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Background: No robust predictive biomarkers exist to identify non-small cell lung cancer (NSCLC) 
patients likely to benefit from immune checkpoint inhibitor (ICI) therapies. The aim of this study was to 
explore the role of delta-radiomics features in predicting the clinical outcomes of patients with advanced 
NSCLC who received ICI therapy.
Methods: Data of 179 patients with advanced NSCLC (stages IIIB–IV) from two institutions (Database 
1 =133; Database 2 =46) were retrospectively analyzed. Patients in the Database 1 were randomly assigned 
into training and validation dataset, with a ratio of 8:2. Patients in Database 2 were allocated into testing 
dataset. Features were selected from computed tomography (CT) images before and 6–8 weeks after 
ICI therapy. For each lesion, a total of 1,037 radiomic features were extracted. Lowly reliable [intraclass 
correlation coefficient (ICC) <0.8] and redundant (r>0.8) features were excluded. The delta-radiomics 
features were defined as the relative net change of radiomics features between two time points. Prognostic 
models for progression-free survival (PFS) and overall survival (OS) were established using the multivariate 
Cox regression based on selected delta-radiomics features. A clinical model and a pre-treatment radiomics 
model were established as well.
Results: The median PFS (after therapy) was 7.0 [interquartile range (IQR): 3.4, 9.1] (range, 1.4– 
13.2) months. To predict PFS, the model established based on the five most contributing delta-radiomics 
features yielded Harrell’s concordance index (C-index) values of 0.708, 0.688, and 0.603 in the training, 
validation, and testing databases, respectively. The median survival time was 12 (IQR: 8.7, 15.8) (range, 2.9–
23.3) months. To predict OS, a promising prognostic performance was confirmed with the corresponding 
C-index values of 0.810, 0.762, and 0.697 in the three datasets based on the seven most contributing 
delta-radiomics features, respectively. Furthermore, compared with clinical and pre-treatment radiomics 
models, the delta-radiomics model had the highest area under the curve (AUC) value and the best patients’ 
stratification ability.
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Introduction

Immune checkpoint inhibitors (ICIs), including the 
programmed cell death protein 1 (PD-1) or its ligand (PD-
L1), have markedly attracted oncologists’ attention in the 
treatment of diverse types of cancer (1,2), especially in 
the therapy of advanced non-small-cell lung carcinoma 
(NSCLC) (3). To date, the response rates to the ICI in 
patients with NSCLC have still remained unsatisfactory 
(10–40%), depending on each patient’s clinical condition (4).  
In addition, as the expression levels of biomarkers, such 
as PD-L1 expression, cannot accurately predict the 
effectiveness of immunotherapy in advanced NSCLC 
patients, selection of the most appropriate therapy for such 
patients remains a clinical challenge.

The immune Response Evaluation Criteria in Solid 

Tumors (iRECIST) represents an enhanced and revised 
iteration of the RECIST guidelines. Its widespread 
adoption in clinical trials worldwide is owed to its 
improved and standardized assessment of tumor response, 
specifically incorporating immune-based treatment 
responses like hyperprogression and pseudoprogression 
(5,6). Nonetheless, the iRECIST criteria overlook changes 
in various tumor characteristics beyond size, such as tumor 
viability, metabolic activity, and tumor density, which 
could be pertinent to tumor response (7,8). Hence, there 
is an urgent need for an alternative approach to anticipate 
response to ICI therapy.

ICIRadiomics involves the extraction of numerous 
features from medical images through a set of techniques (9).  
Numerous studies have highlighted the promising 
potential of radiomics in predicting gene mutations 
(10,11), lymph node metastasis (12), therapeutic response 
(13,14), and clinical prognosis (15) of patients with lung 
cancer. Recently, delta-radiomics features have markedly 
attracted clinicians’ attention, which show changes in the 
radiomics features between baseline and follow-up data 
during treatment. These features have proven effective 
in enhancing the performance of diagnostic models for 
differentiating ground-glass nodules (GGNs) (16) and 
predicting treatment response (17). However, to date, few 
studies have predicted response to ICI therapy and overall 
survival (OS) of patients with NSCLC (8). Moreover, one 
of the main limitations of previous studies was the lack of an 
external dataset for model validation, highly restricting the 
generalizability of their proposed radiomics models.

The present study aimed to explore the role of delta-
radiomics features in predicting the clinical outcomes of 
patients with advanced NSCLC who received ICI therapy. 
We present this article in accordance with the TRIPOD 
reporting checklist (available at https://tlcr.amegroups.com/
article/view/10.21037/tlcr-24-7/rc).

Highlight box

Key findings 
• We developed a delta-radiomics model with good performance in 

predicting outcomes in advanced non-small-cell lung carcinoma 
(NSCLC) patients undergoing immune checkpoint inhibitors 
(ICIs) therapy, which was superior to the clinical model and pre-
treatment radiomics model, respectively.  

What is known and what is new? 
• Radiomics was applied in the prediction of NSCLC survival 

before.
• This study applied delta-radiomics features for survival prediction 

in advanced NSCLC patients, and achieve satisfactory predictive 
efficiency.

What is the implication, and what should change now?
• As an alternative method for predicting response to ICI is urgently 

required, optimal delta-radiomic features could improve clinical 
decision-making to continue systemic therapies and forecast overall 
survival.

