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Abstract: A Posidonia oceanica waste marine plant was used to produce a wet-laid nonwoven web for
multifunction applications. To study the effect of some parameters related to the web characteristics
(sheet weight, binder ratio, and pulp ratio) on the mechanical and physical properties of the web,
we used a Box–Behnken design plan with three levels. The diagram of the superposed contours
graphic method was used to find the optimum parameters of the process for the application of the
Posidonia nonwoven fiber on an insulation field. With the measurement of the thermal conductivity
properties using the box method, the results demonstrated that the nonwoven fiber from Posidonia
oceanica marine waste had good insulation properties in comparison with other classical natural fibers
(hemp, flax) used in the field of insulation with the big advantage of being a natural product.

Keywords: Posidonia oceanica fiber; Box–Behnken design; wet-laid nonwoven; thermal conductivity;
insulation

1. Introduction

In comparison with many synthetic materials, natural fibers are light, inexpensive,
abundant, and biodegradable. There is a myriad of literature related to the possibility of
using natural fiber in many technical applications. Cotton, hemp, flax, kenaf, agave, halfa,
and other natural fibers show a good potential to be used as insulation materials and as
reinforcement materials for composites [1–4].

Posidonia is a marine plant with flowers. This species of seagrass is endemic to the
Mediterranean Sea. This perennial loses its leaves in autumn. They are then found, pushed
by currents and waves, onto shore. These leaves decompose while curling and form pellets
of a thickness of some centimeters called “aegagropiles” [5]. In the Mediterranean region,
each summer, the beaches must be cleaned, and this biomass is often removed and not
exploited. According to the work by Dural et al. [6], in the Mediterranean Basin alone,
total Posidonia oceanica production ranges from 5–50 M t per year. One solution to this
ecological problem could be the valorization of this available and renewable biomass for
the production of environmentally friendly industrial products.

Posidonia exploitation in recent studies has been found to be twofold. For fibers
and cellulosic derivates, it can be used as an adsorbent for removing metal-complexed
dyes or phenol [6–9] or for fibers’ and cellulosic derivates’ production [10,11]. The second
use [12–15] is for the preparation of fiber-reinforced composite materials.
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In this study, we propose to use Posidonia oceanica marine waste plant to produce a
dry-laid nonwoven with a 3D structure that can be applied in fields such as insulation,
filtration, and packaging. In particular, we plan to apply the design of experiments surface
of the response method to optimize the properties of the nonwoven to be utilized in the
field of insulation.

2. Materials and Methods
2.1. Development of the Wet Nonwoven Fabric from Posidonia

Posidonia waste was collected from Hergla beach in Tunisia. It was first prepared
manually, then passed through a horizontal opener. One of our main objectives was to use
an environmentally friendly and economic process for the separation operation.

Two kinds of fiber were obtained after the opening process:
1. Technical fibers (length greater than 2 mm);
2. Posidonia pulp (length less than 2 mm).
The principle of producing wet nonwovens is very similar to the principle of paper

manufacturing. The materials used were Posidonia technical fibers, Posidonia pulp, and a
CMC binder. The characteristics of the Posidonia technical fibers and pulp are summarized
in Table 1. The carboxymethylcellulose (CMC) binder used in our case has a chemical
formula of C6H7O2(OH)2CH2COONa, a molecular weight of 263.1976 g/mol, and a degree
of substitution of 1. CMC is an environmentally friendly polymer material. The nonwoven
produced can be considered as a bioproduct.

Table 1. Characteristics of the nonwoven component.

