition of the normalized Laplacian

matrix,L~WLWT
, where L~diag(l1,l2 . . . l Vj j) is a diagonal

matrix having the eigenvalues of Las its elements and W is a matrix

having the eigenvectors of Las its columns. Since L is a symmetric,

positive semi-definite matrix, all the eigenvalues of the normalized

Laplacian matrix L lie between the values of 0 and 2.

For normalized Laplacian matrices, the number of zero

eigenvalues gives the number of connected components in the

graph. We included the number of zero eigenvalues, the number

of eigenvalues equal to one, and the number of eigenvalues equal

to two in our feature set. We sort and plot the eigenvalues of the

normalized Laplacian matrix in an increasing order and then fit a

line to this plot in a least squares manner. The slope of the line for

the eigenvalues that are between 0 and 1 is called the lower slope.

Likewise, the upper slope is defined as the slope of the eigenvalues

between 1 and 2.

The last two normalized Laplacian matrix features we include

in our feature set are the trace of the normalized Laplacian and

energy of the normalized Laplacian, defined as
P

i li and
P

i l2
i . A

summary of these features and their explanations are given in

Table 2.

Local Features: We extracted specific features to analyze the

local behavior of the collected tissues (Table 3). We extracted 21

features for every node in the cell-graphs. Some simple features

include the degree of a node, given by the number of nodes that it
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is connected to. We calculated features capturing pairwise hop

distances, such as the eccentricity value, given as the maximum

value of the shortest path values from the node. Clustering and

connectedness features of a node such as the clustering coefficient,

calculated as the ratio of the links of the node’s neighbors have in

common to the total number that can possibly exist, are also

included in this analysis. We also included features capturing the

physical distances of the neighborhood of a node. The mean of the

physical distances of a node’s neighbor is called the mean edge

length and the mean of the physical distances between a node and

the nodes that are at k times the link threshold distance from that is

assigned as the mean physical distance of k-nearest neighborhood.

In our local representation of the tissue, we have an Nx21

matrix where the rows are the vertices of the graphs and the

columns are the features for each node. There are three types of

node clusters in epithelial tissues, namely border cells, bud cells,

and duct cells. Therefore, we could cluster and represent our local

features matrix with a 3621 matrix, giving a total of 63 elements.

That is, each of our tissues can be represented by 63 features to

perform local analysis. We call the rows of this reduced matrix,

cluster 1, cluster 2, and cluster 3. The rows can also be thought of

as the representative vertices. As before, the columns of this matrix

refer to the features.
Morphological Features. Shape-based features, given in

Table 4, of epithelial tissues and mesenchymal tissues were

calculated. The simplest of these shape-based metrics are the area,

A, and the perimeter, P, of the tissue. The major and the minor

axis upon which the tissue lies were calculated, and the ratio of the

length in each direction was calculated to give the tissue

elongation. For circular tissues, the elongation should be close to

1 whereas for a tissue that looks like an ellipse, the elongation is

greater than 1. A commonly used shape-based feature is the

solidity of the region. To calculate the solidity of a region, the

convex hull of the region is found and the ratio of the tissue area to

the convex hull area is calculated. This feature gives how convex

the region is, and therefore is also referred to as the convexity.

Another commonly used feature is the circularity of the region.

Circularity is simply calculated by
P2

4pA
. A full list of the shape-

based features is provided in Table 4.

Feature Correlation
A simple measure to calculate the dependencies between

features f1 and f2is the Pearson correlation coefficient. The

Pearson correlation coefficient measures how features correlate

with respect to each other and takes values between 21,

representing a perfect negative linear dependency and +1,

representing a perfect positive linear dependency. When two

features vary independently of each other, Pearson correlation

coefficient takes the value 0. The Pearson correlation coefficient is

computed according to the formula rf1,f2
~

cov(f1,f2)

sf1
sf2

where cov is

the covariance of the features f1and f2, and sf1
and sf2

are the

standard deviations of f1 and f2.

Multiway Modeling
We extracted 101 features for 4 different tissue types, namely

control epithelial, control mesenchymal, inhibitor-treated epithelial

and inhibitor-treated mesenchymal. This dataset is organized into a

third order tensor of I|J|K dimensions. An entry A(i, j,k) in the

cube is the value of feature j, for sample i, of the tissue type k where

i~1, . . . ,20; j~1, . . . ,101; and k~1, . . . ,4. We used one of the

most common multiway analysis techniques (the Tucker3 model)

[23]. A 3-way tensor T [ <I|J|K , where < denotes the set of real

numbers, using a Tucker3 model was modeled as in equation

Tijk~
PP

p~1

PQ
q~1

PR
r~1

GpqrAipBjqCkrzEijkwhereP,Q and R indicate

the number of components extracted from the first, second and third

mode (PƒI ,QƒJ,RƒK ), respectively, and A [ <I|P,B [ <J|Q

and C [ <K|R are the component matrices. G [ <P|Q|R is the

core tensor and E [ <I|J|K represents the error term.

Model fitting was calculated for normalized (zero mean, unit

deviation) data with the core tensor of dimensions 12|15|3
yielding an accuracy of fitting as 85.167% using Tucker3

decomposition. The analysis focused on the feature mode to

identify a subset of the cell-graph metrics that are more influential

than the others to explain the 3-way data. We have used the

Hotelling’s T2 statistics built in the MATLAB PLS Toolbox 4.0

and MATLAB Tensor Toolbox implemented by Brett W. Bader

and Tamara G. Kolda at SANDIA [42].

Feature Selection
Feature selection can be defined as the problem of reducing the

dimensionality of the data to remove the irrelevant data and to

increase the learning accuracy. Several feature selection algo-

rithms have been proposed, and a detailed survey is given in [43].

