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Pathogens manipulate the cellular mechanisms of host organisms via pathogen–
host interactions (PHIs) in order to take advantage of the capabilities of host cells,
leading to infections. The crucial role of these interspecies molecular interactions
in initiating and sustaining infections necessitates a thorough understanding of the
corresponding mechanisms. Unlike the traditional approach of considering the host
or pathogen separately, a systems-level approach, considering the PHI system as
a whole is indispensable to elucidate the mechanisms of infection. Following the
technological advances in the post-genomic era, PHI data have been produced in
large-scale within the last decade. Systems biology-based methods for the inference
and analysis of PHI regulatory, metabolic, and protein–protein networks to shed light
on infection mechanisms are gaining increasing demand thanks to the availability
of omics data. The knowledge derived from the PHIs may largely contribute to the
identification of new and more efficient therapeutics to prevent or cure infections.
There are recent efforts for the detailed documentation of these experimentally
verified PHI data through Web-based databases. Despite these advances in data
archiving, there are still large amounts of PHI data in the biomedical literature yet
to be discovered, and novel text mining methods are in development to unearth
such hidden data. Here, we review a collection of recent studies on computational
systems biology of PHIs with a special focus on the methods for the inference and
analysis of PHI networks, covering also the Web-based databases and text-mining
efforts to unravel the data hidden in the literature.

Keywords: pathogen–host interaction, computational systems biology, bioinformatics, omics data, protein–
protein interaction, metabolic interaction, gene regulatory network, drug target

Introduction

Infectious diseases are one of the preliminary causes of death worldwide each year. Emerging
and reemerging diseases and drug resistant pathogens have made the problem more serious
for human beings. Therefore, novel therapeutic strategies, called theranostics, are increasingly
investigated to fight the biological threats. These strategic solutions require a systems biolog-
ical approach with a thorough understanding of the underlying mechanisms of infections by
focusing on molecular interactions between pathogenic and host organisms (Morens et al., 2004;
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Murali et al., 2011; Guthke et al., 2012; Durmuş Tekir and Ülgen,
2013). Systems biology is an interdisciplinary research field in
life sciences focusing on the study of non-linear interactions
among biology entities through the integration and combina-
tion of biomolecular and medical sciences with mathematical,
computational, and engineering disciplines (Kitano, 2002). By
modeling biological phenomena, systems biology uses a more
holistic approach based on omics data instead of the traditional
reductionism focusing at only a few molecules and interactions.
The pathogen–host interactions (PHIs) may be between pro-
teins, nucleotide sequences, metabolites, and small ligands. The
protein–protein interactions (PPIs) have been identified as the
most important type in the functioning of PHI systems and there-
fore are the most studied type (Stebbins, 2005; Korkin et al.,
2011; Zoraghi and Reiner, 2013). However, non-coding RNAs
(ncRNAs) and metabolites have also been reported to have criti-
cal functional roles in virus–host and bacteria–host interactions,
respectively (Gottwein and Cullen, 2008; Skalsky and Cullen,
2010; Eisenreich et al., 2013; Saayman et al., 2014).

Different levels of omics data collected from pathogens and/or
infected cells are crucial components that drive bioinformatic
analyses facilitating the construction and analysis of infection-
specific gene-regulatory, metabolic, and protein–protein net-
works (Westermann et al., 2012; Schulze et al., 2015). Such
network-based computational systems biology analyses of PHI-
based omics data enable the elucidation of infection mechanisms
and their dynamics, the identification of potential drug targets
for the next-generation antimicrobial therapeutics, and the devel-
opment of novel and personalized strategies for the prevention
and treatment of infections. With an increasing amount of exper-
imental PHI data, Web-based databases were developed to derive
and provide pathogen–host interactome data, usually focusing on
specific pathogens or hosts (Wattam et al., 2014; Ako-Adjei et al.,
2015; Calderone et al., 2015; Guirimand et al., 2015). Although
the available databases are promising in data archiving, a huge
amount of PHI data is not stored in any of these databases,
since these data are buried in the literature. Therefore, there
is an urgent need for novel text mining methods specific for
PHI data retrieval. In this paper, the efforts on the collection of
PHI-based omics data are reviewed first. Next, a review of the
computational systems biology analyses of three major types of
PHI networks is provided. Then, the available PHI databases and
the current snapshot of the literature on text mining for PHI data
are presented.

Omics Data Reflecting PHI Networks

The systems biology approaches with genome-wide molecular
profiling using high-throughput techniques to generate omics
data are changing the face of infection biology together with the
computational methods for heterogeneous data management and
integrative analysis via mathematical modeling (Guthke et al.,
2012; Law et al., 2013). New insights in the microbial and viral
pathogenesis, in particular in the host’s immune response to con-
tact with pathogens, offer opportunities for better diagnostics,
therapeutics, and vaccines. Thus, systems biology of infection

allows to yield novel therapeutic targets (Sarker et al., 2013)
and to establish individualized or personalized medicine. The
integrative personal omics profile (iPOP) combines genomics,
transcriptomics, proteomics, metabolomics, and autoantibody
profiles from a single individual over a 14-month period (Chen
et al., 2012; Li-Pook-Than and Snyder, 2013).

There are various platforms for handling of measured data
from samples, data storage and exchange, data pre-processing
and data analysis. Powerful platforms for data management in
systems biology have recently become available and are stan-
dardized step by step by the Functional Genomics Data Society1
(FGED, founded in 1999 as MGED; Brazma et al., 2006). Several
systems biology projects in Europe including the ones dedicated
to PHI research use the SysMO-DB/SEEK system for sharing
data, knowledge (including Standard Operating Procedures –
SOPs) and mathematical models2 (Wolstencroft et al., 2011).
For the management of genomics, transcriptomics, and (2D-
gel) proteomics data in infection research, the data warehouse
‘OmniFung’ was established to support research on fungi–host
interactions3 (Albrecht et al., 2011, 2007).

The free, open source and open development software project
Bioconductor, which is primarily based on the statistical R pro-
gramming language, provides 934 software packages, 894 annota-
tion and 224 experimental data sets for the bioinformatic analysis
and comprehension of high-throughput genomic data4 (Version
3.0). These packages as well as other R packages not included in
the Bioconductor project are useful for the advanced, in particu-
lar integrative, analysis of omics data and modeling of PHIs. To
identify genes, proteins or metabolites of interest for biomarker
discovery or drug target prediction by supervised machine learn-
ing methods, there are many data mining tools available. For
instance, WEKA5 or RapidMiner6 is used to characterize the
response of the host immune system by decision tree analysis of
flow cytometric data (Simon et al., 2012). In addition, there are
platforms and software tools for the integrative and explorative
analysis and visualization of data from the different omics levels
of PHIs (Horn et al., 2014).

PHI-Based Genome and Transcriptome Data
The genomic information from the host and the pathogen rep-
resents the basis for all further molecular analyses and bioinfor-
matic investigations of PHI systems. Thus, genome sequencing is
fundamental. It helps to improve diagnosis, typing of pathogen,
virulence and antibiotic resistance detection, and development
of new vaccines and culture media. Single nucleotide poly-
morphism (SNP) typing is important for both identification
and characterization of variants of pathogens (strains, clinical
isolates) as well as to study the susceptibility of humans for
certain infections. In the last decade, there was, and in the
future there will be, an explosion of genome sequence data.

1http://fged.org
2www.sysmo-db.org
3www.omnifung.hki-jena.de
4http://bioconductor.org
5http://www.cs.waikato.ac.nz/ml/weka
6www.rapidminer.de
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The new sequencing technologies enable small research units
to create huge genome datasets at low cost in short time. As a
result, handling, comparing, and extracting useful information
from millions of sequences becomes more and more challeng-
ing, i.e., increased efforts in computational biology are urgently
needed. In particular, sequencing is used for genomic and tran-
scriptomic characterization of new emerging pathogens. Whole-
genome sequencing based phylogenetic studies have implications
for understanding the evolution of the PHIs as well as tracking
and possibly preventing infection diseases as performed for the
Enterotoxigenic Escherichia coli (ETEC), a major cause of infec-
tious diarrhea (vonMentzer et al., 2014).Metagenomic andmeta-
transcriptomic studies of pathogens revealed how pathogenic
microorganisms adapt to hosts, e.g., plants (Guttman et al.,
2014).

