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Abstract

The impact of selection bias on the results of clinical trials has been analyzed extensively for

trials of two treatments, yet its impact in multi-arm trials is still unknown. In this paper, we

investigate selection bias in multi-arm trials by its impact on the type I error probability. We

propose two models for selection bias, so-called biasing policies, that both extend the clas-

sic guessing strategy by Blackwell and Hodges. We derive the distribution of the F-test

statistic under the misspecified outcome model and provide a formula for the type I error

probability under selection bias. We apply the presented approach to quantify the influence

of selection bias in multi-arm trials with increasing number of treatment groups using a per-

muted block design for different assumptions and different biasing strategies. Our results

confirm previous findings that smaller block sizes lead to a higher proportion of sequences

with inflated type I error probability. Astonishingly, our results also show that the proportion

of sequences with inflated type I error probability remains constant when the number

of treatment groups is increased. Realizing that the impact of selection bias cannot be

completely eliminated, we propose a bias adjusted statistical model and show that the

power of the statistical test is only slightly deflated for larger block sizes.

Introduction

Multi-arm clinical trials have been gaining more and more importance, particularly due to the

recent advances in small population group research [1]. Multi-arm clinical trials often com-

pare multiple experimental treatment arms and a single control arm. They can therefore

reduce the sample size in comparison to separate trials with one experimental and one control

arm each and increase the willingness of participants to enter the trial [2]. The benefits of mul-

tiarm trials are particularly important for very small trials in orphan diseases [3].

Many researchers consider fixed randomization with equal allocation ratio, such as the per-

muted block design, as the gold standard for allocating patients to multiple treatment groups

[4]. However, as blinding in multi-arm randomized controlled clinical trials can be challenging

[2], multi-arm randomized trials like the STAMPEDE trial [5] are commonly conducted as

open-label studies. Multi-arm trials can therefore be particularly susceptible to selection bias, a

bias that can be introduced in a clinical trial due to heterogeneity of the patient population
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resulting from the predictability of the randomization sequence [6]. Even if a randomized trial

is conducted double blind, selection bias may be introduced due to unmasking of past treat-

ment assignments, for example due to side-effects. It interferes with the unbiased comparison

of treatment effects that is the heart of each randomized controlled clinical trial. Six decades

ago, D. Blackwell and J. L. Hodges remarked [7]

It is widely recognized that experiments intended to compare two or more treatments may

yield biased results if the experimental subjects are selected with knowledge of the treat-

ments they are to receive.

Since then, the impact of selection bias in randomized clinical trials has been the subject

of papers and guidelines [7–17]. Blackwell and Hodges [7] were the first to present a formal

approach for quantifying selection bias. Under the assumption that the investigator wishes to

make one of the treatments appear better than the other, they presumed that the investigator

would try to guess the treatment assignment for the next patient based on the knowledge of

the past assignments. For example, he would guess that a treatment is likely to be allocated

next when it has so far been allocated less frequently. As a consequence, the investigator would

include a patient with better prognosis always when his favoured treatment has currently been

allocated less frequently in the trial. A model for the guess of the investigator is called a guessing
strategy. It has been shown to be an analogue to the degree of the predictability of a randomiza-

tion sequence based on the allocation probabilities [6]. Strikingly, despite mentioning that

selection bias is a problem also in multi-arm clinical trials, all of the mentioned sources focus

on two-armed trials. Some researchers may even feel that selection bias disappears when the

number of treatment groups increases. In particular, no measure for selection bias in multi-

arm randomized controlled clinical trials has been formally introduced. Although Berger et al.

[16] conducted a simulation study of the susceptibility of three-armed trials to selection bias,

they never formally defined a measure of selection bias for multi-armed trials. Of all the mea-

sures that have been proposed for two-arm trials, the impact of selection bias on the type I

error probability is most important from a regulatory point of view, as stated for example in

the ICH E9 guideline [17].

In the present paper, we propose to measure selection bias in multi-arm trials by its influ-

ence on the test decision of the global F-test, when selection bias is modeled using a biasing
policy, a generalization of the guessing strategy for two-arm trials proposed by Blackwell and

Hodges [7] that models the heterogeneity in the patient stream due to selection bias. The out-

line of the paper is as follows. In the section entitled “Model”, we present our assumptions

for the outcome model and introduce the permuted block design, the randomization proce-

dure most frequently used for assigning patients to multiple treatment groups. The results

are presented in the subsequent section entitled “The Impact of Selection Bias”. There, we

generalize the guessing strategy proposed by Blackwell and Hodges [7]. The variability

encountered in multi-arm trials admits different extensions. We therefore present two gen-

eralized biasing policies that appear plausible in multi-arm trials from a practical point of

view. Then we derive the distribution of the F-statistic under the misspecified model and

present a formula for the exact type I error probability conditional on a randomization

sequence, followed by a numerical comparison of the impact of selection bias in multi-arm

trials. In the Section entitled “Adjusting for Selection Bias”, we present a selection bias

adjusted analysis strategy that can serve as a sensitivity analysis. We conclude with a “Discus-

sion” section. The supporting information contains R code for the computation of the pre-

sented formulae.

Selection bias in randomized multi-arm clinical trials
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Model

Consider a randomized single center clinical trial without interim analyses. Assume patients

are allocated using a K-arm parallel group design and balanced sample size per group and that

the response is a continuous normal outcome. To use formal notation, let the outcome yi of a

patient i be the realization of a normally distributed random variable Yi with mean μk if patient

i is allocated to group k, and unknown variance σ2. Let N denote the total sample size and K
the number of treatment groups.

Usually the situation is embedded in a linear model with one fixed factor

y ¼ Xβþ ϵ; ð1Þ

where y = (Y1, . . ., YN)t is the outcome vector, X 2 RN�K the design matrix,

β ¼ ðm1; . . . ; mKÞ
t
2 RK the unknown parameter, and ϵ � N ð0; s2INÞ the normally

distributed residual error. The matrix IN 2 R
N�N denotes the identity matrix of dimension

N. In what follows, we consider the null hypothesis that all group means are equal,

H0 : m1 ¼ � � � ¼ mK : ð2Þ

Under the normal assumption, this hypothesis is usually tested using an F-test with test sta-

tistic

SF ¼
1

K� 1
yt XðXtXÞ� 1Xt � 1

N 1N�N

� �
y

1

N� K ytðI � XðXtXÞ� 1XtÞ y
; ð3Þ

where the matrix 1N�N 2 R
N�N has all elements equal to one, and Xt denotes the transpose of

the design matrix X.