Conclusions: The delta-radiomics model showed a good performance in predicting therapeutic outcomes 
in advanced NSCLC patients undergoing ICI therapy. It provides a higher predictive value than clinical and 
the pre-treatment radiomics models.
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Methods

Approval for this retrospective study was obtained from 
the Ethics Committee of Wuhan Union Hospital (Wuhan, 
China) (Approval No. S0516), with the requirement for 
written informed consent waived. Wuhan Tongji Hospital 
was also informed and agreed the study. The study was 
conducted in accordance with the Declaration of Helsinki (as 
revised in 2013).

Patients and inclusion criteria

Data of a total of 1,207 patients with advanced NSCLC 
(IIIB–IV stages) from two medical institutions (Wuhan 
Union Hospital, 836; Wuhan Tongji Hospital, 371) who 
were confirmed by needle biopsy or bronchofibroscopy 
from September 2018 to July 2020 and from September 
2018 to September 2019 were retrospectively analyzed. As 
showed in Figure 1, the inclusion criteria were as follows: (I) 

patients who received at least two cycles of ICI therapy; (II) 
patients with available computed tomography (CT) findings 
before immunotherapy; (III) patients with available follow-
up data; and (IV) patients with measurable tumors. Thus, 
in total, 66 patients were excluded (45 of 178 patients from 
Wuhan Union Hospital and 21 of 67 patients from Wuhan 
Tongji Hospital). The exclusion criteria are summarized 
in Figure 1. A total of 133 patients from Wuhan Union 
Hospital (Database 1) and 46 patients from Wuhan Tongji 
Hospital (Database 2) were eventually included. Patients in 
the Database 1 group were randomly assigned into training 
database (106 patients) and validation dataset (27 patients), 
with a ratio of 8:2. Meanwhile, patients in the Database 2 
group were allocated into testing dataset.

The patients’ clinical characteristics, pathological 
findings, and therapeutic regimen, including age, gender, 
smoking history, cancer type, tumor-node-metastasis 
(TNM) staging, PD-1 expression level, and data related 

836 patients with IIIB–IV stage NSCLC were screened from 
Sep 2018 to July 2020 at Wuhan Union hospital

67 patients were included178 patients were included

Train cohort (106 patients) Validation cohort (27 patients) Test cohort (46 patients)

133 patients

Randomly 8:2

46 patients

371 patients with IIIB–IV stage NSCLC were screened from 
Sep 2018 to Sep 2019 at Wuhan Tongji hospital

Inclusion criteria:
• Received at least two cycles of ICI treatment
• CT is available before immunotherapy 
• Follow-up CT available for comparison
• The extent of the tumor is measurable

45 excluded: 
• Surgery (n=12)
• Patients who received 

radiotherapy (n=20)
• Tumor focus ≥10 mm in diameter 

on CT (n=2)
• CT artifact (n=3)
• Refuse telephone follow-up(n=8)

21 excluded: 
• Surgery (n=5)
• Patients who received 

radiotherapy (n=5)
• Tumor focus ≥10 mm in diameter 

on CT (n=4)
• CT artifact (n=2)
• Refuse telephone follow-up (n=5)

Figure 1 Study flowchart. NSCLC, non-small cell lung cancer; ICI, immune checkpoint inhibitor; CT, computed tomography.
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to dosage and type of drug were recorded. A history of 
smoking was defined as lifetime exposure to more than 100 
cigarettes. The eighth edition of TNM stage system for 
NSCLC presented by the International Association for the 
Study of Lung Cancer was adopted (18).

Measurement endpoints and follow-up time

The primary endpoint, progression-free survival (PFS), 
was defined as the duration from the initiation of treatment 
to disease progression or death, whichever occurred first. 
Subjects who remained free of progression and were alive at 
their last follow-up were treated as censored observations, 
with the time to their last follow-up utilized for analysis. 
According to the iRECIST guidelines (5,6), patients who 

had progressive disease (PD) were regarded as “non-
responders”, accompanying with a 20% increase in the 
sum of the longest diameter of target lesions (an absolute 
increase of 5 mm), and patients with complete response, 
partial response or stable disease were considered as 
“responders” (Figure 2). There were two special cases: (I) 
ICI therapy was performed again after the first evaluation 
of PD to consider the possible clinical benefits; if the 
secondary efficacy evaluation was still PD, the real-time 
progression time of PFS was calculated based on the time 
of first disease progression. (II) After the first evaluation of 
PD, ICI treatment was carried out again considering the 
possible clinical benefits, and the second evaluation was 
non-PD pseudo progress. The secondary endpoint was OS, 
which was measured as the time from the start of treatment 
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BeforeAfter After
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Figure 2 Cases displaying varying responses to ICI treatment. (A) Segmented tumor regions and heat map of GLCM (contrast) feature 
of tumor in the pre- and post-treatment CT scan images of a responder. (B) Segmented tumor regions and heat map of GLCM (contrast) 
feature of tumor in the pre- and post-treatment CT scan images of a non-responder. ICI, immune checkpoint inhibitor; GLCM, gray-level 
co-occurrence matrix; CT, computed tomography.
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to death. Subjects who were alive as of their last follow-up 
were considered censored, and time to the last follow-up 
was used. Follow-up time was measured from the initiation 
of immunotherapy until the last follow-up or death.