The first step of genome sequence analysis, the assembling
of genome sequence data into a single genomic contig, may be
difficult, in particular due to assembling repeated sequences if
reference genomes are not available. Then, additional informa-
tion may be required to resolve the remaining DNA regions.
The next step, the functional annotation of virulence-relevant
pathogens and focusing on host-interaction genes, is often dif-
ficult as the genes of interest for PHIs are frequently species-
specific and, thus, studies of gene homologies may not be helpful.
The situation would be improved by the databases of protein
families involved in host interactions, which incorporate the
currently used gene names, sequence motifs, gene functions,
and experimental results (see section “Web-Based Databases
for PHI Systems”). On the other hand, comparative genomics
can provide insights into molecular pathogenesis, host speci-
ficity, and evolution of pathogens. Next generation sequenc-
ing (NGS) has revolutionized the molecular investigation of
the diversity of pathogens on the genomic and transcriptomic
level. It enables an efficient analysis of complex human micro-
floras, both commensal and pathological, through metagenomic
methods. Genomic sequences and their annotations are pro-
vided through several portals, such as the Genomes Online
Database7.

In contrast to the static information from the genome,
the transcriptome reflects the dynamics of PHI systems that
results in temporal profiles of gene expression with changes in
the scale of minutes and hours. More and more, beside the
protein-coding mRNAs, also various non-conding small RNAs
are investigated. For instance, in Staphylococcus aureus, a lead-
ing pathogen for animals and humans, about 250 regulatory
RNAs were found (Guillet et al., 2013). Repositories for tran-
scriptome data, such as Gene Expression Omnibus8 (GEO)
and ArrayExpress9 freely distribute microarray and NGS (RNA-
Seq) data as well as other forms of high-throughput functional
genomics data. In GEO, data from more than 1600 organ-
isms, both pathogens and hosts, are accessible. For instance, for
the pathogens Mycobacterium tuberculosis, S. aureus, Candida
albicans, and Helicobacter pylori transcriptome data from 1,855,

7https://gold.jgi-psf.org
8http://www.ncbi.nlm.nih.gov/geo
9https://www.ebi.ac.uk/arrayexpress

1,777, 1,627, and 1,284 samples are available, respectively. Other
data sets monitor the transcriptome of the host’s response,
e.g., Homo sapiens and Mus musculus (GSE56091, GSE56093).
Some monitor data from host and pathogen simultaneously,
e.g., S. aureus and the zebrafish Danio rerio (GSE32119). NGS
has opened the door for simultaneous transcriptome analy-
sis by the so-called dual RNA-Seq (Tierney et al., 2012a,b;
Westermann et al., 2012; Camilios-Neto et al., 2014; Longo
et al., 2014; Pittman et al., 2014; Xu et al., 2014; Schulze et al.,
2015).

PHI-Based Proteome and Metabolome Data
Proteins are key players in PHIs, in particular in pathogen
recognition as well as innate and adaptive immune responses.
Pathogen-associated molecular patterns (PAMPs) are molecules
or small molecular motifs within a group of pathogens (e.g., the
protein flagellin, lipopeptides, lipopolysaccharide – LPS) that are
recognized by proteins, the so-called pattern recognition recep-
tors (PRRs), such as Toll-like receptors (TLRs; Qian and Cao,
2013). For instance, TLR4 recognizes bacterial LPS, and TLR5
recognizes bacterial flagellin. The PRRs stimulate signal transduc-
tion via pathways, e.g., the tumor necrosis factor alpha (TNFα)
signaling or the interferon-gamma (IFNγ)-receptor pathway
including the JAK-STAT-pathway. IFNγ is a cytokine that is a
key player in innate and adaptive immunity against viral, as well
as some microbial and protozoan infections. The nuclear factor
NF-κB is a protein, a transcription factor, that is activated by var-
ious intra- and extra-cellular stimuli such as bacterial or viral
products, for instance via the TLRs signaling and induces the
expression of pro-inflammatory cytokines (interleukines, TNFα,
Type I interferones). Thus, the application of proteomics is cru-
cial in the investigation of PHI systems and for the above men-
tioned iPOP, e.g., the immune profiling of patients (Chen et al.,
2012).

By dedicated bioinformatic pipelines, a description of
pathogen proteomes and their interactions within the context
of human host has a strong impact in both diagnostic and
clinical treatment of the patient. In the last few years, several
advanced proteomic techniques have been established provid-
ing individual proteome charts of both pathogens and hosts,
including antimicrobial or antimycotic resistance profiling and
immune profiling of the patient. Proteome analysis is hampered
by the extremely divergent biochemical properties of the indi-
vidual proteins, making an entire view of the proteome almost
impossible (Otto et al., 2014). The coupling of multidimensional
separations with mass spectrometry (MS) for protein and pep-
tide analyses via, for instance, the matrix-assisted laser desorption
ionization (MALDI) and electrospray ionization (ESI) techniques
resulted in powerful MS instrumentations. Many of these MS-
based techniques, e.g., MALDI-TOF, have been used in clinical
microbiology and research (Del Chierico et al., 2014; Otto et al.,
2014). For PHI analyses, the cell wall proteins and the secretomes
are of special interest to study the PAMPs and PRRs as well as
their interplay (Schmidt and Völker, 2011; Zheng et al., 2011;
Heilmann et al., 2012; Di Carli et al., 2012). PHI analysis stud-
ies that focus on the host side studying the immune response
(Hartlova et al., 2011; Heyl et al., 2014) or on the pathogen side
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(Bröker and van Belkum, 2011; Cash, 2011; Ahmad et al., 2012)
have also been conducted. The integrative analysis of proteome
data with other omics data for both pathogens and hosts is a
very challenging task in bioinformatics (Albrecht et al., 2010,
2011).

Stanberry et al. (2013) demonstrated on the host side a strong
association between the metabolome profiles, i.e., the metabo-
lite expression levels of differentially expressed pathways, and
their temporal patterns at each time point with the disease
status of viral infection with a human rhinovirus and a respi-
ratory syncytial virus. For metabolic studies on the pathogen
side, there are in silico strategies to identify effective targets
for anti-infective drugs based on constraint-based modeling of
genome-scale metabolic networks (Chavali et al., 2012; see sec-
tion “PHI Metabolic Network Models”). A prominent type of
PHIs is the production of toxins by the pathogens that attack the
host. For instance, gliotoxin produced by the human-pathogen
fungus Aspergillus fumigatus modulates the immune response
and induces apoptosis in the host (Gardiner and Howlett, 2005;
Scharf et al., 2012). Another type of PHI is due to the pathogens
that frequently utilize substrates from the host (Rohmer et al.,
2011). The gene regulatory network (GRN) model-assisted stud-
ies of the uptake of essential substrates such as iron (Linde et al.,
2010, 2012) or nitrogen sources (Ramachandra et al., 2014) by
such pathogens address specific but important aspects of PHIs.

Computational Systems Biology of PHI
Networks

A systems biology approach is crucial to model and understand
PHIs, in particular interactions between the immune system of
humans or animals, and the pathogens (Berglund et al., 2009;
Guthke et al., 2012; Horn et al., 2012; Zhou et al., 2013). Systems
biology of PHIs aims at describing and analyzing the confronta-
tion of the host with viral, bacterial, and fungal pathogens and
parasites by the development of testable computational models of
PHIs. The predictive power of such models enables diagnosis and
therapy by the prediction of biomarkers and drug targets. Systems
biology of PHIs includes an integrative analysis and modeling
of genome-wide and/or spatio-temporal data from both the host
and the pathogen, or the response of the host or pathogenic
cells to defined perturbations that simulate conditions during
infection.

At the computational side, systems biology of PHIs comprises:

- Modeling of molecular mechanisms of infections,
- Modeling of non-protective and protective immune defenses
against pathogens to generate information for possible
immune therapy approaches,

- Modeling of PHI dynamics and identification of biomarkers
for diagnosis and for individualized therapy of infections,

- Identifying essential virulence determinants and host factors,
and thereby predicting potential drug targets

- Understanding of PHIs, in particular the immune system and
the immune evasion of the pathogens, as the result of evolu-
tionary long-term adaptation and selection.

Both the innate and the adaptive immune system comprise
cell-mediated and humoral components. Thus, systems biology
of immune defense has to handle multi-scale modeling from
molecular to systemic/organ level. The same is required for the
pathogen side. The interaction of cellular components is pref-
erentially the area of the agent-based modeling, whereas the
humoral immunity can be modeled by ordinary differential equa-
tions (ODEs). While the innate immune response is non-specific
and acts immediately, the adaptive immune response is pathogen
and antigen specific with time lag and immunological memory.
Thus, the temporal organization and population dynamics have
to be modeled in a different manner for the innate and adaptive
immune system in interaction with the pathogen (Perelson, 2002;
Gottschalk et al., 2013; Six et al., 2013; Panayidou et al., 2014).