We used the Weka software [44] to test various feature selection

algorithms.

Symmetrical Uncertainty Attribute Evaluation. In the

Symmetrical Uncertainty Attribute Evaluation method [25], a

feature is considered ‘‘good’’ if it correlates well with the class label

but does not correlate with any other ‘‘good’’ features. There are

two ways to measure correlation between two random variables:

classical linear correlation (which we provide in Figure S3) and

information theoretic entropy-based correlation. The proposed

method, Symmetrical Uncertainty, uses information theory to

design a correlation based feature selection algorithm. The authors

used the concept of symmetrical uncertainty to devise their

algorithm. Symmetrical uncertainty between two random

variables is given bySymmU(Class,Attr)~
2IG(ClassjAttr)

H(Class)zH(Attr)
.

Here H(X) is the entropy of the random variable X, H(XjY) is the

entropy of X given the random variable Y and IG(XjY) is the

information gain that measures the change in the entropy of X

given the random variable Y computed respectively as

H(X)~-
X

i

P(xi)log2(P(xi))

H(XjY)~-
X

j

P(yj)
X

i

P(xijyj)log2(P(xijyj))

IG(XjY)~H(X)-H(XjY):

Using these definitions, the algorithm is given as follows. First,

features with high SU values are found and ranked according to

their SU values. Then, these features are further investigated in the

order of their SU values, and the redundant features (features that

are correlated with others that have higher SU values) are

discarded.

Consistency Subset Evaluation Method. The authors

introduced a probabilistic approach to feature selection in [26]

by using a Las Vegas Algorithm. In every round a random subset,

S, from M features is generated. If this new subset of features has

cardinality less than the current best feature set and the

inconsistency value of this subset is lower than a predefined

threshold, this new set becomes the current best subset.

The success of the algorithm depends on the definition of the

inconsistency criterion. This criterion has two parts to it. First, if

two instances match except for their class labels, they are
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considered to be inconsistent. Second, the inconsistency count is

defined as the number of matching instances minus the largest

number of instances of class labels [26].
F-score Feature Selection. The authors introduce a feature

selection method based on the Fisher’s criterion [45] in [27]. This

method assigns each feature the associated Fisher score and ranks

them in descending order. F-score gives discriminative capability

of each feature, i.e. when feature f is more discriminative, the

associated F-score Fd is larger. For a dataset X with two class

labels, denote the instances in class 1 with X 1 and instances in class

2 with X 2. The Fisher score of the ith feature is then given by

F (i)~
(�xxi

1{�xxi)
2z(�xx2

i {�xxi)
2

1

n1{1

Xn1

j~1

(x1
j,i{�xxi

1)2z
1

n2{1

Xn2

j~1

(x2
j,i{�xxi

2)2

,

where �xxi is the average of feature i in the whole data set and �xxi
1,

�xxi
2 are the averages of the ith feature, for instances with class 1 and

class 2 labels respectively. x1
j,i,x

2
j,i are the ith feature of the jth

instance for class 1 and class 2, respectively, and n1 and n2 are the

number of instances for each class.
Correlation-Based Feature Subset Selection. A

correlation-based feature selection algorithm that ranks feature

subsets according to a correlation-based heuristic is introduced in

[28]. Using this heuristic, subsets containing features that are

highly correlated with the class label and uncorrelated with each

other are chosen. The goodness,MS , of a given subsetS is

measured as

MS~
krcf

kzk(k{1)rff

,

where k is the number of features, rcf is the mean feature-class

correlation and rff is the feature-feature inter-correlation.

Relief Attribute Evaluation Feature Selection. Relief

attribute evaluation repeatedly samples an instance and

considers the value of the given attribute for the nearest instance

of the same and different class [24]. The algorithm sorts the

features according to their weights calculated as shown in the

following algorithm;

set all weights W[A]: = 0.0

for i: = 1 to m do

randomly select an instance R;

find nearest hit H and nearest miss M;

for A: = 1 to all attributes do

W[A]: = W[�AA]-diff(A,R,H)/m+diff(A,R,M)/m.

Here, diff (Attribute, Instance1, Instance2) measures the

difference between the values of the specific attribute for two

instances and H and R are the nearest instance of the same and

different class.

Supporting Information

Figure S1 The outer layer of epithelial cells is disorga-
nized in the presence of ROCK inhibitor. Confocal images

were captured of SMGs treated with (a) control media or (b)

ROCK inhibitor and immunostained with E-cadherin (red) to

label epithelium and Sybr Green (green) to label nuclei. The

control SMGs show an outer layer of epithelial cells that is highly

ordered (as marked with a dotted line below this cell layer) whereas

the ROCK inhibitor-treated SMGs do not have this highly

ordered cell arrangement (arrows). Scale,50 mM.

(TIF)

Figure S2 Sublingual and submandibular glands are
depicted. In our analysis, we manually discarded the
sublingual regions of the samples, depicted with the
dashed region in the figure, and only used the sub-
mandibilar glands.

(TIF)

Figure S3 Feature correlations for different tissue types
are shown. Cell-graph feature correlations were clustered into

four groups using the k-means clustering algorithm. Features that

are highly correlated are grouped together. In (a) control epithelial

tissues, (b) ROCK-inhibitor-treated epithelium, (c) control mes-

enchymal tissue, and (d) ROCK inhibitor treated mesenchymal

tissue correlation clusters are depicted.

(TIF)

Figure S4 Statistically significant pair-wise correla-
tions. Absolute values of the significant correlations for control

epithelial tissues are shown in (a), ROCK inhibitor-treated

epithelial tissues are shown in (b), control mesenchymal tissue in

(c) and ROCK inhibitor-treated mesenchymal tissue in (d).

Features are shown in numerical order.

(TIF)
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