The design matrix X = (xik) has elements xik corresponding to the treatment allocation,

namely

xik ¼

(
1 if patient i is allocated to treatment group k

0 else:
ð4Þ

As only one treatment is assigned per patient, the sum of each row equals one. The number of

patients allocated to each treatment group is given by the sum of the columns xk = (x1k, . . ., xNk).

Obviously, the explicit form of the design matrix is a unique representation of the randomiza-

tion list resulting from a particular randomization procedure. In the following, we restrict the

consideration to fixed sample, non-adaptive, unstratified randomization procedures. We focus

our attention on the permuted block design (PBD), the most commonly used randomization

procedure for randomized controlled clinical trials with multiple treatment arms. Using the per-

muted block design, the patient stream is divided into M blocks. In each block, the same number

of patients c is allocated to each of the K treatment groups, so that there are c � K in each of the

M blocks. Throughout this article we assume that the last block is complete, so that the total

sample size is a multiple of the block length, namely N = c � K �M. This is a generalization of the

blocked design using the notation of Berger et al. [16]. We denote the permuted block design

with blocks of length c � K by PBD(cK). An allocation sequence produced by PBD(cK) will neces-

sarily be balanced after each c � K allocations. In case of PBD(K), the design is balanced after

every Kth patient. As we have c = 1, in every block exactly one patient is allocated to each group.

In case of PBD(N/2), the design is balanced after N/2 patients. That means we have two blocks

of length N/2 and in each block c ¼ N
2K patients are allocated to each treatment group. In case of

PBD(N), we have one block of length N and balance is forced only at the end of the trial. The

design PBD(N) is also called random allocation rule and denoted by RAR.

Selection bias in randomized multi-arm clinical trials
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Impact of selection bias

The restrictions imposed by the permuted block design introduce a certain predictability of

the randomization sequence. This predictability can lead to biased trial results. Already imper-

fect knowledge of the random assignments, e.g. when some past assignments were unmaksed

due to side-effects, is sufficient to make future allocations predictable. Formally, we will char-

acterize predictability by the following two assumptions.

Assumption 1. Past assignments x1,k, . . . xi−1, k to each treatment group k are unmasked
before including patient i, so that the number of past assignments to each group

Nkði � 1Þ ¼
Xi� 1

j¼1

xjk;

is known for all treatment groups k 2 {1, . . ., K} and patients i 2 {1, . . ., N}. For i = 1, we define
Nk(i − 1) = Nk(0) = 0 for all k = 1, . . ., K.

Assumption 2. In expectation the same number of patients is assigned to all treatment groups,
namely

EðN1ðNÞÞ ¼ � � � ¼ EðNKðNÞÞ ¼ N=K:

Based on these assumptions of predictability, Blackwell and Hodges [7] proposed to model

the influence of selection bias on the expected responses in a two-arm trial. They motivate

their model by imagining an investigator who wishes to make one of the two treatments appear

better than the other, even though the null hypothesis is true. They assume that the investiga-

tor, consciously or unconsciously, favours one treatment, say the experimental treatment. If

the investigator can guess that the next treatment to be assigned will be the experimental treat-

ment, he might select a patient with higher expected response to be included in the trial. On

the other hand, if he guesses the next assignment to be to the other treatment group, he might

include a patient with worse expected response. As a particular guessing strategy, it is sensible

for the investigator to guess the treatment which at that point of the enrollment has been allo-

cated less frequently, knowing that, in the end of the trial, the treatment groups are expected to

be balanced. Of course, the situation that an investigator guesses the next treatment assign-

ments constitutes a worst case scenario.

While Blackwell and Hodges [7] where concerned with the impact of selection bias on the

mean difference between the treatment groups, we want to measure its impact in hypothesis

tests with multi-arm trials. In two-arm trials, Proschan [11] and Kennes et al. [14] showed for

the z-test and t-test respectively that selection bias can seriously inflate the type I error rate,

when the guessing strategy is incorported in the model of the patients responses. Proschan

[11] coined the term biasing policy for the model of the biased patients responses.

The generalization of the guessing strategy to multi-arm trials is not straight forward. On

the one hand, an investigator might not strictly favour one treatment over all others, but might

have a set of favoured treatments F � f1; . . . ;Kg. On the other hand, ties in the number of

patients per treatment group will occur frequently, and there are several options of how to deal

with them. In the following, we therefore propose two biasing policies that seem relevant from

a practical point of view.

Biasing policies

A biasing policy is a model for the influence of the guessing strategy on the patients’ responses.

Generalizing our model in Eq 1 to include an additional selection bias effect Z 2 R and a bias

Selection bias in randomized multi-arm clinical trials
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vector b = (b1, . . ., bN)t, we assume that the patient responses follow the model

y ¼ Xβþ Zbþ �: ð5Þ

In what follows, we consider the case where larger values of y are assumed to be better

responses to treatment, and assume η> 0 to reflect the physician’s preference for patients with

higher expected response. Values of η< 0 correspond to a preference for patients with lower

expected response. The components of b are determined by the guessing strategy of the inves-

tigator and denote whether the investigator wishes to include a patient with worse (bi = −1),

neutral (bi = 0), or better (bi = 1) expected response. Different models for b arise depending on

the guessing strategy of the investigator. The parameter Z 2 R is the strength of the shift intro-

duced by the investigator. We are interested in the effect of fitting the model described in Eq 1,

knowing that due to the misspecification that results from ignoring η b, the error term now fol-

lows a normal distribution with expectation η b and variance σ2 IN.