The study of the interplay between pathogens and immune
cells remains a challenging task due to its complexity. While the
emerging image-systems biology of cellular interaction (Mech
et al., 2011; Hünniger et al., 2014; Kraibooj et al., 2014;
Pollmächer and Figge, 2014) is here out of the scope, the present
review focuses on the molecular, mainly omics data-based level.
Here, a difficulty arises to separate host’s transcripts, proteins,
and metabolites from that in the pathogen and to extract them
in a balanced amount for a simultaneous monitoring of these
molecules so that the network models of PHIs are inferred.
Therefore, most studies focus either on the pathogen or the
host side with a defined and controlled change of the respective
other side as an external perturbation, i.e., considering an input
from the outside of the investigated system. Thus, to simplify
the study, the PHIs have been studied mainly in one direction
either from pathogen to host or from host to pathogen. Only
very recently, the bi-directional interaction of pathogen and host
became observable simultaneously using the so-called dual RNA-
Seq data generated by NGS of the transcriptome of pathogen
and host (see section “PHI-Based Genome and Transcriptome
Data”).

Understanding the evolutionary dynamics of PHIs by math-
ematical modeling in terms of both molecular mechanisms and
selective forces is important in order to design drugs that will
be effective in the long term, i.e., to avoid or to overcome
resistance to antibiotics (Guo et al., 2011; Lima et al., 2013;
Palmer and Kishony, 2013). Finally, computational systems biol-
ogy approaches are and will be used to select pathogen-host
drug targets and to develop novel anti-infectives and vaccines
(Brown et al., 2011; Mooney et al., 2013; Sarker et al., 2013;
Rienksma et al., 2014).

PHI Regulatory Network Models
Biological network models are widely used to improve our under-
standing of infectious diseases (Mulder et al., 2014). There are
many small-scale models (mainly ODE-based), which describe
PHIs phenomenologically (Baccam et al., 2009; Saenz et al., 2010;
Manchanda et al., 2014). These models without molecular speci-
fication are out of the scope of this review, as they usually do not
predict PHIs on the molecular level. Here, omics data based PHI
models will be reviewed.

Computational modeling of GRNs reveals the molecular logic
of adaptation of pathogens to their hosts, the immune evasion of
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the pathogen as well as the immune response of the host to infec-
tion with pathogens. GRNs provide causal explanations for the
differentiation, the developmental and effector states, as well as
the fate dynamics of immune cells (Singh et al., 2014). Finally,
GRNs may also describe the interaction of the two networks,
one of the pathogen and the other of the host (see Figure 1
for example). The inference of GRN models from gene expres-
sion data is a problem of great importance for PHI studies.
Various reverse engineering methods have been proposed, which
include methods based on Boolean networks, Bayesian networks,
differential or difference equations, and graphical Gaussian mod-
els. In general, due to the high dimensionality (thousands of
genes and proteins in both host and pathogen organisms) ver-
sus the limited number of samples (not more than hundreds
in the case of steady state data from knock-out (KO) mutants;
only a few samples in in vivo studies of PHI monitored at,
e.g., 5–10 time points), the GRN inference is underdetermined
implying that there could be many equivalent (indistinguish-
able) solutions. Motivated by this fundamental limitation, there
are various approaches for GRN inference. Again, there are out-
standing review articles covering the long-standing problem of
gene expression data-driven GRN inference (De Jong, 2002; van
Someren et al., 2002; Gardner and Faith, 2005; Bansal et al.,
2007; Emmert-Streib et al., 2014; Linde et al., 2015). One of the
conclusions from the DREAM initiative10 (Dialog for Reverse
Engineering Assessment of Methods; Prill et al., 2010) that per-
formed a comprehensive blind assessment of over 30 network

10www.the-dream-project.org

inference methods was that no single inference method per-
forms optimally across all datasets. Integration of predictions
from multiple inference methods shows more robustness and
higher performance across diverse datasets (Marbach et al., 2012).
For instance, the algorithm TRaCE performs an ensemble infer-
ence of GRNs, which takes into account the inherent uncertainty
associated with discriminating direct and indirect gene regula-
tions from steady-state data of KO experiments (Ud-Dean and
Gunawan, 2014). Another group of GRN inference approaches
includes prior knowledge as reviewed by (Hecker et al., 2009; Isci
et al., 2014) or further experimental data (Greenfield et al., 2010).
A third group of GRN algorithms restricts the GRN to static net-
works inferred from steady state data (e.g., from KO mutants of
the pathogen) or to small-scale networks with a few nodes (genes,
proteins), where the pre-selection of them is the critical point
(Nakajima and Akutsu, 2014).

The genome-wide GRN model inference, when restricted to
the static network models of thousands of genes, requires large
gene expression data sets and prior-knowledge in high quality
and quantity, which is not the case for most of the pathogens
of interest as demonstrated for the human-pathogen C. albi-
cans (Altwasser et al., 2012). In contrast to the genome-wide
GRN models, the small-scale network models that take into
account 5–50 genes or proteins are often used for PHI stud-
ies. These models do not represent the holistic view as it is
claimed in systems biology, but they generate hypotheses of
PHIs that drive further experimental work in infection biology.
Afterward, the GRN-based in silico predictions have to be vali-
dated experimentally. This approach of focused small-scale GRN

FIGURE 1 | Network model describing pathogen-host interactions between C. albicans and murine dendritic cells based on dual RNA-Seq data
(modified from Tierney et al., 2012b).
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inference was reported particularly for human–pathogen fungal
infection (Linde et al., 2010, 2012; Ramachandra et al., 2014)
by using the ODE-based NetGenerator algorithm. The algo-
rithm was primarily introduced to model the immune response
to bacterial infection (Guthke et al., 2005; Weber et al., 2013).
This algorithm was also applied for the inference of the PHIs
of the human–pathogen fungus C. albicans with murine den-
dritic cells based on dual RNA-Seq data (Tierney et al., 2012b).
Here for instance, based on the inferred GRN model shown
in Figure 1, an inhibition of the expression of the protein
HAP3 in the fungus by the murine pentraxin (PTX3) was
computationally predicted and, afterward, experimentally vali-
dated.

PHI Metabolic Network Models
Pathogens are dependent on the host environment for the sub-
strates required to maintain a metabolically active state (Chavali
et al., 2012; Eisenreich et al., 2013). Therefore, the exchange
of several metabolites takes place between pathogens and their
host. Besides, the production of virulence factors by the pathogen
requires energy, and, hence, an active metabolism, making the
nutrients in the host environment crucial for the infection
to occur (Milenbachs et al., 1997). The direct functional link
between metabolism and virulence is also supported by the
finding that metabolic and virulence genes are located on the
same pathogenicity island for some pathogens (Rohmer et al.,
2011; Heroven and Dersch, 2014). In a different approach, the
authors used a network-based computational analysis to elucidate
common targeting strategies of bacteria and viruses on human
(Durmuş Tekir et al., 2012), based on pathogen–host PPIs stored
in the PHISTOdatabase (Durmuş Tekir et al., 2013). Their results
revealed metabolism as a common strategy of both pathogen
types to target human cells. The role of metabolism in the patho-
genesis was also emphasized by others (Kafsack and Llinás, 2010).
Therefore, metabolism is a candidate target for anti-microbial
therapies.

There are well-established bioinformatic methods for
metabolic network reconstruction, based on DNA genome
sequences and constraint based modeling covered by out-
standing review articles (Feist et al., 2008; Oberhardt et al.,
2009; Ruppin et al., 2010; Bordbar and Palsson, 2012). The in
silico methods for metabolic network reconstruction are highly
valuable for understanding the physiology of the pathogen, e.g.,
the biosynthesis of toxins that attack the host or the substrate
requirement that shows the dependency of the pathogen on
the environment within the host. At the host side, the human
metabolic network reconstruction may also have an impact for
drug discovery and development (Ma and Goryanin, 2008).
A systematic modeling of the metabolic trafficking between
pathogens and its hosts first started with the constraint-based
modeling of the Gram-negative bacterial pathogen, Salmonella
typhimurium (Raghunathan et al., 2009). The authors recon-
structed a genome-scale metabolic model for the pathogen
in question, and then simulated its survival capabilities with
the flux-balance approach (Kauffman et al., 2003; Orth et al.,
2010). When they used a media mimicking host-cell nutrient
environment (e.g., macrophage) rather than laboratory media,

their correct predictions considerably increased. They also
showed that the use of gene expression data can lead to a
better inference of active transport mechanisms, and hence
the host cell environment. In another study, the reconstructed
metabolic network of the malaria-causing protozoan parasite,
Plasmodium falciparum, was embedded into its host, erythrocyte,
and the combined pathogen-host network was simulated via
flux-balance analysis (FBA; Huthmacher et al., 2010). The
novelty here was to take also the host network into account to
predict metabolite exchanges between the parasite and the host,
rather than only considering the host environment to account
for pathogen–host metabolic interactions. Such a consideration
is important since a pathogen infection causes pathogen-
specific or common responses in the host metabolic pathways
from central carbon metabolism to fatty acid and amino acid
metabolisms (Eisenreich et al., 2013). Their analysis resulted in
the prediction of antimalarial drug targets (Huthmacher et al.,
2010).