CT scan

All participants underwent CT scan at baseline and 
immediately after 2–3 cycles (6–8 weeks) of ICI treatment. 
All images were obtained on one of the four multi-slice 
spiral CT scanners (SOMATOM Definition AS+, Siemens 
Healthineers, Erlangen, Germany; uCT 780, United 
Imaging, Shanghai, China; Optima 660, GE, Tokyo, Japan) 
at our institutions, using the following parameters: detector 
collimation width, 64 mm × 0.6 mm and 128 mm × 0.6 mm; 
tube voltage, 120 kV. The tube current was regulated by 
an automatic exposure control system (CARE Dose 4D; 
Siemens Healthcare, Erlangen, Germany). Images were 
reconstructed at a slice thickness of 1.5 or 1 mm with an 
increment of 1.5 or 1 mm. No contrast medium was used. 
Then, all images were resampled with a slice thickness of 

1.5 mm with the same increment to ensure uniform voxel 
size (19). The three-dimensional (3D)-slicer software was 
utilized to import Digital Imaging and Communications in 
Medicine (DICOM) images from the picture archiving and 
communication system (PACS).

Radiomics feature extraction

Three junior radiologists (X.H., Y.Z., and X.J., with 5, 3, 
and 2 years of experience in thoracic imaging, respectively) 
semi-automatically delineated the regions of interest (ROIs) 
on CT images, layer-by-layer using 3D-slicer software. 
Then, the volumes of interest (VOIs) of tumors were 
automatically reconstructed using the 3D-slicer software 
(Figure 3).

Two senior radiologists (H.S. and Y.W., with 32 and 
13 years of experience in thoracic imaging, respectively) 
were tasked with verifying the segmentation of tumors. 
Any discrepancies were addressed through additional 
corrections. All above radiologists were blinded to clinical 
and outcome findings.

Segmentation Feature extraction Feature selection Analysis
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Figure 3 Radiomics workflow. ICI, immune checkpoint inhibitor; LoG, Laplacian of Gaussian; GLCM, gray-level co-occurrence matrix; 
GLDM, gray-level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; NGTDM, neighboring 
gray-tone difference matrix; LASSO, least absolute shrinkage and selection operator; ROC, receiver operator characteristic curve.
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Radiomics feature extraction was conducted using the 
Philips Radiomics Tool (Philips Healthcare, Shanghai, 
China), with core feature calculations relying on a third-
party Python library known as pyRadiomics (20). A total 
of 1,037 radiomic features, encompassing direct, wavelet-
transformed, logarithmic-transformed, and gradient-filtered 
features, were extracted for each VOI (refer to Figure 3, 
with additional details available at https://pyradiomics.
readthedocs.io/en/latest/features.html). These 1,037 
radiomic features could be categorized based on image type: 
93 gradient features, 93 LoG features, 107 original features, 
and 744 wavelet features. Regarding feature class, there 
were 198 first-order features, 264 gray-level co-occurrence 
matrix (GLCM) features, 154 gray-level dependence 
matrix (GLDM) features, 176 gray-level run length 
matrix (GLRLM) features, 176 gray-level size zone matrix 
(GLSZM) features, 55 neighboring gray-tone difference 
matrix (NGTDM) features, and 14 shape features. All 
features were extracted from the 3D volume. In addition, 
intra-observer and interobserver variabilities were analyzed 
in 30 randomly selected CT images (Database 1 and 
Database 2 both equally included 15 cases). One observer 
repeated the segmentation after 1 week for intra-observer 
variability analysis, while the other observer performed the 
segmentation again using the same method. An intraclass 
correlation coefficient (ICC) cutoff value of >0.8 was 
utilized to identify stable and reproducible features.

Delta-radiomics features

We obtained stable and reproducible features after ICI 
therapy.

For patients who underwent CT scans at baseline and 
follow-up, radiomics features were extracted from these 
two time points, respectively. The delta-radiomics features 
were defined as the relative net change of radiomics features 
between the two time points (17):

( )after ICI baseline baselineRelative net change Feature Feature / Feature= −  [1]

Statistical analysis

The SPSS software (SPSS 21.0 for Windows, IBM, 
Chicago, IL, USA), as well as “scikit-survival” (21), packages 
in Python were used to perform the statistical analysis. 
Heatmap of delta_wavelet_LLL_glcm_contrast features 
in the pre- and post-treatment CT scans were illustrated 
using the “scikit-image” package (22). Continuous variables 
were presented as median [interquartile range (IQR)], 

while categorical variables were expressed as frequency 
(percentage). The Student’s t-test and Mann-Whitney 
U test was applied to compare differences between 
the two groups, and the Fisher exact test was used to 
compare categorical variables. All radiomics features were 
normalized to the z-score. Pearson’s correlation analysis 
was used to eliminate the radiomics features with high 
correlation (r>0.8), thereby excluding redundant variables to  
z score (23). And inter-observer variability analysis were 
employed to exclude features of low reliability (ICC 
<0.8) (24). When two features were highly correlated, the 
feature that showed stronger correlation with PSF and OS 
was chosen. The least absolute shrinkage and selection 
operator (LASSO) was employed to identify features for 
subsequent assessment (25). Five-fold cross-validation and 
maximum Harrell’s concordance index (C-index) were used 
as the feature filtering criteria. The predictive model was 
created using a Cox proportional hazards (PHs) regression. 
In addition, three models were established on each 
iteration using only the high-risk clinical characteristics, 
pretreatment CT radiomics, and delta-radiomics covariates. 
Four models for independent prediction of PFS and OS 
were constructed based on three subsets of features: a 
clinical model based on high-risk characteristics, a radiomics 
model based on pretreatment CT radiomics features, and a 
delta-radiomics model based on the most influential delta-
radiomics features. Then, we incorporated the selected 
radiomics features and clinical features into the LASSO-
Cox risk regression analysis, thus obtaining a mix model, 
as previously reported (26). Moreover, C-index and time-
independent receiver operating characteristic (ROC) curve 
analysis were employed to assess the discriminatory ability 
of the three models. Patients were stratified as high- or low-
risk of poor PFS and OS based on their rank at above or 
below the median prediction for each model. The Kaplan-
Meier curve was plotted for data stratification, and the log-
rank test was utilized to determine whether stratified data 
were significant (P<0.05).