To determine the components of b, a reasonable generalization of the Blackwell and Hodges

model is that the investigator would favour a subset F � f1; . . . ;Kg of treatment groups, and

would assume that any of them will be assigned next, when all of the groups in F have fewer

patients than the remaining groups. In other words, the investigator will include a patient with

better expected response (bi = 1), if the largest of his favoured groups F has fewer patients

than any of the not favoured groups F C:

max
j2F

Njði � 1Þ < min
k2FC

Nkði � 1Þ:

We say that a group j is larger than a group k at the time of enrollment of patient i, if more

patients had been enrolled to group j than to group k prior to the enrollment of patient i, so

that Nj(i − 1) > Nk(i − 1). Conversely, we say that a group j is smaller than group k, if fewer

patients have been allocated to group j, so that Nj(i − 1)< Nk(i − 1)

The investigator will guess that one of the not favoured groups will be allocated next, if all of

the not favoured groups have fewer patients than the smallest of the favoured groups. In other

words, the investigator will include a patient with worse expected response (bi = −1), if the

largest of his not favoured groups is smaller than the smallest of his favoured treatment

groups:

min
j2F

Njði � 1Þ > max
k2FC

Nkði � 1Þ:

The bias vector in Eq 5 can therefore be modelled with components defined by the following

biasing policy.

Biasing Policy I: The components of the bias vector b = (b1, . . ., bN) are given by

bi ¼

1 if maxj2F Njði � 1Þ < mink2FC Nkði � 1Þ

� 1 if minj2F Njði � 1Þ > maxk2FC Nkði � 1Þ

0 else:

8
><

>:
ð6Þ

The following example illustrates that the bias vector depends on the realization of the ran-

domization sequence.

Example 1. In a trial with three treatment groups that compares one experimental treat-

ment to two standard of care treatments, the investigator may adopt biasing policy I when he

favours the experimental treatment as the favoured treatment, F :¼ f1g. Table 1 shows the

computation of the bias vector for the randomization list that is represented by the design

matrix X with the columns x1, x2, x3 shown in the table. We see that the first patient is allocated

Selection bias in randomized multi-arm clinical trials
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to group 1, the second to group 2, and so forth. In the beginning (i = 1), all groups are bal-

anced, so the investigator includes a patient with neutral response (b1 = 0). After including the

first patient to the experimental group 1, group 1 is larger than any of the standard of care

groups 2 and 3. So the investigator will guess that the next patient will be assigned to one of

the standard of care groups, and, consequently, include a patient with worse expected response

b2 = −1. After the second patient, the experimental group 1 and the standard of care group

2 have the same number of patients, so the investigator is unsure which treatment will be

assigned next, and includes a neutral patient. Continuing this process for the remaining four

patients yields the bias vector b = (0, −1, 0, −1, −1, 0).

An alternate bias model may result in a trial where several doses of an active treatment

are compared to a placebo or a control treatment. In this situation the investigator may favour

the active treatment, irrespective of the doses. He would try to allocate patients with lower

expected response to the control groups, and patient with higher expected response to the

experimental groups. Following the same argument as above, the investigator would guess that

one of his favoured treatment groups F � f1; . . . ;Kg will be allocated next, when any of the

groups in F has fewer patients than any of the treatment groups F C ¼ f1; . . . ;Kg n F , and

guess the treatment groups FC when any treatment group in F has more patients than the

group of F with fewest patients. The patients’s responses can then be modelled according to

Eq 5 and the components of the bias vector are defined by the following biasing policy:

Biasing Policy II: The components of the bias vector b = (b1, . . ., bN) are given by

bi ¼

1 if minj2F Njði � 1Þ < mink2FC Nkði � 1Þ

� 1 if minj2F Njði � 1Þ > mink2FC Nkði � 1Þ

0 else:

8
><

>:
ð7Þ

As before, the bias vector depends on the randomization sequence, as illustrated in the fol-

lowing example.

Example 2. In a trial with three treatment groups, assume that the investigator avoids

the placebo treatment (F C ¼ f1g) and equally favours the remaining treatment groups

(F ¼ f2; 3g). Table 2 shows the computation of the bias vector for the design matrix X given

by the columns x1, x2, x3 shown in the table. Note that the design matrix is the same as in

Example 1, only the biasing policy changes. The first patient is allocated to the group 1 which

is now the not favoured placebo group. After the first allocation, the treatment group 3 is

always smaller than the placebo group. Guessing that the next patient will be allocated to

group 3, the investigator would include a patient with better expected response. This yields the

bias vector b = (0, 1, 1, 1, 1, 1).

Table 1. Example for computing the bias vector using biasing policy I in a trial with six patients and three treat-

ment groups (K = 3) when the favoured treatment is F ¼ f1g.

Patient i x1 x2 x3 N1(i − 1) N2(i − 1) N3(i − 1) bi
1 1 0 0 0 0 0 0

2 0 1 0 1 0 0 −1

3 1 0 0 1 1 0 0

4 0 0 1 2 1 0 −1

5 0 0 1 2 1 1 −1

6 0 1 0 2 1 2 0

https://doi.org/10.1371/journal.pone.0192065.t001
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Examples 1 and 2 show that biasing policy I may introduce bias for fewer patients than bias-

ing policy II, and can therefore be considered stricter.

Calculation of type I error probability under misspecification

When applying the global F-test in the misspecified model given in Eq 1, the type I error prob-

ability may be biased by the selection bias policy. In order to measure the impact of selection

bias on the test decision, we have to derive the distribution of the F-statistic SF in Eq 3 when

selection bias is present. When the responses are influenced by selection bias which is defined

by the bias vector b and depends on the randomization sequence, the error term in Eq 1 fol-

lows a normal distribution N ðZb;s2IÞ that is no longer identically distributed.