In a more systematic study, genome scale metabolic networks
ofMycobacterium tuberculosis and its host, alveolar macrophage,
were reconstructed in an integrated fashion and the integrated
pathogen-host metabolic model was used to analyze infection
mechanisms and related different pathological states (Bordbar
et al., 2010). The reconstructed joint metabolic network covered
2071 genes (661 for the pathogen, 1410 for the macrophage),
controlling a total of 4489 reactions. Integrative analysis of
the network with the transcriptome data from the infected
macrophage cells enabled the inference of the induced changes
in the pathogen. One important issue in the network based drug-
target identification is the selectivity of the identified targets. The
candidate target must make no harm to the host. This was taken
into consideration by (Bazzani et al., 2012), where they used
the integrated pathogen-host metabolic model of Plasmodium
falciparum and hepatocyte, the first human infection site for
malaria parasites. The flux balance approach was combined with
48 experimental antimalarial drug targets to identify the targets
which are essential for the parasite but not essential for hepa-
tocyte metabolism. The in silico analysis led to the ranking of
the identified targets with respect to their reducing effect on the
cellular fitness.

One key point in the elucidation of metabolic mechanisms
both in the host and in the pathogen is to correctly characterize
the nutrient availability for the pathogen in the host environment.
This characterization is also important for successful modeling
attempts. The available nutrients shape the active parts of the
pathogen metabolism, and also the depletion of different metabo-
lites may trigger different responses in the host (Bumann, 2009;
Rohmer et al., 2011; Eisenreich et al., 2013; Sasikaran et al., 2014).
Therefore, nutritional environment has a crucial role to under-
stand the basis of infection mechanisms (Brown et al., 2008;
Gouzy et al., 2014). Systems-level experimental approaches such
as lipidomics and metabolomics are getting popular to deci-
pher the pathogen–host nutritional interactions (Wenk, 2006;
Olszewski et al., 2009; Antunes et al., 2011). A recent attempt
to identify active metabolic routes from the host environment to
pathogen inside by using 13C flux spectral analysis (Beste et al.,
2013) provided a quantitative measure of interactions between
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Mycobacterium tuberculosis and its host macrophage. The exper-
imental labeling data enabled the identification of substrates used
by the pathogen. Another elegant study used 13C-labeling based
fluxomics as well as metabolomics and proteomics to shed light
on the metabolic interplay between Shigella flexneri and HeLa
epithelial cells (Kentner et al., 2014). They were able to iden-
tify host metabolites that contribute to the growth of Shigella as
substrates.

Similar to the use of gene expression data to infer GRNs as
discussed in the previous section, metabolome data obtained
from the infected cells or PHI systems can be used to infer
infection-specific metabolic networks by using reverse engi-
neering approaches. Taking into account several bioinformat-
ics methods proposed for this type of inference as reviewed
recently (Cakir and Khatibipour, 2014), we believe the field
of infection will witness promising applications in the coming
years.

PHI Protein–Protein Network Models
In the post-genomic era, genes and the corresponding pro-
teins are studied thoroughly, allowing the identification of
intra- and interspecies protein interaction networks. Following
the development of experimental techniques to produce large-
scale molecular interaction data (Fields and Song, 1989; Fisher
et al., 2002; Gavin et al., 2002; Ho et al., 2002), the first large-
scale intraspecies PPIs were produced experimentally (Finley
and Brent, 1994; Bartel et al., 1996; Fromont-Racine et al.,
1997; Flajolet et al., 2000; Ito et al., 2000; McCraith et al.,
2000; Walhout et al., 2000; Rain et al., 2001). On the other
hand, the initial efforts to identify large scale interspecies pro-
tein interaction data for PHI systems have been performed
since 2007 (Table 1). The first large scale PHI examples

were for commonly observed and human-threatening viruses
and bacteria. These were firstly for viral pathogens; Epstein-
Barr virus (EBV; Calderwood et al., 2007; Forsman et al.,
2008), Hepatitis C virus (HCV; De Chassey et al., 2008;
Tripathi et al., 2010; Dolan et al., 2013; Ngo et al., 2013),
Human Immunodeficiency Virus (HIV; Gautier et al., 2009;
Jäger et al., 2012), Influenza A virus (Shapira et al., 2009),
Dengue virus (DENV; Khadka et al., 2011), Measles virus
(MV; Komarova et al., 2011), and Human Respiratory Syncytial
Virus (HRSV; Wu et al., 2012). On the other hand, the large
scale experimental detection of bacteria-human protein interac-
tion networks was performed for Bacillus anthracis, Francisella
tularensis, and Yersinia pestis (Dyer et al., 2010; Yang et al.,
2011).

As an initial large scale virus–human PHI network example,
protein interactions between the herpesvirus EBV and human
were mapped by the yeast two hybrid (Y2H) method, provid-
ing 173 PHIs between 40 EBV proteins and 112 human pro-
teins (Calderwood et al., 2007). EBV is the infectious cause of
several human diseases such as Burkitt’s lymphoma, Hodgkin’s
disease, and nasopharyngeal carcinoma. This EBV–human pro-
tein interaction network enabled the initial observations about
EBV strategies (i.e., targeting hub and bottleneck human pro-
teins) for replication and persistence within the host. For the
same viral system, 147 human protein interactors for EBV
nuclear antigen 5 (EBNA5) were identified with LC-MS/MS in
a following study (Forsman et al., 2008). Multifunctional viral
protein EBNA5 is already known to be critical in EBV patho-
genesis, and these PHI data provided further insights on its
molecular mechanisms during infection. The identified interac-
tions between EBNA5 and the human proteins functioning in
protein control systems that recognize proteins with abnormal

TABLE 1 | The large-scale pathogen–human PPI networks in chronological order.

Pathogen name Pathogen type Number of
PHIs

Number of interacting
pathogen proteins

Number of interacting
human proteins

Reference

EBV DNA virus 173 40 112 Calderwood et al. (2007)

HCV RNA virus 481 11 421 De Chassey et al. (2008)

EBV DNA virus 147 1 147 Forsman et al. (2008)

HIV-1 Retrovirus 183 1 183 Gautier et al. (2009)

Influenza A virus
(H1N1 A/PR/8/34)

RNA virus 135 10 87 Shapira et al. (2009)

Influenza A virus
(H3N2 A/Udorn/72)

RNA virus 81 10 66 Shapira et al. (2009)

Bacillus anthracis Gram-positive bacteria 3,073 943 1,748 Dyer et al. (2010)

Yersinia pestis Gram-positive bacteria 4,059 1,218 2,108 Dyer et al. (2010)

Francisella Tularensis Gram-negative bacteria 1,383 349 999 Dyer et al. (2010)

HCV RNA virus 56 2 56 Tripathi et al. (2010)

DENV RNA virus 139 10 105 Khadka et al. (2011)

MV RNA virus 245 1 245 Komarova et al. (2011)

Y. pestis Gram-positive bacteria 204 66 109 Yang et al. (2011)

HIV-1 Retrovirus 497 16 435 Jäger et al. (2012)

30 viral species DNA and RNA viruses 1681 70 579 Pichlmair et al. (2012)

HRSV RNA virus 221 1 221 Wu et al. (2012)

HCV RNA virus 112 7 94 Dolan et al. (2013)

HCV RNA virus 103 1 103 Ngo et al. (2013)
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structures may indicate the roles of the viral protein in this
system.

