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Summary

Most human genes produce multiple splicing isoforms with distinct functions. To systematically 

understand splicing regulation, we conducted an unbiased screen and identified >100 intronic 

splicing enhancers (ISEs) that were clustered by sequence similarity into six groups. All ISEs 

functioned in another cell type and heterologous introns, and their distribution and conservation 

patterns in different pre-mRNA regions are similar to exonic splicing silencers. Consistently all 

ISEs inhibited use of splice sites from exonic locations. The putative trans-factors of each ISE 

group were identified and validated. Five distinct ISE motifs were recognized by hnRNP H and F 

whose C-terminal domains were sufficient to render context-dependent activities of ISEs. The 

sixth group was controlled by factors that either activate or suppress splicing. This work provided 

a comprehensive picture of general ISE activities and provided new models of how a single 

element can function oppositely depending on its locations and binding factors.
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Introduction

Most human genes produce multiple isoforms through alternative splicing, which is tightly 

controlled in different tissues and developmental stages 1-3. The splicing specificity is 

mainly determined by 5′ splice site (5′SS), 3′ splice site (3′SS) and branch point sequences, 

as well as by multiple cis-acting splicing regulatory elements (SRE) that are conveniently 

classified as exonic splicing enhancers (ESEs) or silencers (ESSs), and intronic splicing 

enhancers (ISEs) or silencers (ISSs). These SREs generally function by recruiting trans-
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factors to control splicing through diverse mechanisms 4-7. Activities of SREs are often 

location-dependent 6, however their underlying mechanisms are largely unclear. An 

important research goal is to study these SREs and their cognate factors on a global scale to 

derive a set of regulation rules for splicing (i.e. “splicing code”) 6,8.

Significant progress has been made to systematically identify exonic SREs (ESS and ESE) 

using experimental and computational approaches 9-17. These reports provided a global 

picture that ESEs are more enriched and conserved in exons to promote the exon 

definition 12,18-21, whereas the ESSs are more enriched in introns to suppress pseudoexons 

and help define alternative splice sites 19,22. In comparison, the intronic SREs are less well 

understood. Several computational approaches were developed to predict general intronic 

SREs in human based on intronic sequence conservation or distribution biases, most 

predicted elements resemble the RNA motifs recognized by tissue-specific splicing factors 

such as Fox1, Nova and nPTB 23-25.

Several ISEs were identified by analyzing sequences near alternative exons. For instance, 

the G-rich sequences containing at least one G-triplet were found to enhance splicing 

through recruiting hnRNP H and F to introns 26-29. When located in the downstream intron, 

the activity of G-runs is dependent on the strength of nearby 5′SS 30. There are also tissue 

specific ISEs, such as YCAY motifs (Y = C or U) that is recognized by the neuron-specific 

protein Nova to control many brain-specific splicing events 31 and the UGCAUG motif that 

is recognized by the brain- and muscle-specific factors Fox-1 and Fox-2 32,33.

To systematically study general ISEs, we developed a cell-based system to screen a random 

decamer library for sequences that promote splicing from an intronic location. We obtained 

109 unique ISE 10mers, whose core motifs were clustered into six groups. We observed a 

systematic overlap between ISEs and ESSs and established a general rule that all ISE motifs 

consistently inhibited splicing in exons. The putative trans-factors for each ISE motif were 

further identified and analyzed. Altogether these data provided comprehensive rules of how 

ISEs regulate different alternative splicing events, and suggested two models of how the 

same SRE can either promote or suppress splicing at different pre-mRNA locations.

Results

Identification of 109 ISEs that promote intron splicing

To unbiasedly identify ISEs, we developed a cell-based system called fluorescence-activated 

screen (FAS) that used a splicing reporter (pZW15C) with two exons and a weak intron 

(Fig. 1a and Supplementary Table 1). When spliced together, the exons formed an mRNA 

encoding the enhanced GFP. The intron is normally retained during splicing, and insertion 

of an ISE will promote splicing to generate a functional eGFP. We tested this reporter by 

inserting a G-rich ISE or a control sequence and transfecting them into 293T cells, and 

found that this ISE indeed promoted splicing to produce ~70% GFP-positive cells whereas 

the control reporter generated ~2% green cells (Fig. 1b). Using semi-quantitative RT-PCR, 

we confirmed that the green cells were indeed resulted from correct splicing (Fig. 1c).
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Since the cores of ISEs are thought to be relatively short, we inserted a 10-nt random pool of 

sequences at 23 nt into the intron, far enough to avoid interference with the 5′SS 

(Supplementary Fig. 1a). We transformed enough E. coli to obtain ~2×106 colonies that 

provided at least 2-fold coverage of all possible DNA decamers. The quality of this library 

was examined to ensure that we started with an unbiased library. The resulting library was 

transfected into cultured 293-FlpIn cells that contain a single site-specific recombination site 

for stable integration. Similar to our previous screen for ESSs 13, this system ensured high 

sensitivity and unbiased sequence recovery.

We carried out 208 transfections to obtain enough (>106) stable clones that gave roughly 

one fold coverage of the entire decamer library. In total 117 FAS-ISE decamers were 

identified through the screen, 109 of which were unique (Supplementary Table 2). We 

identified seven decamers twice and one decamers three times in independent transfections, 

suggesting that the screen is self-converged (Supplementary Table 2). Based on the 

sequence similarity, the resulting ISE decamers can be clustered using CLUSTALW, 

indicating that they contained common core motifs (Fig. 1d). Although the initial library was 

essentially random with ~25% of each base, the identified FAS-ISE decamers had higher 

contents of G (40%) and T (35%) compared to A (18%) and C (7%) (Supplementary Fig. 

