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Systemic sclerosis (SSc) is rare, severe connective tissue disease characterized by
endothelial and vascular damage, immune activation, and resulting in inflammation and
fibrosis of skin and internal organs, including the heart. SSc is associated with high
morbidity and mortality. Cardiac involvement is frequent in SSc patients, even though
often asymptomatic at early stages, and represents one of the major causes of SSc-
related mortality. Heart involvement has a variable clinical presentation, and its
pathogenesis is not completely understood. Myocardial fibrosis is traditionally
considered the immunopathologic hallmark of heart involvement in SSc. This unique
histological feature is paralleled by distinctive clinical and prognostic features. The so-
called “vascular hypothesis” represents the most credited hypothesis to explain
myocardial fibrosis. More recently, the prominent role of an inflammatory myocardial
process has been identified as a cardinal event in the evolution to fibrosis, thus also
delineating an “inflammation-driven pathway to fibrosis”. The pro-inflammatory cytokine
interleukin (IL)-1 has an apical and cardinal role in the myocardial inflammatory cascade
and in cardiac dysfunction. The primary aim of this perspective article is: to present the
emerging evidence on the role of IL-1 and inflammasome in both SSc and heart
inflammation, to review the complex interplay between cellular metabolism and
inflammasome activation, and to discuss the rationale for targeted inhibition of IL-1 for
the treatment of SSc-heart involvement, providing preliminary experimental and clinical
data to support this hypothesis.
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INTRODUCTION

Heart involvement is frequent and is a major cause of mortality in systemic sclerosis (SSc), being
responsible for up to 30% of disease-related deaths (1–3). Heart involvement has a variable clinical
presentation: at early stages most patients are asymptomatic, but some go on to develop
arrhythmias, dyspnea, chest pain, and heart failure (HF) (1, 4–9). In comparison to other
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inflammatory myocardial disease, myocardial fibrosis is usually
considered the immunopathologic hallmark of SSc heart disease.
This unique histological feature is paralleled by distinctive
clinical and prognostic features (10, 11).

The most credited hypothesis to explain myocardial fibrosis is
the one attributed to “vascular” (12): intermittent vascular
spasm, ischemic necrosis, and reperfusion injury are
considered pivotal mechanisms in fibrogenesis. More recently,
the prominent role of an inflammatory myocardial process,
clinically identified as a myocarditis, has been also identified as
a crucial event in the evolution to fibrosis, thus also delineating
an “inflammation-driven pathway to fibrosis” (1, 4, 13–18). In
this “bimodal” ischemic-inflammatory pathogenic model,
reperfusion products and pro-inflammatory cytokines may
jointly orchestrate SSc-related heart involvement (SSc-HI).
Therefore, the fact that only the inflammatory pathway to
fibrosis is similar to other inflammatory cardiomyopathies
(HF, dilated cardiomyopathy [DCM], virus-negative
myocarditis) makes myocardial involvement in SSc a really
peculiar and complex multifaceted event (19–24).

The pro-inflammatory cytokine interleukin (IL)-1 has an
apical and cardinal role in the myocardial inflammatory
cascade and in cardiac dysfunction (24). In this article, we
provide an expert perspective on the emerging evidence on the
role of IL-1 in both SSc and heart inflammation, and discuss the
rationale for targeted inhibition of this cytokine for the treatment
of SSc-HI.
IL-1 FAMILY AND IL-1 BIOLOGY

The IL-1 cytokines family includes seven members with agonistic
activity (IL-1a, IL-1b, IL-18, IL-33, IL-36a, IL-36b, and IL-36g)
and four members with antagonistic functions (IL-1Ra, IL-36Ra,
IL-37, and IL-38) (25–28).