Results

Participants’ characteristics at baseline

A total of 179 eligible patients [median age, 63 (IQR: 
56, 67) years old; male (n=149) vs. female (n=30)] were 
involved. As listed in Table 1, the main pathological 
type of tumors was adenocarcinoma (108/179, 60.3%), 
while more than half of patients (116/179, 64.8%) had 
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Table 1 Demographic and clinical data of 179 cases from two institutions

Characteristics Total number of patients (n=179) Database 1 (n=133) Database 2 (n=46) P

Gender, n (%) 0.13

Male 149 (83.2) 114 (85.7) 35 (76.1)

Female 30 (16.8) 19 (14.3) 11 (23.9)

Age (years), median [IQR] 63 [56, 67] 63 [56, 67] 62.5 [56.8, 68] 0.93

History of smoking, n (%) 96 (53.6) 74 (55.6) 22 (47.8) 0.36

Histology, n (%) 0.17

Adenocarcinoma 108 (60.3) 75 (56.4) 33 (71.7)

Squamous cell carcinoma 63 (35.2) 51 (38.3) 12 (26.1)

Others 8 (4.5) 7 (5.3) 1 (2.2)

TNM stage, n (%) 0.67

III 63 (35.2) 48 (36.1) 15 (32.6)

IV 116 (64.8) 85 (63.9) 31 (67.4)

PD-1 expression, n/N (%) 0.24

Positive 51/68 (75.0) 28/40 (70.0) 23/28 (82.1)

Low 18/68 (26.5) 12/40 (30.0) 6/28 (21.4)

High 33/68 (48.5) 16/40 (40.0) 17/28 (60.7)

Negative 17/68 (25.0) 12/40 (30.0) 5/28 (17.9)

KRAS, n/N (%) 0.82

Positive 11/71 (15.5) 6/41 (14.6) 5/30 (16.7)

Negative 60/71 (84.5) 35/41 (85.4) 25/30 (83.3)

EGFR, n/N (%) 0.56

Negative 104/115 (90.4) 71/80 (88.8) 33/35 (94.3)

Positive 11/115 (9.6) 9/80 (11.3) 2/35 (5.7)

ALK, n/N (%) >0.99

Negative 77/80 (96.3) 66/69 (95.7) 11/11 (100.0)

Positive 3/80 (3.8) 3/69 (4.3) 0/11 (0.0)

ICI regimen, n (%)

Anti PD-1 161 (89.9) 118 (88.7) 43 (93.5)

nivolumab 21 (11.7) 14 (10.5) 7 (15.2)

Pembrolizumab 23 (12.8) 10 (7.5) 13 (28.3)

Camrelizumab 21 (11.7) 13 (9.8) 8 (17.4)

Tislelizumab 38 (21.2) 35 (26.3) 3 (6.5)

Toripalimab 39 (21.8) 38 (23.6) 1 (2.2)

Sintilimab 14 (7.8) 7 (5.3) 7 (15.2)

Bevacizumab 5 (2.8) 1 (0.8) 4 (8.7)

Anti PD-L1 18 (10.1) 15 (11.3) 3 (6.5)

Atezolizumab 8 (4.5) 6 (4.5) 2 (4.3)

Durvalumab 10 (5.6) 9 (6.8) 1 (2.2)

Table 1 (continued)
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stage IV NSCLC. Among 68 patients with known PD-1 
expression, positive PD-1 expression was dominant (51/68, 
75.0%). For PFS, disease progression was found in 50 of 
179 (27.9%) cases at follow-up CT scans. The median 
PFS (after therapy) was 7.0 (IQR: 3.4, 9.1) (range, 1.4– 
13.2) months. Regarding therapeutic strategy, 66 (36.9%) 
patients received ICI monotherapy, and 113 (63.1%) 
patients were treated with combination of immunotherapy 
and chemotherapy. More specifically, 161 (89.9%) 
patients received anti-PD-1 agents (e.g., nivolumab, 
pembrolizumab, camrelizumab, tislelizumab, toripalimab, 
etc.), and 18 (10.1%) patients received anti-PD-L1 
agents (e.g., atezolizumab and durvalumab). Regarding 
OS, 91 of 179 (50.8%) patients died during follow-up. 
The median survival time was 12 (IQR: 8.7, 15.8) (range, 
2.9–23.3) months. Comparison of data collected from two 
institutions showed that there was no significant difference 
in age, gender, smoking history, tumor type, TNM stage, 
outcomes, etc. (P>0.05 for all).

Clinical models established based on patients’ clinical 
characteristics to predict PFS and OS

Age, gender, smoking history, tumor type, drugs used in 
ICI therapy, and TNM stage were selected for predicting 
outcomes in the clinical model (Table 2). Based on the 

clinical features, the model used for predicting PFS had the 
C-index of 0.631 in the training dataset; besides, the C-index 
was 0.540 and 0.543 in the validation and testing datasets, 
respectively. Meanwhile, for OS, the clinical model yielded 
C-index values of 0.674, 0.512, and 0.507 in the training, 
validation, and testing datasets, respectively. Furthermore, 
clinical features did not substantially affect the patients’ 
stratification by the Kaplan-Meier curves (P>0.05 for all, 
Figure S1). The results of time-independent ROC curve 
analysis of the three datasets are displayed in Figure S2.