1b). We also identified overrepresented (e.g, GG, TA) and underrepresented (e.g., GA, CG, 

GC) dinucleotides in these ISEs (Supplementary Fig. 1c). Such composition biases are 

similar to FAS-ESS but are different from RESCUE-ESE 11,13. Consistently, the ESS 

hexamers (FAS-hex2) 13 were overrepresented in the FAS-ISE decamers relative to random 

control sets (93 versus 35, P<10-4 based on random shuffles of ESS hexamers), whereas the 

RESCUE-ESE hexamers 11 were underrepresented compared to random hexamer sets (9 vs 

45, P<10-4 based on random shuffles).

To validate our results, we arbitrarily selected 17 ISE decamers (marked by asterisks in Fig. 

1d and Supplementary Table 2) to examine their activity in the original screen reporter. 

After transiently transfecting the 293T cells, all tested ISE decamers promoted splicing of 

the retained intron to generate 20-50% of green cells, whereas the control cells were 

essentially non-fluorescent (Supplementary Fig. 1d), suggesting our screen had a very low 

false positive rate.

Validate ISEs in a heterologous context and cell type

This screen was conducted using a constant intron from a particular gene, consequently 

certain ISEs identified may require sequence context specific to this intron for function. In 

addition, most alternative splicing events involve cassette exons and it was of interest to 

determine if these ISEs can function in other contexts. To directly address this, we generated 

a new splicing reporter (pZW2C) containing a cassette exon with its flanking introns, and 

inserted nine FAS-ISE sequences in the downstream intron (18 nt downstream of 5′SS). We 

found all the tested ISE decamers increased cassette exon inclusion in 293T cells as 

compared to the neutral sequence (Fig. 1e upper panel), suggesting that these ISEs generally 

function in a heterologous intron.

Most SREs are thought to function through recruiting specific trans-factors, whose 

expression levels or activities may vary in different cell types 5,6,34. Thus the splicing 
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pattern of the same gene can change in different tissues. We further determined whether the 

recovered FAS-ISEs are active in another cell type. By transfecting HeLa cells with pZW2C 

reporters containing the same set of ISEs, we found that all tested ISEs led to a marked 

increase of exon inclusion (Fig. 1e lower panel). These results suggest that the 

systematically identified FAS-ISEs have general enhancer activity in different introns and in 

another cell type.

Identification and validation of core ISE motifs

To extract the core motifs with intrinsic ISE activities, we identified hexamers that are 

statistically overrepresented in the recovered FAS-ISE decamers. Each decamer was 

extended by appending 2 nt of the vector sequence and subsequently broken into 

overlapping hexamers 13. The number of hexamers occurring at least three times in the 

extended ISE set was more than 4-fold higher than what expected from random decamer sets 

(P<10-4, based on 10,000 samplings of 109 random decamers). This hexamer set, named as 

ISE-hex3 (Supplementary Table 3), was highlighted by the AGGTAT and GGGTGG that 

occurred 15 and 14 times respectively. Furthermore, 93 out of the 109 ISE decamers were 

covered by at least one hexamer, suggesting the ISE-hex3 represented a common pattern in 

ISE decamers. Based on sequence similarity, these ISE hexamers were clustered and 

multiply aligned to identify candidate motifs 11,13. At a dissimilarity cutoff of 2.45, most 

hexamers fell into one of six main clusters (Fig. 2a, groups A to F). We identified the 

consensus motif of each group by aligning all hexamers of that group, and found that group 

D resembled known ISEs bound by hnRNP H while others appeared to be novel.

We next used three strategies to test the intrinsic ISE activity of these significantly 

overrepresented hexamers. First, we selected six hexamers resembling the consensus of each 

group (i.e. exemplars) and inserted them into pZW15C. The exemplars were selected to 

represent the most common pattern from the consensus motifs, except for group D where the 

second most common pattern was selected to avoid synthesizing a string of six G’s. For 

controls we used mutants of the exemplars and neutral sequences not resembling known 

SREs. Upon transfection into 293T cells, all exemplars promoted intron splicing, whereas 

the splicing was barely detectable for the controls (Fig. 2b). In the second experiment, we 

examined whether each ISE group could promote splicing of a cassette exon from a 

heterologous intron. To increase the sensitivity, we inserted two tandem copies of exemplars 

from each group (Supplementary Table 4) at downstream of a cassette exon, and found all 

ISEs substantially increased the exon inclusion (Fig. 2c). Finally, we tested whether the ISE 

hexamers can promote splicing from upstream of a 3′SS despite their original identification 

near 5′SS, and found that all the six ISE groups considerably increased exon inclusion from 

upstream introns (Fig. 2d). We also found that these exemplars functioned in another cell 

type (HeLa), consistent with the finding that FAS-ISEs were active in different cell types 

(Supplementary Fig. 2).

Distribution and conservation patterns of FAS-ISEs

The FAS-ISEs had a base composition remarkably similar to the FAS-ESSs identified from 

an independent screen 13. The core motifs of both ISEs and ESSs have high G/U content and 

low content of C (Fig. 3a), which is very different from the purine-rich RESCUE-ESEs 11 
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and the AU rich FAS-ISSs (Wang et. al, data not shown). We next examined the positional 

distribution of ISE-hex3 in human exons and associated introns (Fig. 3b). All ISE groups are 

substantially enriched in introns vs. exons and most groups peaked at upstream of the 3′SS 

or downstream of the 5′SS, resembling the characteristic distribution pattern of ESSs 12,13. 