IL-1 is an archetypal pro-inflammatory cytokine. The
term IL-1 hints at two different molecules, IL-1a and IL-1b,
which share a significant sequence homology and bind the
same IL-1 type-I receptor (IL-1RI), which then transduces
pro-inflammatory signals and leads to the synthesis and
expression of myriad secondary inflammatory mediators (29).
IL-1a is constitutively present in epithelial cells as a fully active
pro-inflammatory mediator, and is released upon cell death
thus acting as an “alarmin”. Alarmins are a group of
intracellular mediators, of which High Mobility Group Box 1
(HMGB1) likely represent the best characterized member,
signaling tissue damage and activating inflammatory
patrolling when found in the extracellular space. In
scleroderma, mechanisms leading to alarmin release include
ischemic cell death or inflammation-mediated tissue damage
(30). Conversely, IL-1b is primarily produced by myeloid cells
as an inactive precursor. Production of the mature pro-
inflammatory cytokine follows activating cleavage of the
precursor by an intracellular molecular complexes termed
“inflammasomes” (31). To dampen excessive inflammation, the
same cells that produce IL-1a or IL-1b also synthesize diverse
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regulatory molecules, including the IL-1 receptor antagonist (IL-
1Ra). IL-1 signaling and IL-1-mediated inflammation are
prevented by competitive binding of IL-1Ra to IL-1RI (30–33),
thus curbing IL-1-mediated inflammation.
IL-1 AND THE INFLAMMASOME IN SSC

Expression or biologic activity of most IL-1 family cytokines can
be abnormal in many autoimmune diseases, including SSc (34).
IL-1a regulates differentiation offibroblast into myofibroblast, as
well as myofibroblast longevity, which are considered central
events in SSc (34). Indeed, dermal fibroblasts from SSc patients
cultured ex vivo express higher levels of intracellular IL-1a than
healthy counterparts (35). Immunohistochemical studies
indicated that intracellular IL-1a is also markedly expressed in
fibroblasts isolated from skin lesions of SSc patients; in addition,
endogenous IL-1a induces fibroblast proliferation and
production of collagen by inducing IL-6 and platelet-derived
growth factor (PDGF) (36). Consistently, the production of IL-6,
suppression of IL-1a through IL-1a siRNA results in decreased
PDGF and procollagen production in SSc-affected fibroblasts
(37), whereas overexpression of IL-1a through transfection in
healthy fibroblasts promotes differentiation into a SSc-related
phenotype (34). In SSc fibroblasts, the NLRP3 inflammasome is
over-expressed and caspase-1 activity is up-regulated with
consequent increased production of IL-1b and IL-18, whereas
inhibition caspase-1 and inflammasome activity abrogated the
myofibroblast phenotype in SSc dermal and lung fibroblasts (38–
40). A separate study revealed that SSc fibroblasts exhibit
increased synthesis of micro-RNA (miR)-155, which can also
be induced by IL-1b (22). To date, miR-155 was implicated in
various biological processes, including inflammation, immunity,
and fibrosis (41). MiR-155, moreover, has been involved in
cardiac remodeling, and miR155 deletion or inhibition reduced
inflammatory and fibrotic responses in animal models of cardiac
fibrosis induced by angiotensin-II (Ang-II) or diabetes (42, 43).
In addition, miR-155 is required for the synthesis of collagen
induced by activation of the inflammasome. Indeed, inhibition of
caspase-1 activity abrogated miR-155 expression and
significantly dampened collagen synthesis in a bleomycin-
induced SSc mouse model (22).

In SSc patients, high levels of IL-1bcan be observed both in
the bronchoalveolar lavage fluid (BAL) and in the serum (44). In
the affected skin of SSc patients, IL-1b and IL-18 were
significantly over-expressed, a finding correlating with the area
of skin fibrosis assessed by the modified Rodnan skin score
(mRSS) (38). This finding is not surprising, since IL-1b also
induces myofibroblast activation, endothelial to mesenchymal
transition, and fibrosis through IL-6 and TGF-1b (45).