We now show that SF, the test statistic of the F-test, follows a doubly noncentral F-distribu-

tion. Using the notation

SF ¼
1

K� 1
yt XðXtXÞ� 1Xt � 1

N 1N�N

� �
y

1

N� K ytðI � XðXtXÞ� 1XtÞ y
�

ytAy
ytBy

ð8Þ

and definition (30.1) of [18], it suffices to show that the quadratic forms yt Ay and yt By are

noncentrally χ2-distributed and stochastically independent. Using Theorem 7.3. of Searle [19],

a quadratic form yt Ay with y � N ðμ; s2IÞ is noncentrally χ2-distributed with d1 = rank(A)

degrees of freedom and noncentrality parameters μt Aμ if the matrix A is idempotent. In the

case of the numerator of Eq 8, the quadratic form is given by yt Ay with

A ¼ XðXtXÞ� 1Xt �
1

N
1N�N :

Right multiplication of X(Xt X)−1 Xt with the column vector 1N ¼ ð1; . . . ; 1Þ
t
2 RN shows that

XðXtXÞ� 1Xt � 1

N 1N�N ¼
1

N 1N�N . Hence, A2 = A, so A is idempotent and yt Ay is noncentrally

χ2-distributed with K − 1 degrees of freedom and noncentrality parameter λ1 = η2 bt Ab. Simi-

larly, the quadratic form yt By in the denominator of Eq 8 is given by

B ¼ I � XðXtXÞ� 1Xt:

Again through multiplication of X(Xt X)−1 Xt with 1N we can show that B is idempotent and

has rank(B) = N − K. Thus, yt By is noncentrally χ2-distributed with N − K degree of freedom

and noncentrality parameters λ2 = η2 bt Bb. Third, using Theorem 7.4 of Searle [19], the qua-

dratic forms are stochastically independent if AB = 0. This follows directly by multiplication.

Table 2. Example for computing the bias vector using biasing policy II in a trial with six patients and three treat-

ment groups (K = 3) when the favoured treatments are F ¼ f2; 3g.

Patient i x1 x2 x3 N1(i − 1) N2(i − 1) N3(i − 1) bi
1 1 0 0 0 0 0 0

2 0 1 0 1 0 0 1

3 1 0 0 1 1 0 1

4 0 0 1 2 1 0 1

5 0 0 1 2 1 1 1

6 0 1 0 2 1 2 1

https://doi.org/10.1371/journal.pone.0192065.t002
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In conclusion, SF follows a doubly noncentral F-distribution with K − 1 and N − K degrees

of freedom and noncentrality parameters

l1 ¼ l1ðbÞ ¼ Z2btAb ¼ Z2
1

n

XK

k¼1

ðbtxkÞ
2
�

1

N
ðbt

1Þ
2

 !

ð9Þ

and

l2 ¼ l2ðbÞ ¼ Z2btBb ¼ Z2 btb �
1

n

XK

k¼1

ðbtxkÞ
2

 !

: ð10Þ

Here xk denotes the k-th column of the design matrix X formed by the realized randomization

list and thus contains all allocations to treatment arm k only. From Eqs 9 and 10 it becomes

clear that the noncentrality parameters, and therefore the distribution of the test statistic,

depends on the particular realization of the randomization sequence. Under the null hypothe-

sis given in Eq 2, the true type I error probability given the design matrix X corresponding to a

particular randomization sequence can be calculated by

rðXÞ ¼ FK� 1;N� Kðl1; l2Þ jSFj � F � 1
K� 1;N� K;1� a

� �
; ð11Þ

where FK−1, N−K(λ1, λ2)(x) denotes the distribution function of the doubly-noncentral F-distri-

bution with with K − 1 and N − K degrees of freedom and noncentrality parameters λ1, λ2, and

F � 1
K� 1;N� K;1� a

denotes the 1 − α quantile of the central F-distribution. Johnson et al. [18] also give

a representation of the conditional cumulative distribution function of SF, see formula (30.51)

which can be used for numerical implementation.

We further propose to consider the probability of an inflated type I error probability as eval-

uation criterion:

pinfl �
X

X2OPBD

PðXÞ � IðrðXÞ > aÞ; ð12Þ

where P(X) denotes the probability of a randomization sequence represented by X, and OPBD

denotes the set of all randomization sequences produced by PBD(cK). Further let I(x> 0.05)� 1

if x> 0.05 and I(x> 0.05)� 0 otherwise. This metric clearly reflects the regulatory viewpoint

[17] to maintain the significance level, resulting in a target value of pinfl = 0.

Numerical results

This section illustrates the use of the above derivations with numerical examples. We have

shown that the rejection probability can be calculated for each individual randomization

list generated by the a randomization procedure. However, the number of sequences grows

exponentially in N and K. Therefore, simulations are used for the calculation of the randomiza-

tion lists, but not for the type I error probability. The derived distribution is represented by

box plots and the corresponding summary statistic. In each of the below settings we generate a

Monte Carlo sample of r = 10,000 randomization sequences for the randomization procedures

PBD(N), PBD(K) and PBD(N/2). The number of groups K and the number of patients per

group m = N/K is varied. The R package randomizeR version 1.3 [20] is used for the generation

of the sequences. Then we calculate the distribution of the type I error probabilities as indi-

cated in Eq 11, and the proportion of sequences that lead to an inflated type I error probability

as in Eq 12. The selection effect η is assumed to be a fraction η = ρ � fm,K of Cohen’s effect

size fm,K that corresponds to a significance level α = 0.05 and a power of 1 − β = 0.8. We assume
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ρ 2 {0, 1/4, 1/2, 1} to investigate the influence of the strength of the bias on the results. In

doing so, we adopt a recommendation of Tamm et al. [15] who proposed a similar approach

for two-arm trials.

In a first step, the above methodology is applied to investigate the difference between the

biasing policies assuming the scenarios of Examples 1 and 2. We set the favoured treatment

groups to be F 1 ¼ f1g for biasing policy I and F 2 ¼ f2; 3g for biasing policy II. We assume

an selection effect of η = f4,3 = 1.07. Fig 1 shows the result of the comparison for the sample

size N = 12 based on the distribution of the type I error probabilities following Eq 11. It can be

seen that the distribution of the type I error probabilities is shifted away from the nominal sig-

nificance level of 5% in all investigated settings. In case of a single block of length N (PBD(N)),

the influence of the biasing policies was comparable. For smaller block sizes, biasing policy II

leads to higher type I error probabilities than the biasing policy I.