Even excluding the G-rich elements that are common for both ISEs and ESSs, they still had 

similar distribution patterns (Supplementary Fig. 3a). When calculating the frequency near 

exons with alternative 5′SS or 3′SS, we found that most ISEs were enriched in the exonic 

extension region compared to the core regions, again resembling that of FAS-ESSs 22 

(Supplementary Fig. 3b).

We further analyzed the relative conservation of ISE-hex3 in different pre-mRNA regions 

using a previously developed scoring system 22. The exons conserved in human and mouse 

genomes were extracted and classified into skipped exons (SEs), constitutive exons (CEs) 

and alternative 5′SS or 3′SS exons (A5Es or A3Es). For each hexamer set we computed 

their P value of the conservation rate, thus a smaller P value representing more conserved 

hexamers in particular region (Fig. 3c). Remarkably, the ISE set had a similar conservation 

pattern to ESSs: both were more conserved in exons than in introns and were significantly 

conserved in exonic extension regions of the A5Es or A3Es (Fig. 3c). Different ISE groups 

had distinct patterns: four groups (A, D, E and F) were conserved in the extension region of 

A5Es and at downstream of CEs (Fig. 3c), whereas the others (B and C) were more 

conserved around A3Es than A5Es. In addition, most groups were conserved inside SEs and 

some groups, to a lesser extent, were conserved inside CEs.

Systematic overlap between ISEs and ESSs

Consistent with the similar distribution and conservation patterns between ISEs and ESSs, 

46 hexamers were common to the 84 ISE-hex3 and the 176 FAS-ESS hexamers 13, 12 times 

more than expected by chance. To analyze the systematic overlap between the two sets, we 

used the sequential pattern mining to score the probability of a short element belonging to a 

common set (supplementary notes)35. This method considers both the nucleotide frequency 

and the dependency of different positions, thus served as a better classifier of SREs than 

position weight matrix. For all possible hexamers, we computed the ISE and ESS scores 

based on the sequential feature of FAS-ISE and FAS-ESS hexamer sets (Fig 3d). The 

hexamers with large ISE (or ESS) scores indicated that they are more likely to function as 

ISEs (or ESSs). We found a strong positive correlation between the ISE scores and ESS 

scores for all hexamers, suggesting that these two classes of SREs identified through 

unrelated screens of random sequences overlap systematically.

All ISEs consistently inhibit splicing from exonic contexts

Previous study suggested that ESSs play critical roles in regulating splicing by suppressing 

pseudoexons and inhibiting intron-proximal 5′SS or 3′SS 22. Based on the similarity 

between ISEs and ESSs, we predicted that the new FAS-ISEs might inhibit splicing in 

exons. To test this prediction, we inserted ISE exemplars as tandem copies into a cassette 

exon of a modular splicing reporter and found that, as expected, all ISE groups consistently 

inhibited inclusion of the cassette exon (Fig. 4a, Supplementary Table 4 and 5). When 

inserted between competing 5′SS, all ISE groups significantly inhibited the use of the 
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proximal site compared to controls (Fig. 4b). The 3′SS choice was also controlled by ISEs in 

a similar fashion, with the same panel of representative ISEs causing a consistent inhibition 

of the proximal 3′SS usage (Fig. 4c). These results support a general rule of SRE activity: 

that sequences capable of enhancing exon inclusion from introns location usually have the 

ability to inhibit splicing from various exonic contexts. However, the opposite is not true as 

some sequences can inhibit splicing when inserted into either exons or introns (Wang et al. 

unpublished data). The context dependent activities for splicing regulation were previously 

observed for selected elements 6, our analyses established a general rule for an entire class 

of SREs.

Identify putative trans-factors for each ISE group

Because all ISE groups functioned in heterologous contexts, they probably act by 

specifically recruiting trans-factors. Thus we sought to unbiasedly identify such factors 

using an RNA affinity purification method 36. A 5′-biotin labeled short RNA “bait” (20 nt) 

containing three copies of ISE exemplars was synthesized and incubated with the extract of 

HeLa cells where these ISEs were consistently active (Fig. 1e). The RNA-protein complexes 

were purified and proteins specifically bound to the RNA “bait” were identified by mass 

spectrometry (Supplementary Fig. 4a). From all groups, we excised 30 bands and identified 

17 known or predicted RNA binding proteins (Supplementary Fig. 4b and Table 6). Most 

identified proteins have RNA recognition motifs (RRM) that specifically bind to single-

stranded RNA, and several proteins contain Zinc fingers or DEAH box that are known to 

bind nucleic acids (Fig. 5a).

Remarkably, five groups (A to E) with distinct motifs were all bound by three major 

proteins around 52 kDa (Supplementary Fig. 4b), which were identified as hnRNP H1, F, 

and to a lesser extent GRSF1 (Fig. 5a). The binding of hnRNP H1 to the group D (G-runs) 

was expected based on previous studies 26,27,29, however it is surprising that these proteins 

were major factors to recognize diverse sequences (Fig. 2a). A recent CLIP-seq study also 

suggested that the binding specificity of hnRNP H/F may be rather promiscuous 37, 

consistent with our in vitro data using a SELEX-like methods (Dong et al, unpublished 

data). Alternatively, these factors can bind to different ISE motifs indirectly through other 

proteins. The finding that ISE groups A to E were strongly bound by common splicing 

factors hnRNP H1 and F suggested these factors may play a predominant role in promoting 

splicing from introns. The consensus motif of group F is very different from the other 

groups (Fig. 2a). Consistently, this group had a different protein interaction profile 

(Supplementary Fig. 4b) and was recognized by RNA-binding proteins including DAZAP1, 

RBM4 and hnRNP D0, some being demonstrated to regulate splicing 38,39.