IL-1a is an intracellular cytokine which is rarely if ever
detectable in the circulation, including in SSc patients (35).
Similarly, even though associations between genes encoding
IL-1 family cytokines and SSc susceptibility were revealed by
genome-wide association studies, the results are not conclusive
(46–51).
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INFLAMMASOME, IL-1, AND
METABOLISM

Recent studies have identified a strong interplay between
cellular metabolism and inflammasome activation (52).
Specifically, NLRP3 inflammasome is regulated by cellular
metabolism, and growing evidences suggest that cellular
metabolism is a crucial driver for macrophage polarization
and inflammation, as well as myofibroblast differentiation
and fibrosis (53, 54).

There are several molecular pathways involved in the
metabolic regulation of the inflammasome: glycolysis,
tricarboxylil acid (TCA) cycle, amino-acid metabolism, and
fatty acid metabolism, and and most of them have been found
to be dysregulated in SSc, providing a potential mechanism
involved in inflammasome activation, and thus IL-1b release
(52) (Figure 1).

Enhanced glycolisis is a hallmark of activated macrophages
(53–57). Recents studies of SSc patients undergoing positron
emission tomography using the glucose analogue tracer
18
fluorodeoxyglucose revealed both increased glucose uptake

(58). Glycolysis is critical in fibroblast differentiation and has
been associated with the development of pulmonary fibrosis in
bleomycin-induced experimental models (52). A recent study
indicated that TGF‐b1, a key cytokine in scleroderma, up‐
regulates glycolysis in dermal fibroblasts derived from SSc
Frontiers in Immunology | www.frontiersin.org 3
patients, and inhibition of glycolysis attenuates its pro‐fibrotic
effects (59).

Glutaminolysis through the TCA cycle and its intermediate
metabolites was also evaluated in fibrotic conditions. TCA
intermediate succinate binds the G-protein-coupled receptor-91
(GPR91) and increases GPR91, type-I collagen, a-SMA, and TGF-
b levels. Levels of succinate are up-regulated in lung myofibroblasts
of patients with idiopathic pulmonary fibrosis, where they induce
TGF-b1, hypoxia-inducible factor-1alpha (HIF-1a), and fibroblast
differentiation (58). Of note, succinate levels stabilize HIF-1a and
promote IL-1b expression (53); this process is inhibited by
itaconate, an anti-inflammatory metabolite required for the
activation of the anti-inflammatory transcription factor Nrf2 by
lipopolysaccharide in mouse and human macrophages, thus
enabling Nrf2 to increase the expression of downstream anti-
oxidant genes as NAD(P)H Quinone Dehydrogenase 1 (60, 61).
Interestingly though, the Nrf2 pathway is highly down-regulated in
human and SSc mice with detrimental consequences on
inflammation and fibrosis. The nrf2−/− mice, indeed, develop a
more severe SSc with enhanced fibrosis and inflammation
compared to wild-type mice (62).

Results from the aformentioned study about the role
of metabolic reprogramming in SSc pathogenesis (59),
demonstrated that TGF‐b1 is able to enhance succinate
production, which determines an increase of collagen
expression, thus providing a link between the pro-fibrotic milieu
FIGURE 1 | Inflammasome and metabolism in systemic sclerosis. Molecular pathways involved in the metabolic regulation of the NLRP3 inflammasome in SSc: TCA
cycle, fatty acid imbalance, and amino-acid metabolism. In SSc, a complex biological loop in which the TGF-b1 rich microenvironment, the upregulated glutamine
metabolism, and the fatty acid dysregulation, could lead to both inflammasome activation with IL-1b release and myofibroblasts differentiation, thus foraging the
inflammation-driven fibrosis. Succinate is formed in the TCA cycle; its levels increase the TGF-b1-induced HIF-1a expression, promoting fibroblast differentiation.
High levels of succinate can support IL-1b expression by stabilizing HIF-1a for IL-1b transcript expression to occur. This process is inhibited by itaconate. TGF‐b1
itself is able to enhance succinate production, thus foraging this biological loop. SSc fibroblasts have an increased glutaminase expression, and an altered glutamine
metabolism is an ubiquitous trait in SSc. The glutammate-glutamine pathway activates the NLPR3 inflammasome. Fatty acid metabolism has been implicated in the
regulation of NLRP3 inflammasome: metabolic imbalance itself act as a cue to activate an inflammatory response, though the production of mitochondrial reactive
oxygen species (mtROS), which directly activate the NLRP3 inflammasome. PUFAs, particularly w-3 PUFA, regulate NLRP3 inflammasome activation, acting as
potent inhibitors of both caspase-1 activation and IL-1b release. Fatty acid metabolism is dysregulated in SSc, and intradermal adipose tissue is atrophied and
replaced by collagen-rich fibrous tissue in SSc. SSc, systemic sclerosis; TGF-b1, transforming-growth factor beta-1; HIF-1a, hypoxia-inducible factor-1alpha; TCA,
tricarboxylil acid; IL-1b, interleukin-1 beta; PUFAs, long-chain polyunsaturated fatty acids.
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of the disease and the metabolic activation of the inflammasome.
Consistently, SSc fibroblasts incubated with itaconate exhibited
reduced expression of collagen (59).