In the second step, we restricted our attention to the strict biasing policy with F ¼ f1g to

investigate the impact of selection bias under variation of the number of groups, the sample size

and the selection effect. To that aim, we varied the number of treatment groups K 2 {3, 4, 6}

and the number of patients per group m = N/K 2 {4, 8, 32}, speaking of a small trial if m = 4, a

medium trial if m = 8, and a large trial if m = 32. Figs 2 and 3 show the proportion of sequences

that lead to an inflation of the type I error probability as proposed in Eq 12. In Fig 2 we fixed

the selection effect η = fm,K, but varied K and m. In Fig 3 we fixed the number of groups at

K = 3, but varied η = ρ � fm,K and m. In all scenarios we investigated, at least thirty percent of

Fig 1. Distribution of the type I error probability under selection bias for different biasing policies. Each scenario

is based on a sample of r = 10,000 sequences, sample size N = 12 and number of treatment groups K = 3, assuming the

selection effect η = f4,3 = 1.07 for permuted block design (PBD). The red dashed line marks the 5% significance level.

https://doi.org/10.1371/journal.pone.0192065.g001
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the sequences in the sample lead to an inflation of the type I error-probability. However, the

maximum proportion of inflated sequences varied according to the randomization procedure.

The permuted block design with block size K had up to 100% of inflated sequences in medium

and large trials (middle and right hand panels of Figs 2 and 3). For permuted block randomiza-

tion with block length N/2 or N, the proportion of inflated sequences ranged up to 84% right

hand panel of Fig 3 and 76% middle panel of Fig 3 and generally attained its maximum in large

trials with K = 3 treatment groups. For all the randomization procedures we investigated, the

proportion of inflated sequences grew when the number of treatment groups remained the

same but the number of patients per group was increased. Consider for example the situation of

K = 6 treatment groups and permuted block design with block length K shown in red in Fig 2.

In a small trial, one third of the sequences had inflated type I error probability. This proportion

was more than doubled in a medium trial (71%), and reached 100% in a large trial. Interest-

ingly, Fig 3 shows that the proportion of sequences with inflated type I error probability

remained constant when the selection effect η = ρ � fm,K was varied with ρ 2 {0, 1/4, 1/2, 1} and

the number of groups was fixed to K = 3. This means that already a relatively small bias can lead

to the same proportion of sequences with inflated type I error probability as a large bias. Table 3

shows that this is also true for K = 4 and K = 6. For η = ρ = 0, all sequences maintain the type I

error in all investigated scenarios, as expected.

Fig 2. Proportion of sequences that inflate the type I error probability under selection bias for an increasing number of treatment groups, and

different block and sample sizes. Each scenario is based on a sample of r = 10,000 sequences, assuming the selection effect η = fm,K equal Cohen’s size

fm,K, which depends the group size m = N/K (small: m = 4, medium: m = 8, large: m = 32), and on the number of treatment groups K 2 {3, 4, 6}.

https://doi.org/10.1371/journal.pone.0192065.g002
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Fig 3. Proportion of sequences that inflate the type I error probability under selection bias for increasing selection effect, and different block and

sample sizes. Each scenario is based on a sample of r = 10,000 sequences, assuming the selection effect η = ρ � fm,K to be a proportion ρ of the Cohen’s

size fm,K, which depends on the group size m = N/K (small: m = 4, medium: m = 8, large: m = 32), and the number of treatment groups which are fixed

at K = 3. The selection effect η increases as ρ 2 {0, 1/4, 1/2, 1}.

https://doi.org/10.1371/journal.pone.0192065.g003

Table 3. Proportion of sequences with inflated type I error probability. Calculations are based on Eq 12. We set the significance level α = 0.05 and the selection effect

η = ρ � fm,K, where fm,K denotes Cohen’s effect size, K the number of treatment groups and the number of subjects per group m = N/K.

m = 4 m = 8 m = 32

PBR(K) PBR(N/2) PBR(N) PBR(K) PBR(N/2) PBR(N) PBR(K) PBR(N/2) PBR(N)

K = 3 ρ = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ρ = 0.25 0.856 0.709 0.634 0.995 0.787 0.719 1.000 0.843 0.764

ρ = 0.5 0.851 0.711 0.641 0.995 0.792 0.708 1.000 0.845 0.760

ρ = 1 0.860 0.699 0.623 0.995 0.776 0.718 1.000 0.843 0.756

K = 4 ρ = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ρ = 0.25 0.612 0.498 0.422 0.919 0.660 0.591 1.000 0.752 0.695

ρ = 0.5 0.621 0.494 0.422 0.917 0.656 0.601 1.000 0.753 0.689

ρ = 1 0.609 0.483 0.418 0.913 0.651 0.583 1.000 0.743 0.687

K = 6 ρ = 0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

ρ = 0.25 0.345 0.302 0.326 0.711 0.498 0.440 0.996 0.628 0.615

ρ = 0.5 0.344 0.307 0.314 0.702 0.482 0.458 0.998 0.637 0.603

ρ = 1 0.334 0.304 0.296 0.711 0.485 0.451 0.996 0.632 0.619

https://doi.org/10.1371/journal.pone.0192065.t003
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Figs 4 and 5 show the impact of selection bias on the distribution of the type I error proba-

bilities as proposed in Eq 11. In Fig 4, we varied the selection effect η = ρ � fm,K for fixed K = 3,

and in Fig 5 we varied K while fixing η = fm,K. We can see in Fig 4 that both the variability and

mean of the type I error probability increased with increasing selection effect. This effect is less

pronounced in medium and large trials than in small trials. The shift of mean and median was

most pronounced for block size K. As pictured in Fig 5, the variability of the type I error proba-

bilities decreased with the number of treatment groups when the selection effect is η = fm,K.