HnRNP H and F enhance splicing by recognizing various ISEs

With a comprehensive list of putative trans-factors, we next examined if they were indeed 

responsible for the ISE activity. Since the ISEs in groups A to E were recognized by hnRNP 

H1 and F, we chose to test their function using splicing reporters containing cognate ISEs. 

We selected group B because its consensus motif was not previously shown to be 

recognized by hnRNP H or F 40. Over-expression of both hnRNP H1 and F promoted 

splicing of the intron inserted with the group B ISE, and co-expression of both proteins had 
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synergistic effect (Fig. 5b left panel and Supplementary Fig. 5a). Consistently, the RNAi of 

hnRNP H1 or F decreased the intron splicing (Fig. 5b and Supplementary Fig. 5b). As 

controls, expressions or RNAi of hnRNP H1 or F had no effect on splicing of the same 

intron containing a non-cognate ISE (group F), suggesting they can promote splicing by 

specifically binding to the cognate targets.

HnRNP H1 control splicing through its C-terminal domain

hnRNP H1 represents a homologous protein family including hnRNP H2, F, 2H9 and 

GRSF1. Members of this family have similar domain organization (Fig. 5c), including three 

qRRM domains to specifically recognize G-runs 41 and two Gly/Tyr rich domains, with the 

exception of GRSF1 that lacks the Gly/Tyr rich domain. We next examined the functional 

domains of hnRNP H by fusing different fragments to a programmable RNA binding 

domain (PUF domain) and co-expressing with splicing reporters containing cognate targets 

(Fig. 5d and 5e). We selected three hnRNP H1 fragments covering the non-qRRM region 

(Fig. 5c) and tethered them at downstream of a cassette exon. All fragments enhanced exon 

splicing compared to the PUF domain alone (Fig. 5d), suggesting that the Gly/Tyr rich 

domains were the functional modules of hnRNP H1. As controls, the Gly-rich domain of 

hnRNP A1 and the RS domain of SRSF1 inhibited splicing, consistent with the findings that 

both proteins control splicing by recognizing ISSs (Wang et.al, unpublished data). In 

addition, the control fusion proteins with a non-cognate PUF domain had no effect.

Remarkably, the same hnRNP H1 functional domains can inhibit exon splicing when 

recruited to the exon (Fig. 5e), supporting the finding that its cognate targets can function as 

either ISEs or ESSs in different contexts (Fig. 2 and 4). As controls, the Gly-rich domain of 

hnRNP A1 inhibited splicing and the RS domain of SRSF1 enhanced splicing, and fusion 

proteins with non-cognate PUF domain had no effect (Fig. 5e). Taken together, we proved 

that the recruitment of Gly/Tyr rich domains of hnRNP H1 (even the last 85 aa) was 

sufficient to cause the context dependent activity of cognate ISEs, suggesting that hnRNP 

H1 functions in a modular fashion similar to the SR proteins or hnRNP A1 42-44. The 

activities of these C-terminal domain are exactly opposite to that of RS domains 42-44, which 

may represent a new mechanism to control splicing.

Multiple antagonistic factors recognize ISEs in group F

The ISEs in group F were recognized by at least three putative splicing factors, DAZAP1, 

RBM4 and hnRNP D0 (Fig. 5a). We over-expressed each factor with the splicing reporter 

containing the group F exemplar, and found that DAZAP1 strongly promoted splicing to 

increase the PSI (percent spliced in) from 20% to 68%, whereas RBM4 and hnRNP D0 had 

an opposite effect to inhibit exon inclusion (Fig. 6a and Supplementary Fig. 6a). The 

activities of these factors were dependent on the presence of cognate ISE, as they did not 

affect the same reporter containing control ISE (group B) (Fig. 6a). These results suggested 

that DAZAP1 is responsible for the splicing enhancer activity of ISEs in group F, whereas 

the other factors may antagonize DAZAP1 activity.

To examine whether the antagonistic factors can compete for the same element and switch 

its activity between ISE and ISS, we co-expressed DAZAP1 and RBM4 in different ratios 
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with the splicing reporters containing the cognate ISE (Fig. 6b). The RBM4:DAZAP1 ratio 

indeed determined the splicing outcome: higher ratio inhibited splicing whereas a lower 

ratio promoted inclusion of the cassette exon (Fig. 6b). As controls, RBM4:DAZAP1 ratio 

had no effect on the reporter containing a non-cognate ISE. We noticed that the more 

abundant protein seems to “overshadow” the other protein in co-expression experiments 

(e.g., Fig. 6b lane 3 vs. lane 5, likely due to an over-expression artifact), however this does 

not change the main conclusion. The binding of the same SRE by antagonistic factors 

enables a delicate switch where the splicing outcome can be very sensitive to the subtle 

change of splicing factor levels.

Previous studies showed that DAZAP1 inhibited splicing through interaction with hnRNP 

A1/A2 45 and RBM4 could either activate or inhibit splicing in different genes 46-48. We 

searched the entire human genome for cassette exons with the group F ISEs in their adjacent 

introns and tested how DAZAP1 and RBM4 over-expression affect their splicing. To 

achieve a more consistent expression level, we generated stable cell lines using Flp-

In™-293 T-Rex system where the expression of DAZAP1 or RBM4 can be induced by 

tetracycline (Supplementary Fig. 6b). We found that in three endogenous genes (COR06, 

SF1 and ANKS3) with the ISE sequence at down stream of a cassette exon (Supplementary 

Table 7), DAZAP1 expression indeed promoted the exon inclusion, whereas RBM4 had an 

opposite effect to inhibit splicing (Fig. 6c).