The first proteome-wide PHI map for the flavivirus HCV,
a major cause of chronic liver diseases, was deduced by Y2H
and then by literature mining of previously found interactions
between HCV and human, providing a large network for such a
small-genome organism. The resulting network consists of 481
interactions between 11 HCV proteins and 421 human proteins.
Pathway enrichment analysis of the targeted cellular proteins
indicated focal adhesion as a new function subverted by HCV
(De Chassey et al., 2008). Using the same experimental approach,
11 human proteins interacting with HCV Core protein and 45
interacting with NS4B (one of the six HCV non-structural pro-
teins) were found (Tripathi et al., 2010). To further understand
the mechanisms of the interactions between HCV and human
proteins, two extended PPI networks were constructed. These
networks are composed of the Y2H-derived interactions and the
secondary interactors of the human proteins that interact with
the Core and NS4B proteins. Functional analysis of these net-
works pointed to the human proteins ENO1, SLC25A5, and PXN
as potential antiviral targets. ENO1 and SLC25A5 are interac-
tion partners of HCV Core protein. PXN is the first neighbor
of both ENO1 and SLC25A5 within the human PPI network.
Observing the effects of small interfering RNA (siRNA) knock-
down of these host proteins on HCV propagation and replication
validated the computational network analysis results (Tripathi
et al., 2010). Another Y2H screen resulted in 112 unique inter-
actions between 7 HCV and 94 human proteins (Dolan et al.,
2013). DENV is another member of the flaviviruses family, caus-
ing the severe human disease dengue hemorrhagic fever. Using
the Y2Hmethod, 139 PHIs were detected between 10 DENV pro-
teins and 105 human proteins (Khadka et al., 2011). These two
PHI networks of HCV–human byDolan et al. (2013) and DENV–
human by Khadka et al. (2011) were analyzed comparatively and
a large overlap was observed between HCV and DENV targets.
To determine if the common cellular targets play crucial roles
in infections, siRNA experiments were performed and the results
revealed the required cellular proteins (CUL7, PCM1, RILPL2,
RNASET2, and TCF7L2) for HCV replication (Dolan et al., 2013).
Finally, using protein microarray assays, 103 human proteins
were identified as HCVCore-interacting partners. Through these
PHI data, the viral modulation of some cellular mechanisms was
studied in detail and the cellular MAPKAPK3 was proposed as a
potential therapeutic target for HCV infections (Ngo et al., 2013).
Prior to these studies, a number of small scale PHI data were
produced for the HCV–human interaction system (Matsumoto
et al., 1997; Hsieh et al., 1998; Lu et al., 1999; Owsianka and Patel,
1999).

Orthomyxovirus Influenza A virus is the source of all flu pan-
demics infecting multiple species. For H1N1 A/PR/8/34 strain
of influenza virus, 135 PHIs were identified between 10 viral
and 87 human proteins, most of which are expressed in primary
human bronchial cells. For another strain of influenza A virus,
H3N2 A/Udorn/72, a PHI network with 81 interactions between
10 viral and 66 human proteins was constructed. Both of the
PHI networks were detected by the Y2H method. Similarities
of these two PHI networks highlighted the conserved functions

of influenza virus proteins through strains. Observing the topo-
logical network properties of these Influenza A virus–human
PPI networks allowed to draw crucial conclusions on the multi-
functionality of the small number of proteins encoded by RNA
viruses, revealing that viral proteins can interact with a significant
number of human proteins (Shapira et al., 2009).

AIDS-causing retrovirus HIV, probably the most stud-
ied human pathogen, depends largely on human cellular
machinery to be replicated, like other RNA-carrying viruses.
One large-scale PHI dataset for HIV-1 was produced using
affinity chromatography coupled with MS, resulting in 183
human nuclear proteins as interacting partners of HIV-1 Tat
(nuclear regulatory protein) which is essential for viral repli-
cation within the host nucleus. The following in silico anal-
ysis of the experimentally verified PHI data provided fur-
ther insights on the mechanisms of Tat during HIV-1 infec-
tion. Firstly, motif composition analysis highlighted that Tat-
targeted cellular proteins are enriched for domains mediat-
ing protein, RNA and DNA interactions, and helicase and
ATPase activities. Secondly, functional analysis of Tat-targeted
human proteins showed that they are enriched for a wide
range of biological processes such as gene expression regula-
tion, RNA biogenesis, chromatin structure, chromosome orga-
nization, DNA replication, and nuclear architecture (Gautier
et al., 2009). Another large PHI network was constructed for
HIV–human protein complexes by affinity tagging and purifi-
cation MS, resulting in 497 PHIs between 16 HIV-1 proteins
and 435 human proteins. In that study, the functional cat-
egories of HIV-targeted human proteins were analyzed indi-
cating that the host factors in the found PHI network are
enriched for the transcription and the regulation of ubiquiti-
nation. Additionally, the domains of the interacting proteins
were also investigated, and the enriched domain types (14-
3-3 domains and β-propellers) in targeted human proteins
were identified to facilitate future structural modeling stud-
ies (Jäger et al., 2012). For HIV-1, several small scale experi-
ments were also carried out to find protein PHI data (Cujec
et al., 1997; Le Rouzic et al., 2002; BonHomme et al., 2003;
Lusic et al., 2003; Naji et al., 2012) establishing HIV-1 as the
pathogenic species having the largest experimentally verified
PHI data.

Using the approach of combining modified tandem affinity
chromatography and MS analysis, 245 cellular interacting pro-
teins were identified for the viral protein MV-V (one of the
virulence factors of paramyxovirus MV). MV-V was found to
target known key components of the host antiviral response
including STAT1, STAT2, IFIH1, and p53, and also essential
components of ribosome, reticulum, and mitochondria. The
topological and functional analysis of human proteins targeted
by MV-V shows that they have properties within the human
interactome similar to the well-known targets of other viruses
(Komarova et al., 2011).

As an example for another multi-functional viral protein,
HRSV (another member of paramyxoviruses) NS1 can act as an
antagonist of host type I and III interferon production and signal-
ing, inhibit apoptosis, suppress dendritic cell maturation, control
protein stability, and regulate transcription of host cell mRNAs,
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among its other functions. A total of 221 PHIs were determined
between only one viral protein NS1 and human proteins, reflect-
ing its multifunctional nature. This virus-human PHI network
was produced by quantitative proteomics in combination with
green fluorescent protein (GFP)-trap immunoprecipitation. It
was observed that many of the HRSV-targeted human proteins
have roles in transcriptional regulation and cell cycle regulation
(Wu et al., 2012).

A study covering several DNA and RNA viruses (Pichlmair
et al., 2012) found 1681 PHIs between 70 viral ORFs from 30
species and 579 human proteins. The interacting cellular pro-
teins were isolated by tandem affinity purification (TAP), and
the purified proteins were analyzed by one-dimensional gel-free
liquid chromatography tandem MS (LC–MS/MS). A compara-
tive interactomics analysis of the produced viral PHI networks
(DNA viruses versus RNA viruses) provided crucial insights on
the infection strategies of DNA and RNA viruses. It was con-
cluded that RNA viruses target the JAK–STAT and chemokine
signaling pathways, as well as pathways associated with intra-
cellular parasitism, whereas DNA viruses target cancer pathways
(Pichlmair et al., 2012).

The first extensive bacterial PHI networks were identified for
important human pathogens, B. anthracis, F. tularensis, and Y.
pestis (Dyer et al., 2010; Yang et al., 2011). Gram-positive bac-
teria B. anthracis and Y. pestis and Gram-negative bacterium
F. tularensis are respiratory pathogens causing anthrax, bubonic
plague, and acute pneumonic disease, respectively. Using the
Y2Hmethod, large-scale interaction data were generated between
these bacteria and human, leading to 3073 PHIs between 943
B. anthracis proteins and 1748 human proteins, 4059 PHIs
between 1218 Y. pestis proteins and 2108 human proteins, and
1383 PHIs between 349 F. tularensis proteins and 999 human
proteins. Bioinformatic analysis of these experimentally found
bacteria–human interaction data revealed that bacterial proteins
preferentially interact with human proteins that are hubs and
bottlenecks in the human PPI network, as previously observed
for viral PHIs. The modules of bacterial PHIs that are conserved
amongst the three networks were computed. The found con-
served modules may reveal commonalities among how different
bacterial pathogens interact with crucial host pathways involved
in inflammation and immunity (Dyer et al., 2010). A different
Y2H strategy was used for Y. pestis by choosing only poten-
tial virulence factors as bait proteins. 204 PHIs were identified
between 66 Y. pestis proteins and 109 human proteins, and then
23 previously reported PHIs were integrated to construct a com-
prehensive network between Y. pestis and human (Yang et al.,
2011).