Fig 4. Distribution of the type I error probability under selection bias for increasing selection effect, and different

block and sample sizes. Each scenario is based on a sample of r = 10,000 sequences, assuming the selection effect

η = ρ � fm,K to be a proportion ρ of the Cohen’s size fm,K, which depends on the group size m = N/K (small: m = 4,

medium: m = 8, large: m = 32), and the number of treatment groups which are fixed at K = 3. The selection effect η
increases as ρ 2 {0, 1/4, 1/2, 1}. A red dot marks the mean type I error probability in each scenario. The red dashed line

marks the 5% significance level. The axis range is (0, 0.25).

https://doi.org/10.1371/journal.pone.0192065.g004
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Also, the mean of the type I error probabilities approaches the 5% significance level. Given a

number of treatment groups K, the variability decreased with the size of the trial, while the

mean type I error probability remained the same.

Adjusting for selection bias

In this section, we present a possible unbiased analysis strategy that can serve as a sensitivity

analysis. When the response is affected by selection bias as modeled in Eqs 6 or 7, the responses

Fig 5. Distribution of the type I error probability under selection bias for an increasing number of treatment

groups, block and sample sizes. Each scenario is based on a sample of r = 10,000 sequences, assuming the selection

effect η = fm,K equal Cohen’s size fm,K, which depends the group size m = N/K (small: m = 4, medium: m = 8, large:

m = 32), and on the number of treatment groups K 2 {3, 4, 6}. A red dot marks the mean type I error probability in

each scenario. The red dashed line marks the 5% significance level. The axis range is (0, 0.25).

https://doi.org/10.1371/journal.pone.0192065.g005
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follow the linear model described in Eq 1. In contrast to the previous sections where we inves-

tigated the influence of model misspecification on the type I error probability, we now want to

investigate the influence of fitting the correct model, namely,

y ¼ ~X~β þ ϵ;

on the power, where the design matrix contains an additional column that accounts for the

bias ~X ¼ ½x1; . . . ; xK ; b� and the unknown parameter contains the selection effect as an addi-

tional unknown parameter ~β ¼ ðm1; . . . ; mK ; ZÞ. Because we included the selection bias effect η
in the model, the random error is independently and identically distributed ϵ � N ð0; s2IÞ. As

before, a global F-test can be used to test the null hypothesis of equal expectation in the groups

as given in Eq 2. We conducted a simulation study to investigate the performance of this bias

adjusted test in a practical scenario.

Fig 6 shows the power of the bias adjusted F-test and, as a reference, the power for the unad-

justed F-test for the permuted block design with block lengths N, N/2 and K. We assume a

sample size of N = 48 and K = 3 treatment groups, and get an effect size of fm,K = f16,3 = 0.9829

corresponding to Cohen’s effect size for a power of 80% at significance level α = 0.05. We

assumed an increasing selection effect η = ρ � f16,3 with ρ 2 {0, 0.5, 1, 2}. We used the R package

car [21] to account for the type III sum of squares required due to the unbalanced design

induced by the biasing policy.

We can see that the unadjusted F-test in panel B keeps the planned power of 80% only if

η = ρ = 0. In all other cases, the presence of selection bias leads to an over-estimation of the

treatment difference, resulting in an inflated power increasing with ρ. The degree of the infla-

tion depends on the block length, reflecting the predicability of the permuted block design.

For all of the block lengths we investgated, the power of the selection bias adjusted test in panel

A is constant when η = ρ � fN,K increases. The power suffers only slightly from fitting the addi-

tional factor in the model when we use PBD(N/2) or PBD(N). When using PBD(K) the power

is drastically reduced to about 66%.

Note that this approach also provides a maximum likelihood estimator for the selection

effect η, and a test for the presence of selection bias, deriving the distribution of the F-test sta-

tistic under the null hypothesis H0: η = 0. The steps are similar to those of [22] who derived

a likelihood ratio test for the presence of selection bias in two-arm trials. We recommend

Fig 6. Power of the adjusted test compared to the unadjusted test. A) Power of the F-test adjusted for selection bias. B) Power of the F-test not

adjusted for selection bias. Both panels assume total sample size N = 48, K = 3 treatment groups and selection effect η = ρ � f16,3 with ρ 2 {0, 0.5, 1, 2}.

https://doi.org/10.1371/journal.pone.0192065.g006
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conducting the selection bias adjusted test as a sensitivity analysis for the presence of selection

bias.

Discussion

We have shown that more than two treatment arms do not protect the test decision in a clinical

trial from the influence of selection bias. While the extent of the distortion of the test decision

may depend on a variety of possible settings, the fact that selection bias can impact the test

decision has to be acknowledged also under very conservative assumptions. Contrary to com-

mon misconceptions (cf. [16], Sec. 5), we showed that selection bias poses a serious risk even

when the number of treatment groups or the sample size is large.

We proposed two biasing policies for selection bias that generalize the guessing strategy

that has been proposed for two-arm trials by Blackwell and Hodges [7]. Using these models,

we derived a formula for calculation of the impact of selection bias on the overall F—test,

which can be applied to all non-adaptive, unstratified randomization procedures. We

derived the exact conditional distribution of the test statistic given a particular randomization

sequence, and proposed a formula for the exact rejection probability given a randomization

sequence under the selection bias model. This makes it possible to evaluate the influence of

selection bias on the type I error probability, as required by the ICH E9 guideline [17]. In

contrast to previous approaches, e.g. [11], the approach we presented not only provides the

mean distortion of the type I error rate, but also covers its variability accross randomization

sequences. We applied the derivation to quantify the impact of selection bias on the test deci-

sion in multi-arm clinical trials with permuted block design. Our results show that previous

findings [14, 15, 23] extend to multi-arm clinical trials; namely the influence of selection

bias on the mean type I error probability is most pronounced for small block sizes. While the

extent of the inflation of the type I error was shown to be sensitive to the biasing policy, small

block sizes have been shown to be problematic irrespective of the biasing policy employed.

In the investigated scenarios, selection bias lead to an inflation of the power when it was not

accounted for in the analysis. Preliminary research shows that this unadjusted test can also

lead to a deflation of the power in some scenarios when the variability of the responses out-

weighs the effect on the estimated treatment effect. We further showed that the adjustment for

selection bias in the analysis leads to a substantial loss in power when small block sizes are

used. To protect multi-arm trials against selection bias, we recommend that a randomization

procedure with very few restrictions should be used. In particular, the permuted block design

should only be used with large block sizes. Then a selection bias adjusted test can serve as a

sensitivity analysis for the susceptibility of the results to selection bias. Note that, under the

Blackwell and Hodges model, random block sizes do not provide any benefit for the reduction

of selection bias [6].