Antagonistic factors compete for same ISE in exonic context

Since the group F ISE inhibited splicing in exons (Fig. 4), we next examined how its 

cognate factors contribute to this activity. We co-expressed DAZAP1 or RBM4 with the 

splicing reporter that contains group F exemplar inside a cassette exon, and found that 

DAZAP1 promoted splicing whereas RBM4 had opposite activity to inhibit splicing (Fig. 

6d, lanes 1 to 3). Over-expression of these factors had no effect on the reporter containing 

non-cognate ISE, suggesting such activities were due to specific recognition by DAZAP1 or 

RBM4. Co-expression of two proteins in different ratios changed the splicing outcome: 

higher RBM4:DAZAP1 ratio caused splicing inhibition whereas a decreased ratio promoted 

exon inclusion (Fig. 6d, lanes 4 to 6). Such effect was again likely due to the direct 

competition of these factors, because the RBM4:DAZAP1 ratio did not change splicing of 

the control reporter.

To determine if the same regulatory rule also applies to endogenous splicing, we searched 

endogenous human cassette exons containing the group F ISEs and tested how DAZAP1 and 

RBM4 affect their splicing. For three genes (ZBT17, LAMP1 and NOL8) with the ISE 

inside a cassette exon (Supplementary Table 7), induction of DAZAP1 and RBM4 had 

opposite effects with DAZAP1 promoting exon inclusion and RBM4 inhibiting splicing 

(Fig. 6e). When examining two non-small cells lung cancer lines (H157 and A549) with 

different RBM4 levels, we found that higher RBM4 level in A459 cells correlated with a 

reduced exon inclusion in most endogenous genes containing group F ISEs (Supplementary 

Fig. 6d and 6e), suggesting that the RBM4:DAZAP1 ratio can also explain some 

endogenous splicing variation in different cell lines.
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The binding of the same SRE by antagonistic factors provided another model of the context 

dependent activity for some ISEs: DAZAP1 was the dominant factor when binding to the 

group F element in intron, leading to the ISE activity; however, the RBM4 outcompeted 

DAZAP1 when the same element was inserted into exons, resulting in the ESS activity. This 

model represents an exception to many cis-elements that have positional dependent activities 

by recruiting same trans-factor to different locations, and can probably be better described 

as a “factor dependent activity”.

Discussion

This study was initiated from an unbiased screen for novel ISEs and generated several key 

conclusions. First, diverse sequences can function as general ISEs in different cell types and 

contexts. Second, we observed systematic overlaps between ISEs and ESSs identified 

through independent screens, suggesting a common rule for the location-dependent activity. 

Third, we identified multiple factors that specifically bind ISE motifs to promote splicing 

from introns. Fourth, hnRNP H1 and F play predominant roles in enhancing splicing from 

introns, the recruitment of hnRNP H1 Gly/Tyr rich domains to different locations explained 

the location-dependent activity of ISEs. Fifth, a novel class of ISEs (group F) can be 

recognized by antagonistic factors. Competition of these factors in introns vs. exons 

produced different splicing outcomes and caused the context-dependent activity of this 

group. Finally, single ISE element can be bound by multiple factors with distinct activities 

and the same factor can recognize multiple ISEs, suggesting that a complicated web of 

RNA-protein interactions control splicing to achieve certain degree of regulatory plasticity. 

Taken together, this study provided an integrated model in which the general ISEs can be 

considered as “intron-define elements” that support the splicing pathway to exclude the pre-

mRNA region where they are located. These ISEs usually function through recruiting 

cognate splicing factors, however we cannot rule out the possibilities that some new ISEs 

may affect splicing by other mechanism such as by slowing down transcription rate.

Compared to the tissue-specific ISEs predicted by conservation 23,24 and the ISREs 

identified from experimental screens 49, motifs identified here have consistent activities 

among heterologous gene contexts and cell types. Since this screen was conducted in 293 

cells, some known tissue specific ISEs (e.g. binding sites for Nova or Fox-1) were not 

recovered in our screen. The motifs whose cognate factors are expressed at low levels in 

293T cells may also be missed (e.g. Fox-2). Similar strategies can be applied in the future to 

identify and study intronic SREs in other cell types. The ISEs identified in this study can 

promote splicing when located in either upstream or downstream intron, presenting a new 

trend that is distinct from some tissue specific SREs (e.g. Nova or Fox-1/2 binding site) that 

activate splicing from the downstream intron but repress splicing from upstream introns. 

This trend may reflect how general splicing factors interact with the core splicing 

machinery, which appears to be distinct from known tissue specific factors. Therefore motifs 

identified here have distinct features compared to previously reported motifs and 

significantly expanded the SRE repertoire.

We observed that multiple trans-factors can specifically recognize the same ISE and the 

distinct ISEs can be bound by the same protein (Supplementary Table 6). We further 
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confirmed the functional relevance of such interaction network (Fig. 5 and 6). Diifferent 

ISEs could be recognized either by splicing factors with similar activity to generate a 

synergistic regulation (Fig. 5) or by antagonistic factors to produce a sensitive regulatory 

switch (Fig. 6). Consistent with the RNA-protein interaction network, the RRM-containing 

proteins often interact with RNA motifs with very short consensus and the binding motifs of 

splicing factors were very flexible as judged by different studies 50. The interaction network 

between cis-acting SREs and trans-factors provides a possible mechanism for regulatory 

plasticity. To understand the splicing code, new models considering the complex interaction 

network have to be implemented to simulate such plasticity. Such model will require the 

integration of information obtained from this study and other transcriptome-wide studies.