Pre-treatment radiomics model for predicting PFS and OS

There were 76 features with poor repeatability (ICC <0.8) 
and 816 redundant features (r>0.8) removed. The remaining 
145 radiomics features were selected by LASSO for further 
assessment. Then, six most contributing radiomic features 
were selected to establish a pre-treatment radiomics 
models by Cox PHs regression for predicting OS. Features 
contained in the radiomics model and their coefficients 
are summarized in Table 3. The radiomics model resulted 
in a moderate C-index value in the training dataset, while 
low values of the C-index were noted in both validation 
(0.558) and testing (0.558) datasets. Regarding PFS, eight 
radiomics features were selected based on the results of 
LASSO penalized logistic regression analysis (wavelet_

Table 1 (continued)

Characteristics Total number of patients (n=179) Database 1 (n=133) Database 2 (n=46) P

Therapeutic strategy, n (%) 0.16

Monotherapy 66 (36.9) 45 (33.8) 21 (45.7)

Combination chemotherapy 113 (63.1) 88 (66.2) 25 (54.3)

PD at follow-up CT, n (%) 0.70

Yes 50 (27.9) 36 (27.1) 14 (30.4)

No 129 (72.1) 97 (72.9) 32 (69.6)

Median PFS (months), median [IQR] 7.0 [3.4, 9.1] 7.1 [3.4, 9.2] 5.5 [3.4, 9.1] 0.70

Death, n (%) 0.64

Yes 91 (50.8) 69 (51.9) 22 (47.8)

No 88 (49.2) 64 (48.1) 24 (52.2)

Median follow-up time (months), median [IQR] 23.9 [11.9, 24] 23.3 [11.6, 24] 24 [12.6, 24] 0.51

Median OS (months), median [IQR] 12 [8.7, 15.8] 11.7 [8.4, 15.9] 12.4 [9.1, 17.2] 0.54

IQR, interquartile range; TNM, tumor-node-metastasis; PD-1, programmed cell death protein 1; KRAS, Kirsten rat sarcoma viral 
oncogene homolog; EGFR, epidermal growth factor receptor; ALK, anapastic lymphoma kinase; ICI, immune checkpoint inhibitor; PD-L1, 
programmed death ligand-1; PD, progressive disease; CT, computed tomography; PFS, progression-free survival; OS, overall survival.

https://cdn.amegroups.cn/static/public/TLCR-24-7-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TLCR-24-7-Supplementary.pdf


Translational Lung Cancer Research, Vol 13, No 6 June 2024 1255

© Translational Lung Cancer Research. All rights reserved.   Transl Lung Cancer Res 2024;13(6):1247-1263 | https://dx.doi.org/10.21037/tlcr-24-7

Table 2 Features involved in the prediction model based on clinical characteristics in the training set

Variables Estimated Standard error t Pr(>|z|)

PFS

Gender −0.8699 0.3272 −2.6587 0.0078

Age (years old) −0.0115 0.0162 −0.7119 0.4765

Tumor type 0.0207 0.1917 0.1079 0.9141

Smoking status 0.1526 0.2472 0.6176 0.5368

TNM 0.6340 0.2417 2.6231 0.0087

Drug usage 0.7010 0.3306 2.1207 0.0339

OS

Gender −0.9705 0.3874 −2.5051 0.0122

Age (years old) −0.0144 0.0194 −0.7467 0.4553

Tumor type 0.0552 0.2362 0.2338 0.8151

Smoking status 0.2558 0.3210 0.7967 0.4256

TNM 0.69 0.3199 2.1564 0.0311

Drug usage −0.6388 0.5340 −1.1963 0.2316

PFS, progression-free survival; TNM, tumor-node-metastasis; OS, overall survival.

Table 3 Features involved in the prediction model based on pre-treatment radiomics features in the training set

Variables Estimated Standard error t Pr(>|z|)

PFS

(Intercept)

Wavelet_HHL_firstorder_Mean 0.1567 0.1079 1.4526 0.1463

Gradient_firstorder_Minimum 0.1337 0.1130 1.1834 0.2366

Wavelet_LLL_glcm_ClusterProminence 0.2188 0.1174 1.8643 0.0623

Gradient_glszm_GrayLevelVariance −0.1220 0.1223 −0.9973 0.3186

Wavelet_LLL_gldm_SmallDependenceHighGrayLevelEmphasis 0.1704 0.1376 1.2377 0.2158

Log_sigma_6_0_mm_3D_glcm_ClusterProminence −0.0382 0.1916 −0.1994 0.8420

Wavelet_LHL_glcm_ClusterShade 0.2053 0.1295 1.5849 0.1130

Log_sigma_6_0_mm_3D_gldm_HighGrayLevelEmphasis 0.4615 0.1986 2.3233 0.0202

OS

(Intercept)

Wavelet_HHL_ngtdm_Contrast 0.2004 0.1159 1.7292 0.0838

Wavelet_HHL_firstorder_Maximum −0.0371 0.1174 −0.3160 0.7520

Log_sigma_6_0_mm_3D_gldm_HighGrayLevelEmphasis 0.3738 0.1108 3.3748 0.0007

Wavelet_HHH_glcm_MCC −0.0576 0.1071 −0.5379 0.5906

Log_sigma_6_0_mm_3D_glszm_SizeZoneNonUniformityNormalized −0.1840 0.1115 −1.6502 0.0989