We strongly encourage researchers and clinical trialists to assess the extent of selection bias

for a variety of block lengths and, if available, randomization procedures at the planning stage

of their particular trial. We recommend to follow a procedure similar to the template proposed

by Hilgers et al. [24]. In any case, investigators should always report the randomization proce-

dure and the parameters they used according to the CONSORT 2010 statement [25], along

with their reasons for choosing the randomization procedure.

The considerations presented in this article are subject to various limitations. To begin

with, we restricted the consideration to an equal allocation, non-adaptive, unstratified per-

muted block design. However, the derivation can directly be applied to unequal allocation

ratios and other restricted randomization procedures. As stratification induces balance across

strata, we expect that the results will be comparable to those observed in this investigation
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when stratified randomization is used. The effects of selection bias in covariate- or response-

adaptive randomization have not yet been studied in the literature. As their implementation

comes with additional complexities, we did not include these randomization procedures here,

but concentrated on one of the simplest, most frequently used randomization procedure.

Clearly, the settings we chose for the comparative study are quite limited. In particular, we

considered only two possible biasing policies. Other biasing policies might lead to other con-

clusions. The extent of the impact on the type I error probability depends on the number of

groups and the sample size. We particularly focused on small sample sizes, motivated by the

IDeAl FP7 project that investigated new statistical design and analysis methodologies in small

population clinical trials. Even so, the examples we presented offer a general impression, and

serve as a motivation for the scientist to conduct his own evaluation using the R package ran-

domizeR [20] and the tools provided in the supplementary material. Lastly, we acknowledge

that the assumption of normally distributed outcomes is very restrictive in practice. Other, for

example binary, outcomes could be incorporated through the use of generalized linear models

that would also admit the adjustment for covariates. However, to our knowledge, this is the

first investigation of multi-arm clinical trials with respect to selection bias. Subject to future

research should also be the relation of the type I error inflation to other measures for selection

bias, such as the predictability of the randomization sequence [6]. Furthermore, the effect

of other biases, such as chronological bias caused by time-trends (cf. [26]), should not be

neglected in the design and analysis stage of clinical trials.

Supporting information

S1 File. R-Code for the calculation of type I error probability under misspecification. The

functions contained in this file implement the biasing policies, the non-centrality parameters

of the doubly noncentral F-distribution, and the rejection probability.

(R)

S2 File. R-Code for conducting the simulation study. This code conducts the simulation

study that is the basis for Figs 1–5 and Table 3.

(R)

S3 File. Simulation settings. This comma seperated values file includes the simulation settings

that were the basis for Figs 1–5 and Table 3.

(CSV)

S4 File. R-Code for generation of the figures. This file includes the code for generating Figs

1–5 from the results of the simulation study.

(R)

S5 File. R-Code for conducting the selection bias adjusted test. This code conducts the sim-

ulation study and executes the selection bias adjusted test that is the basis for Fig 6.

(R)

Acknowledgments

The authors would like to thank Prof. William F. Rosenberger for the fruitful discussions and

his helful comments on the manuscript. We also would like to thank the referees whose helpful

comments helped to improve the clarity of the manuscript substantially.

Selection bias in randomized multi-arm clinical trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0192065 January 31, 2018 16 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192065.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192065.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192065.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192065.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0192065.s005
https://doi.org/10.1371/journal.pone.0192065


Author Contributions

Conceptualization: Diane Uschner, Ralf-Dieter Hilgers.

Formal analysis: Diane Uschner, Ralf-Dieter Hilgers.

Funding acquisition: Ralf-Dieter Hilgers, Nicole Heussen.

Investigation: Diane Uschner.

Methodology: Diane Uschner, Ralf-Dieter Hilgers, Nicole Heussen.

Project administration: Ralf-Dieter Hilgers.

Resources: Ralf-Dieter Hilgers.

Software: Diane Uschner.

Supervision: Ralf-Dieter Hilgers, Nicole Heussen.

Validation: Diane Uschner.

Visualization: Diane Uschner, Nicole Heussen.

Writing – original draft: Diane Uschner.

Writing – review & editing: Diane Uschner, Ralf-Dieter Hilgers, Nicole Heussen.

References
1. Jonker AH AM, Lau L, Ando Y, Baroldi P, Bretz F, Burman C, et al. Small Population Clinical Trials:

Challenges in the Field of Rare Diseases; 2016.

2. Freidlin B, Korn EL, Gray R, Martin A. Multi-arm clinical trials of new agents: some design consider-

ations. Clinical Cancer Research. 2008; 14(14):4368–71. https://doi.org/10.1158/1078-0432.CCR-08-

0325 PMID: 18628449

3. Suhr OB, Coelho T, Buades J, Pouget J, Conceicao I, Berk J, et al. Efficacy and safety of patisiran for

familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet Journal of Rare Diseases.

2015; 10(109):1–9.

4. Buyse M, Saad ED, Burzykowski T. Letter to the Editor on Adaptive Randomization of Neratinib in Early

Breast Cancer. New England Journal of Medicine. 2016; 375(16):83–4.

5. James ND, Sydes MR, Clarke NW, Mason MD, Dearnaley DP, Anderson J, et al. Systemic therapy for

advancing or metastatic prostate cancer (STAMPEDE): a multi-arm, multistage randomized controlled

trial. BJU INTERNATIONAL. 2008; 103(4):464–469. https://doi.org/10.1111/j.1464-410X.2008.08034.x

PMID: 18990168

6. Rosenberger WF, Lachin JM. Randomization in Clinical Trials- Theory and Practice. 2nd ed. Wiley

Series in probability and statistics; 2016. Available from: http://books.google.de/books?id=

Wy0hy4DPEPQC.