Online methods

Splicing reporter constructs

All of the splicing mini-gene reporters were modified from the same backbone construct, 

pZW1, which included multi-cloning sites between two GFP exons 13. To construct the 

reporter for FAS-ISE screen, a retained intron - intron 4 of C7orf26 (RefSeq: NM_024067)- 

was amplified with a PCR reaction using primers containing XhoI/ApaI restriction sites and 

inserted into the downstream of the 5′ splice site (5′SS) of the first GFP exon. The resulting 

reporter construct, pZW15, contained two exons and a retained intron () with a multicloning 

site at 21 nt downstream of exon 1. To increase the sensitivity of FAS-screen, we introduced 

additional mutations in the 5′SS to make the site stronger. The resulting minigene was 

subcloned into the site-specific integration plasmid, pcDNA5/FRT, by NheI/BamHI sites, 

generating the vector pZW15C that was stably transfected with pOG44 (in 1:9 ratio) into 

293 FlpIn cell line.

To inserte candidate ISE sequences and controls into pZW15C, we used a forward primer 

CACCTCGAG(N6-12)GGGCCCCAC and reverse primer 

GTGGGGCCC(N6-12)CTCGAGGTG, which contained the candidate sequences (designated 

N6-12) flanked by XhoI and ApaI sites. The two primers were annealed, digested by XhoI/

ApaI, and ligated into pZW15C pre-digested with XhoI/ApaI.

To make the random sequence library, we extended the foldback primer 

CACCTCGAG(N10)GGGCCCACACGTTTTTTTCGTGTGGGCCC with Klenow, cut the 

resulting DNA with XhoI and ApaI and ligated into pZW15C 13. The ligation product was 

used to transform ElectroMax DH-5α, and we transformed sufficient numbers of E. coli 

cells to obtain ~2-fold coverage of the possible DNA decamers. The resulting library was 

transfected into 293FlpIn cells in 15 batches to obtain enough stably transfected clones 

(>106 clones) that cover the entire decamer space.

To test ISE in a heterologous context, we constructed the reporter pZW2C by inserting exon 

2 of Chinese hamster DHFR gene and portions of its flanking introns between the two GFP 

exons. This reporter was modified from pZW2 that was originally used in the FAS-ESS 

screen and contained an XhoI/ApaI restriction site inside the test exon 2 13. The pZW2 was 

digested with XhoI/ApaI and filled in with an oligonucleotide (obtained by annealing 

primers 1 and 2, Supplementary Table 1) to destroy the exonic restriction sites. We then 
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introduced a new XhoI/ApaI restriction site at 18 nt downstream of the exon 2 by three 

consecutive PCR reactions. The resulting product was inserted into pZW2 digested with 

NheI/PstI to obtain the reporter pZW2B. To increase the ISE detection sensitivity, the 

pZW2C was further generated by weakening the 3′SS of exon 2 in pZW2B with site-

directed mutagenesis so that the exon 2 was included in ~50% of mRNA in the absence of 

ISE.

To test ISE activity near the 3′SS of an alternative exon, we used a modular reporter 

pGZ3 19 and inserted ISEs at 33-nt upstream of the 3′SS for the test exon (Exon 12 of the 

human IGF-II mRNA-binding protein 1, IGF2BP1). We amplified the first GFP exon 

together with the following IGF2BP1 intron using the pGZ3 as template and the primers 

containing different ISE sequences (forward primer 5 and reverse primers 7-13, 

Supplementary Table 1). The resulting fragments were digested with HindIII/SacI and 

inserted into the pGZ3 vectors digested with same restriction enzymes.

The reporters with competing 5′SS and 3′SS were described previously, and we inserted 

ISEs and control sequences by annealing primers containing target sequence and cognate 

restriction sites 22. To test if ISEs can affect splicing when inserted into a skipped exon, we 

used the same modular splicing reporter pGZ3. The ISEs were inserted into this vector using 

XhoI/ApaI sites located inside the test exon 19.

To determine the functional modules of hnRNP H, we employed the pCI-new vector 

(Promega) to express fusion protein as described before 44. Briefly, we started with an 

expression construct that encodes from N- to C-terminals, Flag epitope, Gly-rich domain of 

hnRNP A1 (residues 195-320 of NP_002127), and the MS2 coat protein (gift of Dr. R. 

Breathnach form Institut de Biologie-CHR). The fragment encoding the MS2 coat protein 

fragment was removed using BamHI/SalI digestion and replaced with a fragment encoding a 

NLS (PPKKKRKV) and the PUF domain of human Pumilio1, resulting the PUF-

Gly(hnRNP A1). To make an expression construct for PUF-RS(SRSF1), we replaced the 

fragment encoding the Flag/Gly-rich domain with a fragment that encodes the RS domain of 

SRSF1 protein with an N-terminal Flag epitope. To make expression constructs for PUF 

fused hnRNP H1 fragments, the RS domain was removed with XhoI/BamHI digestion and 

replaced with different fragments of hnRNP H1 (A, 188-449aa; B, 188-289aa; C, 

364-449aa). To generate splicing reporters containing target sequences of PUF domains, we 

synthesized and annealed oligonucleotides containing UGUAUGUA sequence flanked by 

XhoI and ApaI sites, digested with XhoI/ApaI, and inserted into the exon of splicing reporter 

pGZ3 or the intron of splicing reporter pZW2C.

Cell culture and transfection

293T cells and HeLa cells were cultured with DMEM medium containing 10% of FBS. The 

ISE library stably transfected 293 FlpIn cells were maintained in DMEM medium with 

hygromycin at a final concentration of 100 μg/ml. For stable transfection, the random library 

was co-transfected with pOG44, which encodes the recombinase Flp, into 293 FlpIn cells. 