The same study showed that inhibition of glutamine
metabolism, another pivotal metabolic pathway fuelling cellular
growth, inflammation, and myofibroblast differentiation,
antagonises TGF‐b1-induced glycolysis and fibrosis in normal
human dermal fibroblasts. Furthermore, SSc fibroblasts showed
an increase in glutaminase expression, suggesting that an altered
glutamine metabolism may be a hallmark metabolic feature in
SSc (59). Also of note, the same glutammate-glutamine pathway
has been shown to activate the NLPR3 inflammasome (63).

Finally, fatty acid metabolism might also be implicated in the
regulation of NLRP3 inflammasome. However, current evidence
is conflicting and synthesis and degradation of fatty acids were
linked to inflammasome activation in different studies, perhaps
indicating that imbalance itself may activate an inflammatory
response. It is also possible that these metabolic pathways
activate a common intermediate mediator able to directly
activate the NLRP3 inflammasome, the main candidate being
mitochondrial reactive oxygen species (mtROS) (53). The w-3
PUFA, docosahexaenoic acid (DHA), inhibits the activation of
caspase-1, thus lowering the production of active IL-1b (64, 65).
Apart from DHA, other w-3 PUFAs, such as eicosapentaenoic
acid and a-linolenic acid, can inhibit the activation of the
inflammasome (64, 65).

The notion the fatty acid metabolism is dysregulated in SSc
dates back to the 1970s, by studies showing that intradermal
adipose tissue is progressively replaced by fibrotic tissue in SSc
(52, 66).

Taken together, these findings support the existence of a
complex biologic loop in SSc, in which the TGF-b1 rich
microenvironment, the up-regulated glutamine metabolism,
the ehnahced glycolysis, and the fatty acid dysregulation, could
all contribute to both inflammasome activation with IL-1b
release and myofibroblasts differentiation, thus possibly
foraging the occurrence of inflammation-driven fibrosis.
IL-1 AND HEART INFLAMMATION

Recent clinical and experimental data support the relevance of
IL-1 in heart inflammation and cardiac dysfunction in several
heart diseases. The heart exhibits a highly conserved response to
tissue damage, characterized by a stereotyped inflammatory
reaction that is centrally mediated by the pro-inflammatory
cytokine IL-1 (24). Specifically, IL-1a is released from the
dying myocardial cells together with and other intracellular
contents, which act as mediators activating the inflammasomes
in bystander cells (29, 32, 33, 67–69). IL-1-mediated
inflammation ensues; if protracted, this leads to the apoptosis
of cardiomyocytes and to the loss of contractile tissue
progressively replaced by fibrosis, clinically manifested with
cardiomyopathy, HF, and arrhythmic outburst (24).

Previous studies evaluating endomyocardial biopsy (EMB)
samples from patients with acute lymphocytic myocarditis
Frontiers in Immunology | www.frontiersin.org 4
indicated that intracellular aggregates of either Apoptosis-
associated speck-like protein containing CARD (ASC) or
caspase-1, both indicative of inflammasome activation, can
cardiomyocytes and infiltrating immune cells. Notably, the
number of inflammasome-containing leukocytes correlated
with the clinical severity of HF (67).