7. Blackwell D, Hodges J. Design for the control of selection bias. Annals of Mathematical Statistics. 1957;

28(2):449–460. https://doi.org/10.1214/aoms/1177706973

8. Efron B. Forcing a sequential experiment to be balanced. Biometrika. 1971; 58:403–417. https://doi.

org/10.1093/biomet/58.3.403

9. Smith RL. Sequential Treatment Allocation Using Biased Coin Designs. Journal of the Royal Statistical

Society Series B. 1984; 46(3):519–543.

10. Soares JF, Wu CFJ. Some restricted randomization rules in sequential designs. Commun Statist-Theor

Meth. 1983; 12(17):2017–203. https://doi.org/10.1080/03610928308828586

11. Proschan M. Influence of selection bias on type 1 error rate under random permuted block designs. Sta-

tistica Sinica. 1994; 4:219–231.

12. Rosenberger WF, Lachin JM. Randomization in Clinical Trials- Theory and Practice. Wiley Series in

probability and statistics; 2002. Available from: http://books.google.de/books?id=Wy0hy4DPEPQC.

13. Berger VW. Quantifying the Magnitude of Baseline Covariate Imbalances Resulting from Selection Bias

in Randomized Clinical Trials. Biometrical Journal. 2005; 47(2):119–127. https://doi.org/10.1002/bimj.

200410106 PMID: 16389910

Selection bias in randomized multi-arm clinical trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0192065 January 31, 2018 17 / 18

https://doi.org/10.1158/1078-0432.CCR-08-0325
https://doi.org/10.1158/1078-0432.CCR-08-0325
http://www.ncbi.nlm.nih.gov/pubmed/18628449
https://doi.org/10.1111/j.1464-410X.2008.08034.x
http://www.ncbi.nlm.nih.gov/pubmed/18990168
http://books.google.de/books?id=Wy0hy4DPEPQC
http://books.google.de/books?id=Wy0hy4DPEPQC
https://doi.org/10.1214/aoms/1177706973
https://doi.org/10.1093/biomet/58.3.403
https://doi.org/10.1093/biomet/58.3.403
https://doi.org/10.1080/03610928308828586
http://books.google.de/books?id=Wy0hy4DPEPQC
https://doi.org/10.1002/bimj.200410106
https://doi.org/10.1002/bimj.200410106
http://www.ncbi.nlm.nih.gov/pubmed/16389910
https://doi.org/10.1371/journal.pone.0192065


14. Kennes LN, Cramer E, Hilgers RD, Heussen N. The impact of selection bias on test decision in rado-

mized clinical trials. Statistics in Medicine. 2011; 30:2573–2581. PMID: 21717489

15. Tamm M, Cramer E, Kennes LN, Heussen N. Influence of selection bias on the test decision—a simula-

tion study. Methods of Information in Medicine. 2012; 51:138–143. https://doi.org/10.3414/ME11-01-

0043 PMID: 22101391

16. Berger VW, Bejleri K, Agnor R. Comparing MTI randomization procedures to blocked randomization.

Statistics in Medicine. 2016; 35(5):685–694. https://doi.org/10.1002/sim.6637 PMID: 26337607

17. ICH E9. Statistical principles for clinical trials; 1998.

18. Johnson NL, Kotz S, Balakrishnan N. Continuous Univariate Distributions. vol. 2. New York, NY: John

Wiley & Sons; 1995.

19. Searle SR. Linear Models For Unbalanced Data. New York, NY: John Wiley & Sons, Inc.; 1987.

20. Uschner D, Schindler D, Hilgers RD, Heussen N. randomizeR: An R Package for the Assessment and

Implementation of Randomization in Clinical Trials. JSS. 2018; Forthcoming.

21. Fox J, Weisberg S. An R Companion to Applied Regression. 2nd ed. Thousand Oaks CA: Sage; 2011.

Available from: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion.

22. Kennes LN, Rosenberger WF, Hilgers RD. Inference for blocked randomization under a selection bias

model. Biometrics. 2015; 71(4):979–984. https://doi.org/10.1111/biom.12334 PMID: 26099068

23. Berger V, Ivanova A, Knoll D. Minimizing predictability while retaining balance through the use of less

restrictive randomization procedures. Statistics in Medicine. 2003; 22:3017–3028. https://doi.org/10.

1002/sim.1538 PMID: 12973784

24. Hilgers RD, Uschner D, Rosenberger WF, Heussen N. ERDO—A framework to select an appropriate

randomization procedure for clinical trials. BMC Medical Research Methodology. 2017; 17:159. https://

doi.org/10.1186/s12874-017-0428-z PMID: 29202708

25. Schulz KF, Altman DG, Moher D. CONSORT 2010 Statement: Updated Guidelines for Reporting Paral-

lel Group Randomised Trials. BMJ. 2010; 340(c332).

26. Tamm M, Hilgers RD. Chronolgical bias in randomized clinical trials under different ttype of unobserved

time trends. Meth Inf Med. 2014; 53(6):501–510. https://doi.org/10.3414/ME14-01-0048

Selection bias in randomized multi-arm clinical trials

PLOS ONE | https://doi.org/10.1371/journal.pone.0192065 January 31, 2018 18 / 18

http://www.ncbi.nlm.nih.gov/pubmed/21717489
https://doi.org/10.3414/ME11-01-0043
https://doi.org/10.3414/ME11-01-0043
http://www.ncbi.nlm.nih.gov/pubmed/22101391
https://doi.org/10.1002/sim.6637
http://www.ncbi.nlm.nih.gov/pubmed/26337607
http://socserv.socsci.mcmaster.ca/jfox/Books/Companion
https://doi.org/10.1111/biom.12334
http://www.ncbi.nlm.nih.gov/pubmed/26099068
https://doi.org/10.1002/sim.1538
https://doi.org/10.1002/sim.1538
http://www.ncbi.nlm.nih.gov/pubmed/12973784
https://doi.org/10.1186/s12874-017-0428-z
https://doi.org/10.1186/s12874-017-0428-z
http://www.ncbi.nlm.nih.gov/pubmed/29202708
https://doi.org/10.3414/ME14-01-0048
https://doi.org/10.1371/journal.pone.0192065