Wavelet_HLH_firstorder_Mean −0.0196 0.1157 −0.1694 0.8655

PFS, progression-free survival; OS, overall survival.
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HHL_firstorder_Mean, gradient_firstorder_Minimum, 
wavelet_LLL_glcm_ClusterProminence, gradient_glszm_
GrayLevelVariance, wavelet_LLL_gldm_SmallDependenc
eHighGrayLevelEmphasis log_sigma_6_0_mm_3D_glcm_
ClusterProminence, wavelet_LHL_glcm_ClusterShade 
log_sigma_6_0_mm_3D_gldm_HighGrayLevelEmphasis). 
The proposed model yielded C-index values of 0.704, 0.514, 
and 0.574 in the training, validation, and testing datasets, 
respectively. As shown in Figure 4, patients’ stratification 
was significant in the training dataset (P<0.001), while it was 
not significant in the validation and testing datasets (P>0.05). 
The results of time-independent ROC curve analysis of the 
three datasets are shown in Figure S3.

Delta-radiomics features for prediction of PFS and OS

According to the results of Pearson’s correlation analysis, 
188 delta-radiomics features were selected to establish the 
predictive model. For PFS, five most contributing radiomic 
features delta-radiomics features (delta_wavelet_LHL_
firstorder_Median, delta_original_shape_LeastAxisLength, 
delta_wavelet_LLL_glcm_Contrast, delta_wavelet_HLL_
glcm_Idmn, delta_original_glcm_DifferenceAverage) were 
imported into the final model by Cox proportional hazards 

regression.
The model established based on delta-radiomics features 

yielded C-index values of 0.708, 0.688, and 0.603 in the 
training, validation, and testing datasets, respectively. For 
OS, seven most contributing delta-radiomics features 
(delta_wavelet_LHL_glcm_Imc2, delta_wavelet_HLH_
firstorder_Median, delta_gradient_gldm_SmallDepen
denceLowGrayLevelEmphasis, delta_gradient_glszm_
LowGrayLevelZoneEmphasis, delta_original_shape_
LeastAxisLength, delta_original_glcm_DifferenceAverage) 
were selected based on the results of LASSO penalized 
logistic regression analysis. The selected features and 
corresponding coefficients are listed in Table 4. Then the 
seven most contributing delta-radiomics features were used 
to establish the delta radiomics models by Cox proportional 
hazards regression for predicting OS. A good prognostic 
performance was validated with the corresponding C-index 
values of 0.810, 0.762, and 0.697 in the training, validation, 
and testing datasets, respectively (Table 5). Furthermore, 
time-independent ROC curve analysis also confirmed that 
the delta-radiomics model had a good prognostic capability 
in the prediction of OS (Figure 5), and Kaplan-Meier curves 
showed that the delta-radiomics features could substantially 
affect the patients’ stratification (Figure 6).

Figure 4 Kaplan-Meier analysis of the pre-treatment model for predicting survival time. (A-C) The pre-treatment model for predicting 
PFS in the training dataset, validation dataset, and testing dataset. (D-F) The pre-treatment model for predicting OS in the training dataset, 
validation dataset, and testing dataset. Est., estimate; PFS, progression-free survival; OS, overall survival.

https://cdn.amegroups.cn/static/public/TLCR-24-7-Supplementary.pdf
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Table 4 Features involved in the prediction model based on delta-radiomics features in the training set

Variables Estimated Standard error t Pr(>|z|)

PFS

(Intercept)

Delta_wavelet_LHL_firstorder_Median 0.1746 0.1328 1.3151 0.1885

Delta_original_shape_LeastAxisLength 0.3624 0.1840 1.9697 0.0489

Delta_wavelet_LLL_glcm_Contrast −0.1647 0.1839 −0.8957 0.3704

Delta_wavelet_HLL_glcm_Idmn 0.2326 0.1271 1.8298 0.0673

Delta_original_glcm_DifferenceAverage 0.1131 0.1541 0.7342 0.4629

OS

(Intercept)

Delta_wavelet_LHL_glcm_Imc2 −0.1162 0.1605 −0.7242 0.4689

Delta_wavelet_HLH_firstorder_Median 0.3478 0.1347 2.5821 0.0098

Delta_gradient_gldm_SmallDependenceLowGrayLevelEmphasis 0.0810 0.1662 0.4872 0.6261

Delta_gradient_glszm_LowGrayLevelZoneEmphasis 0.1737 0.1930 0.8997 0.3683

Delta_original_shape_LeastAxisLength 0.1614 0.1443 1.1181 0.2635

Delta_original_glcm_DifferenceAverage −0.2092 0.1735 −1.2059 0.2279

PFS, progression-free survival; OS, overall survival.