The stable transfectants were selected as previously described 13.
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To generate stable cell line expressing DAZAP1 upon tetracycline induction, we used 

pCDNA5 FRT/TO vector and 293 FlpIn/T-Rex cells (Invitrogen). The FLAG-tagged full 

length DAZAP1 was cloned into the vector, and transfected with pOG44 in 1:9 ratio. The 

stably integrated cells were selected with 100 μg/ml hygromycin. One day before the 

induction, the cells were transferred to hygromycin-free medium. The inductions were 

carried out by adding tetracycline to a final concentration of 2 μg/ml. The induced cells were 

collected 48 hours after induction to extract RNA and protein for further analysis.

To overexpress trans-factors, cells were plated into 24-well plates 1 day before transfection. 

To determine the effect of over-expression of trans-factors on splicing changes, 0.2 μg of 

mini-gene reporters were co-tranfected with 0.4 μg of protein trans-factors using 

lipofectamine 2000 according to the manual. After 48 hours, cells were collected for further 

RNA and protein analysis. To knock down trans-factors, cells were transfected with 50 nM 

siRNA (siGENOME SMART pools, Dharmacon) according to the manual. At 48 hours 

post-transfection, cells were transfected with the splicing reporters containing ISE exemplars 

or control. The cells were harvested after another 24 hours for further analysis.

Assay of splicing reporters with semi-quantitative RT-PCR

The splicing reporters (pZW15C, pZW2C, pGZ3, pGZ3-intron, pEZ1B and pEZ2F) inserted 

with different ISEs in intronic or exonic locations were transfected into cultured cells (293T 

or HeLa) and samples were collected 24 hours after transfection. The total RNA were 

isolated from transfected cells with TRIzol reagent (Invitrogen) according to the 

manufacturer’s instructions, followed by 1 h DNase I (Invitrogen) treatment at 37 °C and 

then heat inactivation of DNase I. Total RNA (2 μg) was then reverse-transcribed with 

SuperScript III (Invitrogen) with poly T primer or gene specific primer (for GFP based 

splicing reporter), and one-tenth of the RT product was used as the template for PCR 

amplification (25 cycles of amplification, with trace amount of Cy5-dCTP in addition to 

non-fluorescent dNTPs). RT-PCR products were separated on 10% PAGE gels, and scanned 

with a Typhoon 9400 scanner (Amersham Biosciences). The amount of each splicing 

isoform was measured with ImageQuant 5.2. The primers used to amplify GFP based 

minigene reporters were AGTGCTTCAGCCGCTACCC for GFP exon 1 and 

GTTGTACTCCAGCTTGTGCC for exon 3.

Identification of trans-factors with RNA affinity purification approach

The RNA affinity purification method was adopted from the previously described 

protocol 36. For each biotin labeled ISE RNA sample, about 2.5 × 108 HeLa cells were 

collected and resuspended with 2.5 ml ice cold resuspension buffer (50mM Tris-HCl pH 8.0, 

150 mM NaCl). Cells were mixed with 2.5ml 2x lysis buffer (50mM Tris-HCl pH 8.0, 

150mM NaCl, 15 mM NaN3, 1%(V/V) NP-40, 2 mM DTT, 2 mM PMSF, 2x protease 

inhibitor mix) and lysed for 5 min, and then centrifuged at 12000 g for 20 min at 4°C. Then 

0.75 nmol biotinylated RNA with two 18 atom spacers (Dharmacon) were added to the 

supernatants and incubated for 2 hrs at 4 °C. Next, 50 μl Streptavidin-agarose beads (Sigma) 

were added into the mixture and incubated for 2 hrs at 4 °C with slow rotation. The beads 

were washed 3 times using 4 ml lysis buffer (50 mM Tris-HCl pH 8.0, 150 mM NaCl, 15 

mM NaN3, 0.5% NP-40, 1 mM DTT, 1 mM PMSF, 1x protease inhibitor mix), resuspended 
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in 40 μl final volume, and mixed with 10 μl 5x SDS loading buffer. The proteins were then 

separated with a 10% SDS-PAGE gel and stained with coomassie blue. The gels was kept in 

3% acetic acid for the further mass spectrometry analysis.

The interested bands that contained candidate protein trans-factors were cut and analyzed by 

ESI-MS/MS on a Q-Tof (Micromass) mass spectrometer. This analysis was conducted by 

the UNC Proteomic Center.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Identification and validation of ISEs
(a) Schematic diagram of screen strategy. (b) Test of ISE reporter system. A G-rich ISE 

sequence (TGGGGGGAGG) and a control sequence (CTCAAGCTTC) were inserted into 

the pZW15C reporter and transfected into 293T cells. Splicing of the retained intron was 

assayed with flow cytometry as percentage of green cells. Both red and green fluorescence 

intensity (in arbitrary units) were measured to correct for self-fluorescence background. (c) 
Validation of splicing reporter with semi-quantitative RT-PCR. The experiments were 

carried out as panel B, and the GFP expression vector was used as a positive control. (d) 109 

unique ISE decamers were identified through FAS-ISE screen, which were clustered with 
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ClustalW2. The activities of selected ISE decamers were validated in the original screening 

reporter (asterisks) or in a heterologous gene context (indicated by #). (e) Testing FAS-ISEs 

in a heterologous intron and a different cell type. Nine FAS-ISE decamers (Supplementary 

Table 2) were randomly selected and inserted at downstream of a cassette exon. The 

reporters (pZW2C) were transiently transfected into 293T or HeLa cells to analyze splicing 

by semi-quantitative RT-PCR. At least two independent experiments were carried out for 

each sample, and the means and ranges of PSI (percent-spliced-in) values were plotted 

below representative gels.
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Figure 2. Identification and validation of the core motifs of FAS-ISEs
(a) Over-represented hexamers clustered by sequence similarity. We used an arbitrary cut-

off of 2.45 in dissimilarity to generate six ISE groups that were labeled as group A to F. The 

hexamers in each group were aligned to obtain consensus motifs, and a representative 

hexamer (exemplar) and its mutant were selected in each group for further validations. (b) 
The representative exemplars and their mutants were inserted into the intron of pZW15C 

and transfected into 293T cells to examine the splicing efficiencies. In all panels, the 

experiments were repeated at least twice with means and ranges of splicing efficiency 

plotted under the representative gel. (c) All ISE groups enhanced splicing from downstream 

of a cassette exon. Two copies of the exemplars and their mutants were inserted in the 
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pZW2C reporter at the downstream of a cassette exon to examine their effects on splicing. 