The increase in the amount of experimentally verified
pathogen–human PPI data allowed a number of bioinformatic
studies to investigate infection mechanisms at the level of PHIs
for different pathogen types (Dyer et al., 2008; Singh et al., 2010;
Durmuş Tekir et al., 2012). The first global analysis of more
than 10,000 PHI data revealed important observations (Dyer
et al., 2008). Firstly, targeting hub and bottleneck proteins were
concluded as a common behavior for all pathogens. Targeting
human transcription factors and key proteins that control the
cell cycle and regulate apoptosis and transport of genetic material

across the nuclear membrane were found to be common infec-
tion strategies of viruses. On the other hand, targeting human
proteins that function in the immune response was observed as
a common bacterial infection strategy (Dyer et al., 2008). In a
following study, investigation of more than 20,000 experimental
PHI data revealed that the preference of interacting with hub and
bottleneck proteins is more pronounced in viruses than bacteria.
The analysis of the human proteins targeted by both bacteria and
viruses indicated that attacking human metabolic processes is a
common strategy used by both pathogens (Durmuş Tekir et al.,
2012). In addition to these comparative interactomics studies for
bacterial and viral PHI networks, a comparative analysis of virus
interactions with human signal transduction pathways revealed
that different viruses tend to target the same cellular pathways,
not necessarily via interacting with the same cellular proteins
(Singh et al., 2010).

Web-Based Databases for PHI
Systems

In parallel with the first large-scale experimentally verified PHI
data, the initial efforts on the development of PHI-specific
databases were performed toward the end of the first decade
of this century (Table 2). Currently, a number of Web-based
resources aim to integrate pathogen–host molecular interac-
tions and related data available in the literature. Some of them
store data on only one specific pathogen species as in the case
of HCVpro (Kwofie et al., 2011), HIV-1 Human Interaction
Database at NCBI (Ako-Adjei et al., 2015), HoPaCI-DB (Bleves
et al., 2014) for Pseudomonas aeruginosa and Coxiella burnetii,
and Proteopathogen (Vialás et al., 2009) for C. albicans. The
resources based on a wider range of specific pathogens are
VirHostNet (Guirimand et al., 2015), VirusMentha (Calderone
et al., 2015) and ViRBase (Li et al., 2015) for viruses, PATRIC
(Wattam et al., 2014) for bacteria and PHI-base (Urban et al.,
2015) for bacterial, fungal, and oomycete pathogens. Finally,
PHIDIAS (Xiang et al., 2007), HPIDB (Kumar and Nanduri,
2010), and PHISTO (Durmuş Tekir et al., 2013) are PHI
databases for all pathogen types with known interaction data.

HCVPro (HCV interaction database) is dedicated to only
HCV, cataloging the characterized protein interactions for
intraviral and virus–human systems. Additionally, it includes
information on the structure and functions of HCV proteins
(Kwofie et al., 2011). The HIV-1 Human Protein Interaction
Database at NCBI includes the interactions between HIV-1
and human proteins. In its content, the majority of the pro-
tein interaction data are indirect (e.g., upregulation, modifica-
tion) whereas the rest are direct (e.g., binding; Ako-Adjei et al.,
2015). HoPaCl-DB (Host–Pseudomonas and Coxiella interac-
tion database) provides information on interactions between
molecules, bioprocesses, and cellular structures for the bacte-
rial pathogens Pseudomonas aeruginosa and C. burnetti and their
host organisms. The graphical representation of these interac-
tion systems is also available in HoPaCl-DB (Bleves et al., 2014).
The other pathogen-specific data resource, Proteopathogen is
a protein database for studying C. albicans–host interactions.
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TABLE 2 | Contents of Web-based PHI databases.

Database Number of PHIs Pathogen Host Reference

HCVPro 524 Only HCV Only human Kwofie et al. (2011)

HIV-1 Human at NCBI 12,786 Only HIV-1 Only human Ako-Adjei et al. (2015)

HoPaCI-DB 4203 Pseudomonas aeruginosa and
Coxiella burnetii

Mammalia, Caenorhabditis elegans,
Drosophila Melanogaster, Danio rerio

Bleves et al. (2014)

HPIDB 40,611 Bacteria, fungi, viruses Animal, human, plant Kumar and Nanduri (2010)

PATRIC 8547 Only bacteria Actinopterygii, Arachnida, Chromadorea,
Insecta, Mammalia

Wattam et al. (2014)

PHI-base 4102 Bacteria, fungi, oomycete Animal, human, insect, fish, fungi, plant Urban et al. (2015)

PHIDIAS NA Bacteria, viruses, parasites All hosts Xiang et al. (2007)

PHISTO 39,166 Bacteria, fungi, Protozoa,
viruses

Only human Durmuş Tekir et al. (2013)

Proteopathogen NA Candida albicans Mammalia Vialás et al. (2009)

ViRBase NA Only viruses All hosts Li et al. (2015)

VirHostNet 16,000 Only viruses Animal, human, plant Guirimand et al. (2015)

VirusMentha 8084 Only viruses All hosts Calderone et al. (2015)

Although the focus of the database is on C. albicans and
its interactions with macrophages, the database also includes
data for different fungal pathogens and other mammalian cells.
Proteopathogen provides additional information about the inter-
acting proteins such as Gene Ontology (GO) and pathway anno-
tations, and protein structures (Vialás et al., 2009).

PATRIC (The PathoSytems Resource Integration Center) is a
dedicated resource for bacterial systems including comprehensive
data on genomics, transcriptomics, PPIs, 3D protein structures,
and sequence typing. However, its focus is on the genomic data,
currently covering more than 10,000 bacterial genome sequences.
PATRIC provides a private workspace for each user where they
can store their own data. In their workspaces, users can per-
form comparative genomics and transcriptomics via the corre-
sponding analysis tools. PATRIC provides bacteria–host PPI data
through its tool Pathogen Integration Gateway (PIG; Wattam
et al., 2014). PHI-base (Pathogen–Host Interactions Database)
is a Web-accessible PHI database specific for bacterial, fungal,
and oomycete pathogens, which are medically and agronomically
important. PHI-base serves options to facilitate the discovery of
genes that may be potential targets for chemical intervention,
containing information on the pathogenicity/virulence genes
functioning in the PHI systems. As a genomic data focused
resource, PHI-base has the functionalities allowing functional
annotations of the genes and comparative genomics analysis
(Urban et al., 2015). On the other hand, there are databases
developed specifically for viral PHI systems such as VirHostNet
(Guirimand et al., 2015), VirusMentha (Calderone et al., 2015)
and ViRBase (Li et al., 2015). VirHostNet (Virus–Host Network)
is one of the earliest PHI resources specialized in the management
and analysis of integrated virus–virus, virus–host, and host–host
protein interaction networks coupled to their functional annota-
tions. The host organism in the VirHostNet is only human. Its
Web interface provides both table-based and graph-based visu-
alizations of the PHI networks (Guirimand et al., 2015). The
recently developed tool, VirusMentha is another virus-virus and
virus–host protein interaction resource. VirusMentha is an exten-
sion of a previous tool VirusMINT (Chatr-Aryamontri et al.,

2009). VirusMentha is the most comprehensive viral PHI data
source without limitation with respect to virus species or host
organisms. The tool offers a graphical representation option
for viral PHI networks (Calderone et al., 2015). On the other
hand, ViRBase is a resource for virus–host ncRNA-associated
interactions. It provides browsing and visualization of viral and
cellular ncRNA-associated virus–virus, host–virus, and host–host
interactions (Li et al., 2015).

Finally, theWeb-based PHI databases comprising all pathogen
types with known interactions are PHIDIAS (Xiang et al., 2007),
HPIDB (Kumar and Nanduri, 2010), and PHISTO (Durmuş
Tekir et al., 2013). PHIDIAS (Pathogen–Host Interaction Data
Integration and Analysis System) stores data on genome
sequences, conserved domains, and gene expression data related
to PHIs. In addition to data storage, PHIDIAS offers the anal-
ysis of these data (Xiang et al., 2007). HPIDB (Host–Pathogen
Interaction Database) is not limited to any pathogen or host
regarding pathogen–host PPI data. HPIDB offers the BLASTP
search option that allows searching for homologous PHI data for
pathogens without experimental PHI data (Kumar and Nanduri,
2010). Currently, PHISTO (Pathogen-Host Interaction Search
Tool) is the most comprehensive PHI database on the Web
including data for all pathogenic microorganisms for which
experimental protein interactions with human are available.
Bioinformatic analysis tools in PHISTO allow users to visualize
and analyze PHI networks to get insights on infection mecha-
nisms (Durmuş Tekir et al., 2013). Using the tools in the current
version of PHISTO, users can access the functional and topolog-
ical properties of pathogen-targeted human proteins within the
human intranetwork. Furthermore, a comparative analysis tool
is provided to perform these analyses comparatively for differ-
ent pathogens to observe the similarities and differences in their
infection strategies.