Table 5 Comparison of the four models for each outcome

Models Databases
PFS OS

C-index AUC Log-rank test P value C-index AUC Log-rank test P value

Model 1 Train 0.631 0.668 0.25 0.675 0.735 0.65

Validation 0.540 0.471 0.74 0.512 0.526 0.44

Test 0.543 0.501 0.84 0.507 0.580 0.55

Model 2 Train 0.704 0.785 <0.001 0.717 0.756 <0.001

Validation 0.514 0.541 0.17 0.571 0.632 0.15

Test 0.574 0.591 0.34 0.503 0.639 0.06

Model 3 Train 0.708 0.787 <0.001 0.810 0.898 <0.001

Validation 0.688 0.777 0.042 0.762 0.792 0.04

Test 0.603 0.608 0.03 0.697 0.716 0.02

Model 4 Train 0.717 0.810 0.12 0.844 0.928 <0.05

Validation 0.683 0.751 0.42 0.709 0.811 0.15

Test 0.617 0.591 0.40 0.612 0.731 0.61

Model 1, clinical model; Model 2, pre-treatment radiomics model; Model 3, delta radiomics model; Model 4, mix model based on selected 
clinical and delta radiomics features. PFS, progression-free survival; OS, overall survival; C-index, concordance index; AUC, area under 
the curve.
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Figure 5 Time-dependent receiver operator characteristic curve of delta-radiomics model for predicting survival time. (A,B) In order to 
predict PFS, the delta-radiomics model yielded time-dependent AUC values of 0.787, 0.777, and 0.608 in the training, validation, and 
testing datasets, respectively. (C,D). To predict OS, time-dependent AUC values of the delta-radiomics model were 0.898, 0.792, and 0.716 
in the training, validation, and testing datasets, respectively. PFS, progression-free survival; AUC, area under the curve; OS, overall survival.

Figure 6 Kaplan-Meier analysis of the delta-radiomics model for predicting survival time. (A-C) The delta-radiomics model for predicting 
PFS in the training dataset, validation dataset, and testing dataset. (D-F) The delta-radiomics model for predicting OS in the training dataset 
(D), validation dataset (E), and testing dataset (F). Est., estimate; PFS, progression-free survival; OS, overall survival.
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The mix model was developed with the selected clinical-
CT and delta-radiomic features, and showed C-index 
values of 0.717, 0.683, and 0.617 for predicting PFS in 
the training, validation, and testing cohorts, respectively. 
To predict OS, the mix model yielded C-index values of 
0.844, 0.709, and 0.612 in the three datasets. The predictive 
performance of mix model and delta-radiomics model were 
comparable (Table 5). Features contained in mix model and 
their coefficients are listed in Table 6.

Discussion

The present study introduced a delta-radiomics model 
demonstrating strong performance in predicting response 
to ICI therapy and patients’ prognosis. Notably, this model 
surpassed both the clinical model and the pre-treatment 
radiomics model, which were established based on patients’ 
demographic information and pre-treatment CT radiomics 
features, respectively. Moreover, these findings were further 

Table 6 Features involved in the prediction model based on mixmodel in the training set

Variables Estimated Standard error t Pr(>|z|)

PFS

(Intercept)

Delta_wavelet_LHL_firstorder_Median 0.5369 0.2253 2.3832 0.0172

Delta_original_shape_LeastAxisLength 0.4903 0.2744 1.7869 0.9536

Delta_wavelet_LLL_glcm_Contrast −0.0587 0.3590 −0.1634 0.8702

Delta_wavelet_HLL_glcm_Idmn 0.0496 0.1941 0.2555 0.7983

Delta_original_glcm_DifferenceAverage −0.3339 0.3072 −1.0870 0.2771

Gender −0.2858 0.1542 −1.8532 0.0639

Age −0.0481 0.1495 −0.3220 0.7475

Smoking −0.0195 0.1786 −0.1092 0.9131

Durg usage −0.1653 0.1845 0.8958 0.3704

Tumor_type  0.0061 0.1497 0.0406 0.9676

TNM 0.4453 0.2067 2.1545 0.0312

OS

(Intercept)

Delta_wavelet_LHL_glcm_Imc2 −0.3587 0.2743 0.6681 0.5041

Delta_wavelet_HLH_firstorder_Median 0.2938 0.2757 1.0656 0.2866

Delta_gradient_gldm_SmallDependenceLowGrayLevelEmphasis 0.5836 0.3110 1.8764 0.0606

Delta_gradient_glszm_LowGrayLevelZoneEmphasis 0.1737 0.1930 0.8997 0.3683

Delta_original_shape_LeastAxisLength 0.3187 0.2588 1.2311 0.2183

Delta_original_glcm_DifferenceAverage −0.2993 0.2523 −1.1863 0.2355

Gender −0.5613 0.1710 −3.2830 0.0010

Age −0.2739 0.1562 −1.7537 0.8954

Smoking 0.0239 0.1816 0.1315 0.1315

Durg usage −0.2036 0.1787 −1.1391 0.2546

Tumor_type 0.2365 0.1548 1.5272 0.1267

TNM −0.0395 0.1756 −0.2252 0.8218

PFS, progression-free survival; TNM, tumor-node-metastasis; OS, overall survival.
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confirmed by an external independent database.
Based on the findings of the present study, two delta-