(d) All ISE groups enhanced splicing from the upstream region of a cassette exon. Single 

copy of representative exemplars and mutants were inserted into the upstream of a cassette 

exon in a modular reporter 19.
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Figure 3. Similarity between FAS-ISE and FAS-ESSs
(a) Comparison of single nucleotide compositions between FAS-ISE and FAS-ESS 

hexamers. (b) The positional frequency of FAS-ISE. The FAS-ISE hexamers in each group 

were counted near the constitutive exons (CEs) and skipped exons (SEs), and their 

frequency was plotted as the number of ISE hexamers divided by total number of hexamers 

at each position. The first and last 100 bases of exons and the first and last 200 bases of 

introns were shown. (c) Conservation patterns of ISE and ESS hexamers near SEs, CEs, 

alternative 3′SS exons (A3Es) and alternative 5′SS exons (A5Es). The degrees of 
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conservation were calculated as the P values for the COR statistic 22 and displayed in a heat 

map. (d) Comparison between ISE and ESS using a score system derived from sequential 

pattern mining. 199 ISE-hex2 hexamers (blue triangles) and 176 FAS-hex2 ESS hexamers 

(brown diamonds) were used as training sets to calculate the sequential feature scores, and 

the ISE and ESS scores of all 4096 hexamers were plotted in a scatter chart.
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Figure 4. FAS-ISEs function as splicing silencers in exonic contexts
(a) FAS-ISEs inhibited cassette exon inclusion. Two copies of the exemplars in each group 

were inserted into the cassette exon of a modular reporter 19, and transfected into 293T cells 

to assay for splicing. Inclusions of the cassette exon were determined using semi-

quantitative RT-PCR. In all panels, two independent experiments were carried out and the 

means and ranges of PSI were measured and plotted below a representative gel. The 

standard deviation was used as the error bar in controls. (b) FAS-ISEs inhibited the use of 

downstream 5′SS when inserted between two competing sites in an A5E. The splicing 

reporters were transfected into 293T cells, and the usage of alternative sites was assayed by 

RT-PCR at 24 hours after transfectoin. (c) FAS-ISEs inhibited the usage of upstream 3′SS 

when inserted between two competing sites in an A3E. The splicing reporters were 

transiently transfected into 293T cells, and the use of alternative 3′SS was assayed by RT-

PCR.
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Figure 5. HnRNP H and F recognize distinct ISE groups to control splicing through C-terminal 
domains
(a) The connectivity map representing interactions of putative splicing factors to all ISE 

groups. (b) Over-expression and RNAi of hnRNP H1 and F specifically affected splicing of 

an intron containing the cognate ISE (group B). Left, the splicing reporters were co-

expressed with trans-factors. Right, the splicing reporters were transfected 48 hours after 

RNAi of trans-factors. The splicing patterns were measured as in left panel. In both 

experiments, a reporter containing group F ISE was used as a control. (c) Schematics of the 

domains in hnRNP F and H1. (d) Different fragments of hnRNP H1 and the control domains 

were fused to a PUF domain, PUF(3-2) or PUF(6-2), to generate fusion proteins that 
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specifically bind to the target RNAs. The fusion proteins were co-transfected with a splicing 

reporter containing PUF(3-2) binding site at downstream of a cassette exon. We used the 

PUF(6-2) fusion proteins as specificity control. (e) The same set of fusion proteins were co-

expressed with a reporter containing cognate targets within a cassette exon. In all panels, at 

least two independent experiments were conducted, and means and ranges of splicing rate 

were plotted below representative gels.
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Figure 6. Multiple factors with antagonistic activities bind ISE group F to control splicing
(a) Over-expression of DAZAP1, RBM4 and hnRNP D0 affect splicing of a cassette exon 

containing the group F ISE at its downstream. The group B was used as a specificity control. 

The means and ranges of PSI from two independent experiments were plotted. (b) DAZAP1 

and RBM4 antagonistically regulate splicing when binding to same intronic target. 293T 

cells were co-transfected with different amounts of RBM4 and DAZAP1 expression 

constructs (+, 0.2 μg; ++, 1 μg) and a reporter containing ISE exemplars at the downstream 

of a cassette exon. (c) DAZAP1 and RBM4 antagonistically control splicing of endogenous 

exons containing cognate ISEs in adjacent introns. Stable cell lines were induced with 

tetracycline to express DAZAP1 or RBM4. P values were calculated with the paired T test 

(n=3). (d) DAZAP1 and RBM4 antagonistically regulate splicing when binding to an exonic 

target. Different amounts of RBM4 and DAZAP1 constructs (+, 0.2 μg; ++, 1 μg) were co-

transfected with a reporter containing the ISE exemplars inside a cassette exon. 
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Experimental conditions are same as panel b. (e) DAZAP1 and RBM4 antagonistically 

control splicing of endogenous cassette exons containing the group F ISE. Experiments and 

analyses were similar to the panel c.
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