Pathogen–host protein interaction data in the above PHI
databases are integrated mainly from other PPI databases using
automatic integration tools such as PSICQUIC (Aranda et al.,
2011) and by manual curation from the literature. For the PHI
tools, commonly used PPI databases including PHI data are
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Durmuş et al. Computational systems biology of PHIs

APID (Prieto and De Las Rivas, 2006), BIND (Alfarano et al.,
2005), BioGrid (Chatr-aryamontri et al., 2013), DIP (Salwinski
et al., 2004), HPRD (Keshava Prasad et al., 2009), IntAct (Orchard
et al., 2013), iRefIndex (Razick et al., 2008), MINT (Licata et al.,
2012), NetworKIN (Horn et al., 2014), Reactome (Croft et al.,
2014), and STRING (Franceschini et al., 2013).

There are other informative databases for pathogens, provid-
ing useful information for studying infection mechanisms. For
instance, ARDB (Antibiotic Resistance Genes Database) unifies
most of the publicly available information on antibiotic resis-
tance. The information can be used as a compendium of antibi-
otic resistance genes of newly sequenced genomes (Liu and Pop,
2009). IVDB (Influenza Virus Database) is an integrated informa-
tion resource and analysis platform for influenza virus research
focusing on the genetic, genomic, and phylogenetic studies. IVDB
provides complete genome sequences of the virus to facilitate the
analysis of global viral transmission and evolution (Chang et al.,
2007). MPIDB (Microbial Protein Interaction Database) aims to
collect all known physical interactions among the bacterial pro-
teins (Goll et al., 2008). MvirDB is a microbial database of protein
toxins, virulence factors, and antibiotic resistance genes for bio-
defense applications (Zhou et al., 2007). VFDB (Virulence Factor
Database) is a comprehensive repository for bacterial virulence
factors (Chen et al., 2011). VIDA is a virus database system for
open reading frames (ORFs) of animal viruses (Albà et al., 2001).
Finally, ViPR (Virus Pathogen Database and Analysis Resource)
is an open bioinformatic resource for virology research. ViPR
captures various types of information, including sequence data,
gene, and protein annotations, 3D protein structures, clinical and
surveillance metadata, and novel data derived from comparative
genomics analyses (Pickett et al., 2012).

Text Mining of PHI Data from the
Literature

Scientific publications are the main media through which
researchers report their new findings. The huge amount and the
continuing rapid growth of the number of published articles in
biomedicine has made it particularly difficult for researchers to
access and utilize the knowledge contained in them. Currently,
there are over 24 million publications indexed in PubMed11,
which is the main system that provides access to the biomedical
literature.

To address the challenge of information overload in the
biomedical literature, a number of manually curated databases
have been developed to store biologically important information
such as protein interactions, gene–disease associations, or PHIs.
However, given the current amount and the continuing rapid
growth of the biomedical literature, it usually takes a lot of time
and effort before new discoveries are included in these databases.
Human database curation cannot keep up with literature pro-
duction (Baumgartner et al., 2007). As a consequence, most of
the knowledge remains hidden in the unstructured text of theh
publised articles. Therefore, developing text mining techniques to

11http://www.ncbi.nlm.nih.gov/pubmed

uncover this knowledge has become an important research area.
Several text mining approaches have been proposed for identi-
fying articles relevant to a particular topic, detecting biomedical
entities such as genes, proteins, and diseases in text, as well
as extracting the relations among them. A number of shared
tasks such as the BioCreative Challenges (Krallinger et al., 2008;
Arighi et al., 2011) and the BioNLP Shared Tasks (Kim et al.,
2009, 2011; Nédellec et al., 2013) have been conducted, which
have further boosted research in this area. However, text min-
ing for the pathogen-host interactions domain has not been well
studied yet, although it has its own peculiarities and challenges.
Only a handful of studies, which are discussed in the subsections
below, have been conducted so far in this domain. One thread
of research focuses on identifying the articles that contain PHI-
relevant information (Yin et al., 2010; Korkin et al., 2011; Thieu
et al., 2012) and another thread of research addresses performing
more detailed semantic analysis of the text and extracting more
fine-grained information such as the specific proteins that inter-
act and the associated pathogen and host organisms (Korkin et al.,
2011; Thieu et al., 2012).

PHI-Relevant Abstract Detection
Identifying and ranking articles that contain PHI-relevant infor-
mation can be used for selecting and prioritizing articles for man-
ual curation. It can also be an initial step for filtering the relevant
articles before performing more fine-grained semantic analysis
for identifying the biomedical entities and the relations among
them. The task for detecting articles describing PPI information
has been addressed in the BioCreative II, II.5, and III challenges
(Krallinger et al., 2008; Leitner et al., 2010; Arighi et al., 2011).
However, the focus has not been on PHI relevant articles. The
first study that focused on detecting PHI-relevant abstracts, i.e.,
abstracts that describe pathogen host PPI, was conducted by (Yin
et al., 2010). Similarly to most systems that participated in the
BioCreative Challenges Article Classification Task, the problem
was formulated as a supervised machine learning based classi-
fication task. Support Vector Machines (SVM) was used as the
classification algorithm (Cortes and Vapnik, 1995). Feature selec-
tion methods including Information Gain, Mutual Information,
and Chi-square were evaluated using a data set of 1360 manually
labeled abstracts. The results showed that Information Gain and
Chi-square perform better than Mutual Information as the num-
ber of features used decreases. Although the focus of the study
was on PHI-relevant abstract classification, no any PHI specific
features were used. Only the word unigrams and bigrams were
used as features.

Pathogen–host interaction-relevant abstract classification was
also tackled by (Thieu et al., 2012). Similarly to (Yin et al., 2010),
the task was addressed as a supervised machine learning classifi-
cation problem and SVMwas used as the classification algorithm.
However, unlike (Yin et al., 2010), the authors defined and used
PHI specific features including the identified host and pathogen
protein and gene names in the text, the host and pathogen
organism names, the interaction signaling keywords, the exper-
imental method keywords, and PHI-specific keywords such as
virulence and effector. In order to account for the abstracts that
report the absence of an interaction between a host and pathogen
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protein, features that make use of the negation signaling key-
words were also designed. The protein and gene names, as well
as the corresponding organisms were tagged by using the NLProt
software (Mika and Rost, 2004). A set of dictionaries for inter-
action keywords, experimental keywords, negation keywords,
PHI-keywords, host names, pathogen names, and uncertainty
keywords was manually compiled. A data set of 175 PHI-relevant
(positive set) and 175 PHI non-relevant (negative) abstracts was
manually annotated and used for evaluation. The results showed
that using PHI specific features is a promising approach for
identifying PHI-relevant articles. However, it is not possible to
compare the results with the results of (Yin et al., 2010), since a
different data set was used for evaluation.

In order to be able to assess the performances of the pro-
posed methods a larger and publicly available benchmark data
set should be created. Such a data set should in fact contain
three types of abstracts: (1) Abstracts that do not contain any
PPI information (negative class 1); (2) Abstracts that contain PPI
information which are not pathogen–host PPIs (negative class 2);
and (3) Abstracts that contain pathogen–host PPI information
(positive class). Distinguishing the positive class from negative
class 2 is probably more difficult, since they both contain PPI
information. The only difference is that the PPIs in negative class
2 are not PHIs. To distinguish these two classes from each other,
PHI specific features should be utilized. On the other hand, dis-
tinguishing the positive class from negative class 1 is probably
easier and generic PPI relevant features might be sufficient. It is
not clear whether the data sets annotated and used in Yin et al.
(2010) and Thieu et al. (2012) contain these three classes, or con-
tain only two of them (i.e., the positive class and negative class
1). Therefore, it is difficult to assess and compare the reported
results.

PHI-Relevant Relation Extraction
One of the most important opportunities for text mining in
biomedicine is the identification of the relations among the
biomolecules, which can help elucidate their roles in important
biological processes, as well as in diseases. In order to extract the
relations among biomedical entities from text, first the sequences
of characters that correspond to entities should be tagged in text.
This task is called Named Entity Recognition (NER) and has been
an active research topic in the biomedical text mining domain.

While the earliest systems for biomedical NER were usually
based on rule-based approaches (Fukuda et al., 1998), as anno-
tated corpora became available, machine-learning basedmethods
gained popularity (McDonald and Pereira, 2005; Tsai et al., 2006;
Hsu et al., 2008). State-of-the-art gene and protein NER sys-
tems achieve a practically applicable level of performance (e.g.,
87% F-score performance was obtained at the second BioCreative
shared task on gene mention tagging (Smith et al., 2008)).
Genia Tagger (Tsuruoka et al., 2005), ABNER (Settles, 2005), and
BANNER (Leaman and Gonzalez, 2008) are some of the publicly
available biomedical NER tools. LINNAEUS (Gerner et al., 2010)
and OrganismTagger (Naderi et al., 2011) are tools developed
for recognizing species names in biomedical text. Both achieve
F-score performances of over 94%. Although the usability of
these NER tools for the PHI domain has not been well addressed

yet, in principle they can also be used for PHI text mining to iden-
tify the entity names such as gene, protein, and species names in
text.