radiomics features were chosen to predict both PFS and 
OS in the delta-radiomics model. Specifically, (I) the delta 
shape_LeastAxisLength denoted alterations in the smallest 
axis length of the ROI-enclosing ellipsoid. This selection 
appeared rational, considering that changes in tumor 
diameter typically serve as sensitive indicators of treatment 
response, aligning with the iRECIST guidelines concerning 
alterations in tumor size. (II) Firstorder_Median reflected 
changes of the median gray-level intensity within the 
tumor. A recent study (27) demonstrated the firstorder_
Median parameter observed on enhanced T1-weighted 
magnetic resonance (MR) sequences has been demonstrated 
to correlate with immunophenotyping and serves as a 
radiomics biomarker for predicting OS in patients diagnosed 
with intrahepatic cholangiocarcinoma. We assumed that 
the mentioned outcome-related feature might be correlated 
to the malignant biological behavior of the tumor. Besides, 
all the changes in other radiomics features included in the 
delta-radiomics model were gray-level features, such as 
GLCM, GLDM, and GLSZM, which reflected the changes 
in tumor heterogeneity due to ICI treatments. Prior 
studies have indicated that tumor heterogeneity serves as 
a predictor of OS in NSCLC patients (28,29) or immune 
response (30). Although the precise mechanism remains 
unclear, tumor heterogeneity may signify clonal dominance 
or genomic diversity within tumors, which has been 
identified as a primary factor contributing to therapeutic 
resistance (31). Another consideration is that variations in 
tumor heterogeneity could be linked to differing densities 
and distributions of CD8+ T cells, the predominant 
effector cell type in cancer and cancer immunotherapy 
(27,32). Furthermore, the radiomic signature of CD8+ T 
cells has been proven to predict the immunophenotype of 
solid tumors and clinical outcomes in patients with cancer 
who had been treated with ICI therapy (33). Therefore, 
it is reasonable to hypothesize that these three radiomics 
biomarkers, which reflect changes in tumor size, density, 
and heterogeneity, hold predictive value for prognosis and 
overall response to immunotherapy within the quantitative 
CT radiomics group. Consolidating these biomarkers into 
a signature could potentially offer more substantial insights 
for guiding dependable clinical decisions. Khorrami et al. (8)  
applied changes in the radiomic texture (DelRADx) to 
predict response to immunotherapy and explored the 
association of delta-radiomic risk-score (DRS) with OS 
in NSCLC. They also found that the DelRADx could 

be used to distinguish responders from non-responders 
with a good performance [area under the curve (AUC), 
0.88±0.08]. Besides, DRS was found to be a biomarker for 
predicting OS (C-index =0.72), which was in agreement 
with our results and validated the predictive value of the 
delta-radiomics model in immunotherapy. In addition to 
establishment of a delta-radiomics model and assessment 
of its capabilities, we simultaneously developed the clinical 
model and baseline radiomics model to compare their 
predictive values. This is important because delta radiomics 
could be introduced into the routine clinical workflow 
if it provides higher predictive value than clinical factors 
or the radiomics features extracted from pre-treatment 
CT data. In addition, Khorrami et al. (8) extracted delta-
radiomics features from contrast-enhanced CT images, 
while those features in our study were obtained from non-
contrast-enhanced CT images. However, contrast agents 
may obscure imaging features that reflect potential tumor 
heterogeneity (34), and the heterogeneity of contrast-
enhanced protocols, e.g., different dosage and duration of 
dosing, could affect the reproducibility of the radiomics.

As anticipated, the proposed delta-radiomics model 
demonstrated superior performance in predicting the 
prognosis of NSCLC patients. This superiority can be 
attributed to several factors, as elaborated below: First, 
among the clinical features, TNM staging showed the 
highest correlation coefficient (0.69) among the selected 
features for the prediction of OS. However, as it was 
developed based on tumor size, lymph node metastasis, and 
metastasis status, it only provided anatomical data. Patients 
with even the same tumor stage might have different levels 
of prognosis (35). In contrast, radiomics captures tumor 
characteristics from medical images, offering a robust 
method for interpreting intratumor heterogeneity, a 
capability lacking in traditional tumor staging. Additionally, 
the delta-radiomics model can evaluate the relative net 
change of radiomics features across longitudinal images. 
This capacity not only enables the identification and 
quantification of therapy-induced changes but also holds 
potential for predicting such changes over the treatment 
duration (36). Moreover, the study suggests that treatment-
induced changes in the radiomic profile have the potential 
to enhance the predictive accuracy of OS or disease-free 
survival (DFS) in cancer patients (37,38). However, Fave 
et al. (17) explored the utility of delta-radiomics features 
in predicting clinical outcomes for NSCLC patients 
undergoing radiation therapy. Their findings revealed that 
incorporating delta-radiomics features into pre-treatment 
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models significantly improved the C-index value (from 0.672 
to 0.675). However, this addition did not notably impact 
patient stratification, as demonstrated by Kaplan-Meier 
curves. Therefore, further research is necessary to validate 
the application of delta-radiomics features in predicting 
patients’ prognosis.

The limitations of the present study should be pointed 
out. First, a small sample size restricted the generalization 
of our findings. Second, due to the retrospective nature of 
the study, some important clinical data were missing [e.g., 
the expression levels of PD-1 and epidermal growth factor 
receptor (EGFR)]. Third, owing to the relatively short-
term follow-up, long-term follow-up should be conducted 
to more reliably predict OS. Fourth, the independent 
test set consistently yields lower results compared to the 
validation data in our models, likely due to the use of CT 
scanning machines from different manufacturers at the two 
centers. Moreover, given the intricate nature of the survival 
analysis model and our limited sample size, variations in 
performance were observed across the training, test, and 
validation sets. Nevertheless, the C-index consistently fell 
within the range established by fivefold cross-validation on 
the training set, indicating overall stability of our model. 
Last but not least, as the images used in our study were 
non-contrast-enhanced CT images, the vessels that passed 
across lesions could not be segmented. Thus, the tumor 
ROI might contain blood vessels of solid tumor components 
of interest, which might influence radiomics characteristics 
and the calculated tumor volume.

Conclusions

In summary, the proposed delta-radiomics model 
demonstrated promising performance in predicting clinical 
outcomes among advanced NSCLC patients undergoing 
ICI therapy. Moreover, it surpassed both the clinical 
and pre-treatment radiomics models, underscoring the 
importance of delta-radiomics features in forecasting 
immunotherapeutic response in this patient population. 
Nevertheless, further research is warranted to address the 
aforementioned limitations and validate our findings.
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