Moreover, IL-1 causes impaired contractile function by
inducing multiple downstream events, including uncoupling of
the b-adrenergic receptor from the adenylyl cyclase, inhibition of
L-type calcium channels (24, 28, 67–74), transcriptional and post-
translational changes in phospholamban and sarcoplasmic/
endoplasmic reticulum calcium ATPase (24, 75), mytochondrial
dysfunction, and nitric oxide (NO) synthesis (24, 76–78). Animal
studies also confirm a role of IL-1-mediated inflammation in HF:
injection of plasma from HF patients induced contractile
dysfunction in mice, suggesting the existence of cardiodepressant
factors in the circulation (79–82). Notably, administration of IL-1b
to mice had similar effects, whereas pre-administration of IL-1
inhibitors prevented contractile dysfunction induced by HF serum:
collectively considered, these findings indicate that
cardiodepressant effects are centrally mediated by IL-1 (75–77),
as also in sepsis (82).

Robust evidence also indicates that IL-1 signaling is central to
the development of inflammation in both viral and autoimmune
acute myocarditis (AMy). Mouse models of coxsackievirus-
induced myocarditis exhibit heart infiltration with myeloid
cells secreting IL-1 and TNF-a (83). Increased IL-1b
expression is also a feature of chronic heart inflammation in
experimental models of post-myocarditis DCM, induced by
infection with encephalomyocarditis virus (84). Mice lacking
IL-1RI did not develop AMy (85), and administration or over-
expression of IL-1Ra reduced disease severity in experimental
models of cardiomyopathy (86–89). These pre-clinical findings
were paralleled by clinical observations in humans: EMBs from
patients with viral myocarditis (85) and idiopathic DCM (86)
revealed increased IL-1b mRNA levels.
HEART INFLAMMATION
DOWNSTREAM IL-1

Once induced, inflammation escalates into a redundant process:
hence, other pro-inflammatory cytokines may also play a key role
in heart inflammation and inflammation-driven fibrosis. The IL-1
biological activity sustains an inflammatory process which
involves IL-1 itself as well as downstream mediators. IL-6 is
induced by IL-1, and acts as a downstream mediator of several
inflammatory effects (Figure 2). It is thereby not surprising that
IL-6 concentrations are elevated in the serum and myocardium of
patients with HF and myocarditis, while also being predictive
of adverse outcomes (90). In myocarditis, the primary sources of
IL-6 are likely cardiomyocytes and cardiac fibroblasts (91, 92).
Overexpression of IL-6 in experimental animals subjected to viral
myocarditis results in extensivemyocardial inflammation, whereas
IL-6 inhibition with tocilizumab reduced heart inflammation and
infiltration with CD3+T-cells and CD68+ macrophages (20).
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Recently, tocilizumab was used to effectively treat SSc-related
myocarditis, and improvement of myocardial inflammation was
revealed as a reduction in myocardial edema at cardiac magnetic
resonance (CMR), and by the improvement of cardiac function,
clinical status and cardiac enzymes (20). Moreover, IL-6 plays a
major role in heart fibrosis induced by Ang-II, through TGF-b/
Smad activation. Consistently, IL-6 deficiency reduces cardiac
inflammation, as well as contractile dysfunction and interstitial
fibrosis, without affecting blood pressure in Ang-II-high salt-
induced hypertension in IL-6 knockout (IL-6−/−) mice (21).
Furthermore, deletion of IL-6 alleviates interstitial fibrosis also in
experimental diabetic cardiomyopathy in IL-6−/−mice (81). The
deletion or inhibition of miR155 yielded the same protective
effects (42, 43), and recent studies revealed that the soluble IL-6
receptor (IL6R) is a target of miR155 (93). In summary, these
studies delineate a miR-155/IL-1/IL-6 loop sustaining
inflammation-driven fibrosis: overexpression of miR-155 in SSc
fibroblasts induces inflammasome-mediated release of IL-1b,
which in turn stimulates IL-6 production and collagen
synthesis during fibrosis.