One of the first studies on using text mining for pathogen–
host relationship extraction was conducted by (Anthony et al.,
2010). As a case-study, the authors targeted the extraction of
genotype, pathogen, and syndrome relations. A corpus consisting
of 43 abstracts from PubMed was manually annotated. The avail-
able technologies for the automatic recognition of host–pathogen
named entities and the relations among them were discussed.
However, they have not been evaluated over the annotated cor-
pus, which makes it difficult to draw conclusions about their
usability for the PHI text mining domain.

Thieu et al. (2012) addressed the problem of extracting
pathogen–host PPIs from text. The authors proposed a linguis-
tically motivated approach that makes use of the link grammar
representations of the sentences (Sleator and Temperley, 1995).
Thieu et al. (2012) generated additional rules to map the pro-
tein names to the corresponding pathogen and host organism
names. For instance, if an organism name occurs before a pro-
tein name (e.g., Arabidopsis RIN4 protein) the protein is mapped
to the preceding organism. In addition, Thieu et al. (2012)
incorporated an anaphora resolution module that resolves the
pronouns such as “it,” “they,” etc. in the sentences with their
corresponding protein/gene or organism names, which makes
possible extracting relations that span multiple sentences. This
module is based on the RelEx anaphora resolution method that
uses the Hobbs’ pronoun resolution algorithm (Hobbs, 1978).
The proposed approach was evaluated by using the 350 anno-
tated abstracts described in the section “PHI-Relevant Abstract
Detection.” The results of (Thieu et al., 2012) showed that the
proposed approach significantly outperformed a naïve approach
based on using one of the state-of-the-art generic PPI extraction
tools Protein Interaction information Extraction (PIE) system
(Kim et al., 2008). This motivates the development of methods
that specifically address pathogen–host PPI extraction. The 24%
F-score obtained by the proposed system suggests that there is
room for improvement and further research in this domain is
necessary. An error analysis suggested that an important source
of error was the incorrect identification of protein names and
incorrect assignment of species to the corresponding proteins.
While the first one is a NER problem, which is an active research
topic in biomedical text mining, the second one has not been
tackled much by the researches. The results of the current studies
suggest that it is a crucial research direction for PHI text mining
studies.

Pathogen–host interaction-specific PPI extraction is a similar
problem to the general problem of mining PPI relevant infor-
mation from text (Ono et al., 2001; Blaschke and Valencia, 2002;
Temkin and Gilder, 2003; Daraselia et al., 2004; Jelier et al., 2005;
Erkan et al., 2007; Fundel et al., 2007; Airola et al., 2008; Tikk
et al., 2010). However, it has its own peculiarities that require
the development of methods specialized for PHI text mining.
In order for a PPI to qualify as a PHI, the interaction should
be intra-species. In other words, one of the proteins should be
a host protein and the other one should be a pathogen protein.
Therefore, besides tackling the problem of extracting the pair
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of proteins that interact, the problems of identifying the species
associated with them, as well as the classification of the species
as host or pathogen should also be addressed. These additional
requirements render the PHI text mining task more difficult than
the already challenging PPI text mining task. Most PPI extraction
systems operate on a sentence-level to extract the interactions.
The underlying assumption is that the majority of the relations
are contained within a single sentence. Analysis of the Genia
event corpus (Kim et al., 2009) supports this assumption, since
only 5% of the relations in the corpus span multiple sentences
(Björne et al., 2009). However, this assumption does not in gen-
eral hold for the PHI extraction task, since in many cases the
species of the associated entities do not occur in the same sen-
tence where the interaction is described (Thieu et al., 2012).
Therefore, in order to extract PHIs from text, wider scope than
a sentence should be considered and methods to merge infor-
mation contained in multiple sentences should be developed.
Nevertheless, the current findings from the generic PPI text min-
ing domain can be utilized. For instance, recent studies have
demonstrated the utility of integrating machine learningmethods
with similarity functions (or kernels) defined using the syntactic
and semantic analysis of text (Tikk et al., 2010). Some of these
approaches can be adapted to the PHI text mining domain by
performing anaphora resolution as a prior step and extending the
methods to operate on scopes wider than a sentence. In addition,
novel methods should be developed to address the problem of
assigning the species to their corresponding entities (e.g., proteins
and genes). Sentence-level processing will probably not be suffi-
cient to develop solutions to this problem, since species names
do not necessarily occur in the same sentences or even in the
same paragraphs as the entity names. Another challenge is that
a species can be a host in one context, while it is a pathogen
in another context. Therefore, methods for determining which
species are pathogens and which are host in the given context
should be designed.

The PHI information extracted using text mining can be uti-
lized in at least two ways. First, such information can be used to
populate PHI databases, either directly or indirectly by facilitating
manual curation. This will make the data buried in the literature
easily accessible to the researchers in this domain. Second, fur-
ther analysis of the uncovered information can be integrated into
a systems biology approach to generate new scientific hypoth-
esis such as predicting currently unknown interactions among
pathogen and host proteins.

Conclusion and Future Directions

Conventional therapeutics aim to kill pathogenic microorgan-
isms directly usually by targeting the pathogen only. However,
the drug resistance of pathogens demands alternative solu-
tions for infectious threats, i.e., targeting host proteins required
by pathogens for replication and persistence within the host
organism or targeting PHIs (Murali et al., 2011; Zoraghi and
Reiner, 2013). If these host proteins are indispensable for
pathogens during infections, but not essential for host cells,
they may serve as antimicrobial therapeutic targets to fight drug

resistance. In parallel with the increase in the amount of PHI data,
several genome-wide RNAi screening studies to identify cellu-
lar host factors were performed within the last decade (Ng et al.,
2007; Brass et al., 2008; Hao et al., 2008; König et al., 2008, 2010;
Krishnan et al., 2008; Zhou et al., 2008; Bushman et al., 2009; Li
et al., 2009; Sessions et al., 2009; Tai et al., 2009; Karlas et al., 2010;
Kumar et al., 2010;Murali et al., 2011;Moser et al., 2013; Lee et al.,
2014). The detailed knowledge about mechanisms of the relation-
ships between these host factors and their targeting pathogens is
required urgently to develop new and more effective antimicro-
bial therapeutics, necessitating a computational systems biology
approach to PHIs.

The computational modeling of networks of interacting genes,
transcripts, proteins, and metabolites is of great importance in
biomedical research to understand molecular mechanisms of
PHIs. The high-throughput experimental detection of levels of
biomolecules (gene transcripts, proteins, and metabolites) via
omics approaches as well as the detection of PHIs via high-
throughput experiments has generated comprehensive datasets.
The presented review has provided a snapshot of recent devel-
opments in this area and a survey about databases that store
such infection-specific data. Using text mining is necessary to
extract the PHI-relevant data that are only available in the text
of the huge amount of scientific literature. Although biomed-
ical text mining is an active research area, there are only a
limited number of studies focusing on extracting PHI infor-
mation. The lack of a publicly available data set (‘gold stan-
dard’) makes it difficult to evaluate and compare the current
approaches. Besides reviewing the current studies, we have also
provided future directions for research including analyzing the
usability of the already available biomedical text mining meth-
ods for the PHI text mining task, developing novel approaches
addressing the peculiarities and challenges of the PHI domain,
and creating publicly available benchmark data sets in order
to provide a better assessment of the different methods. We
have also covered studies on the bioinformatic analysis of three
types (protein-based, regulatory, and metabolic) of PHI net-
works. The integrative analysis of the high-throughput omics
experiments using modeling approaches will not only elucidate
the mechanisms of infection, but will help in the discovery of
potential therapeutic targets and drugs through selective iden-
tification of essential genes, proteins, and metabolites for the
pathogen. Despite the recent efforts reviewed above, the use of
systems biology approaches to investigate PHI systems is still
in its infancy, mostly because of data scarcity. Ongoing stud-
ies in the field will lead to more complete PHI networks in the
coming decade, improving the PHI-based solutions to infectious
diseases.
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Durmuş Tekir, S., Çakir, T., and Ülgen, K. Ö. (2012). Infection strategies of bacterial
and viral pathogens through pathogen–human protein–protein interactions.
Front. Microbiol. 3:46. doi: 10.3389/fmicb.2012.00046
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