Another important signaling axis which potentially
contributes to fibrosis and inflammation in SSc is the IL-1/IL-
17 axis. Many of inflammatory cytokines that are involved in the
SSc pathogenesis, (i.e., IL-1, IL-6, TGF-b), also promote Th17
differentiation. This strongly suggests their potential role in
skewing CD4+ T cells toward Th17 differentiation in SSc. A
recent in vivo study showed that IL-17 is involved in fibrosis and
inflammation in bleomycin (BLM)-induced SSc. The authors
Frontiers in Immunology | www.frontiersin.org 5
also used another murine model of SSc, chronic graft-versus-host
disease(cGVHD), to show that blocking IL-17 activity was able to
attenuate disease severity. IL-1 and IL-17 synergically induce the
expression of profibrotic and inflammatory mediators, both in
human and murine dermal fibroblasts. Subsequent animal
studies in vivo confirmed the antifibrotic and anti-
inflammatory potential of IL-1Ra (94). Hence, IL-17 inhibition,
either directly or by blocking IL-1, has therapeutic rationale for
tissue fibrosis in SSc. In post-myocarditis, the role of IL-17A
emerged either in myocardiac remodeling and the progression to
DCM, thus contributing to myocardial fibrosis following
experimental AMy by a protein-kinase-C(PKC)b/Erk1/2
Nuclear Factor (NF)-kB signaling (95, 96).
THERAPEUTIC APPLICABILITY OF IL-1
INHIBITION AND FUTURE PERSPECTIVES

Despite extensive experimental evidence pointing at a central
role for IL-1 in the pathogenesis of heart inflammation, systolic
dysfunction, and fibrosis, and despite a possible role of this
cytokine in SSc skin and lung inflammation, the use of available
IL-1 blocking agents in SSc was only anedoctally reported.

Rilonacept, a fusion protein consisting of the human IL-1
receptor (IL-1R1) and IL-1 receptor accessory protein (IL-
1RAcP) which binds and neutralizes both IL-1a and -b, was
evaluated in single phase I/II randomized, double-blind, placebo-
controlled trial on SSc patients. The primary endpoint was the
FIGURE 2 | Interleukin-1, myocardial inflammation, and heart fibrosis in systemic sclerosis. Heart inflammation results in myocardial injury. As a consequence, IL-1a
is released from dying myocardiocytes, together with intracellular debris and inflammatory mediators; these in turn activate a molecular complex known as the
“inflammasome” inside macrophages which processes and releases active IL-1b. Once induced, inflammation escalates into a redundant process: hence, other pro-
inflammatory cytokines, mainly IL-6, are produced and they perpetuate heart inflammation and inflammation-driven fibrosis. IL-1 and IL-6 also promote Th17
differentiation, and in post-myocarditis, the role of IL-17A emerged in myocardiac remodeling, thus contributing to both myocardial fibrosis and progression to dilated
cardiomyopathy. Finally, in SSc fibroblasts, the NLRP3 inflammasome is over-expressed with consequent increased production of IL-1b. IL-1 also stimulate SSc
fibroblasts and induce the synthesis of micro-RNA (miR)-155 which establishes an autocrine loop further increasing IL-1 signaling.
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level of skin expression of the 2G SSc gene biomarkers, which
functions as a proxy for the mRSS, while the secondary endpoint
was the change in mRSS. Nineteen patients were randomized 2:1
rilonacept 320 mg loading dose at day 0 and then 160 mg weekly
versus placebo. Skin biopsies were obtained before rilonacept
treatment initiation and at week 7. Both the primary and the
secondary endpoints were not met, as no changes in gene
expression or in the mRSS between treated and placebo
patients were observed after 6 weeks (97). However, this trial
had several limitations, including the small sample size and the
short duration of therapy, even more important in the context of
a chronic fibrotic disease. Moreover, no exploratory secondary
endpoints to evaluate SSc-HI were considered.

Data from animal models are scarce and conflicting.
Treatment with anakinra, a recombinant IL-1 receptor
antagonist, improved BLM-induced pulmonary fibrosis in mice
and of pulmonary silicosis in humans (98, 99), as well as
pulmonary function in patients with COVID-19 and systemic
hyperinflammation (100). However, anakinra aggravated
pulmonary fibrosis due to Th2 skewing in the fos-related
antigen-2 (Fra-2) mouse model of SSc, and was not associated
to changes in lung inflammation profile in wild type mice (101).
To date, the Fra-2 transgenic mice spontaneously develop
pulmonary inflammation. These findings on animal models
suggest that the net effect of IL-1 (or of its inhibition) is
context-dependent. For this reason, it is still premature to
transfer these limited data, obtained on animal models, into
clinical practice.

It is important to note that recent evidence supports IL-1
therapeutic blockade in HF and myocarditis. In fact, given the
role of IL-1 in both heart inflammation and contractile
dysfunction, and the potential role in mechanisms of
inflammation-driven heart fibrosis through different
pathways, IL-1 inhibition might fit in a proof of concept
rationale for an anti-inflammatory therapeutic strategy in SSc
myocarditis. In patients with myocardial inflammation and HF,
the short-term treatment regimen (14 days) with anakinra
improved exercise capability, as determined by oxygen
consumption (VO2) (79, 102). Prolonged administration (12
weeks) reduced hospitalizations and further improved VO2,
NTproBNP, and the quality of life in a randomized clinical trial
(RCT) (103). Similarly, treatment with the anti–IL-1b
monoclonal-antibody canakinumab significantly reduced
cardiovascular events in 10,061 patients with previous
myocardial infarction and C-reacrive protein >2 mg/L in the
CANTOS-trial (104). Recently, our group firstly described the
dramatic dampening of heart inflammation and an
unprecedented clinical improvement after IL-1 suppression
with anakinra in a patient with DCM. Improvement began
soon after anakinra administration with improvement of the
arrhythmic outburst, decrease of cardiac biomarkers, and
normalized echocardiography and CMR imaging—including
those that measured LVEF (105). Anakinra treatment was also
beneficial in patients with fulminant myocarditis (106–108).
Taken together, these observations suggest that IL-1 inhibition
could curb heart inflammation while also ameliorating
Frontiers in Immunology | www.frontiersin.org 6
myocardial contractility. Thus, IL-1 inhibition may dampen
disease progression and fibrotic damage in patients with
myocarditis and other inflammatory cardiomyopathies.

A significant bulk of data also demonstrates the efficacy of
IL-1 blockade in pericardial inflammation and recurrent
pericarditis (109–113), which usually requires steroids and
immunosuppressive treatment when clinically evident (1),
including a RCT of anakinra in 21 patients (96), and more
recently a positive trial with rilonacept (114). This is of great
importance since pericarditis is common in SSc: symptomatic
pericarditis occurs in 5–16% patients, whereas autopsy-
demonstrated pericardial involvement occurs in 33–72%
patients (1).

Beside the aforementioned RCTs in HF (79, 102, 103), double
blind, phase IIb, randomized, placebo-controlled clinical trials of
anakinra are ongoing to evaluate this treatment in acute
myocarditis [ARAMIS-trial, ClinicalTrials.gov: Identifier:
NCT03018834] and EMB-proven virus-negative myocarditis
[MYTH-1 trial; Eudract: 2018-003472-13]. The monoclonal
antibody canakinumab is also clinically available, which blocks
IL-1b111). More recently, oral NLRP3 inflammasome inhibitors
have been proposed to treat a wide spectrum of inflammatory
cardiovascular diseases, and RCTs are ongoing (115).

Results from these trials, together with the robust biologic
proof of concept, could potentially pave the way to the use of IL-1
therapeutic blockade to treat SSc-related inflammatory
heart involvement.
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