Component Average Length (mm) Average Diameter (µm) Crystallinity Index (%)

Technical fiber 5 165.54 31.19
Pulp 0.5 20.35 49.91

The characteristics of the different components are summarized in Table 1:

- The average lengths of both the technical fibers and pulp were determined using an
optical microscope, Leica, in accordance with the French standard NF G 07-009 (1983);

- The average diameters of both the technical fibers and pulp were measured according
to the projection microscope method. This is the reference method for determining
the diameter of wool samples in accordance with standard NF G 07-004 (1983). The
device used was a Leica-type optical microscope;

- The crystalline index of the fibers was calculated using the equation Crl(%) =
I002−Iam

I002 × 100 [4], where Crl (%) is the crystalline index; I002 is the maximum in-
tensity of the 002 lattice diffraction plane at a 2θ angle between 22◦and 23◦; Iam is
the intensity diffraction at an angle 2θ close to 18◦ representing amorphous materi-
als in plant fibers. Theses parameters were determined using an X-ray diffraction
(XRD) device.

A scanning electron microscope (SEM) was employed to determine the cross-sectional
view of the Posidonia technical fiber with a magnification of 1000. The microscope used
was a TM3000 Hitachi type.

The manufacture of the nonwoven fabrics was carried out using an automatic “Sheet
Maker” machine (Figure 1).

The process comprises the following four steps:

- Preparation of aqueous suspensions = Phase 1;
- Forming the sheet = Phase 2;
- Dewatering = Phase 3;
- Drying = Phase 4.
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Figure 1. Wet nonwoven machine: Sheet Maker.

This manufacturing process was inspired by the one carried out by Hansen et al. [16].
We attempted to satisfy the major requirements for the manufacturing of a wet-laid non-
woven (web preparation, web forming, web bonding, and drying). In fact, a comparative
study was carried out, and all the samples were produced and tested in the same conditions
with different phases, detailed as follows.

Phase 1: The fibrous suspensions were prepared in a 50 L-capacity reservoir (mixing
cylinder), which made it possible to have a homogeneous suspension by agitation of the
water–fiber mixture.

In our case, we used 12 g of fiber mixture of dry Posidonia and its paste, which was
suspended in 20 L of water. The concentration of the solution was determined by dividing
the mass of the fiber by the total volume of water. In our experiment, C = 0.8 g/L.

The basis weight of the formed sheet is given by the following formula:

M = 0.02657 × G × V.

where:
M = the mass of the material in g;
G = the desired basis weight of the sheet formed in g/m−2;
V = the volume of water to be added to the tank in L.
Phase 2: The sheet’s formation involved transferring a volume of 1 L of fibrous

suspension from the mixing cylinder to the metering device (or doser). Then, the suspension
was delivered to the subsequent stage “formation column of the sail” in a controlled and
dosed manner; the suspension distribution was carried out on a metallic sieve.

Phase 3: To separate the fibers from the water in which they were bathing, it was
necessary to aspirate the fibers under the fabric by a suction system. This machine was
equipped with suction nozzles located underneath the sieve, which ensured the removal of
the residual water. Thereafter, the nonwovens were set to dry. The obtained nonwovens
were set between two plates and put in an oven for 1 h at a temperature of 105 ◦C.

Phase 4: After drying, the nonwovens were immersed in a CMC binder solution with
a well-defined concentration. Thereafter, the nonwovens were dried at room temperature
and subjected to a certain pressure by means of a forming press at a temperature of 150 ◦C
for 90 s.

A sample of the nonwovens produced is shown in Figure 2.
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Figure 2. Wet-laid nonwoven Posidonia fiber.

2.2. Characterization of the Physical and Mechanical Properties of the Wet-Laid Nonwoven
2.2.1. Mechanical Properties

The tensile strength, elongation, air permeability, and thermal conductivity were
tested for the nonwoven samples produced. These tests were performed according to the
NFG 07-119:2013 standard. Tensile tests were conducted on rectangular samples (150 mm,
50 mm) using a Lloyd Instrument Mers LR 5K dynamometer. The length between clamps
was taken at 100 mm, and the speed was set at 100 mm/min.

2.2.2. Air Permeability

Air permeability is an important parameter that directly influences the end-use of the
nonwoven fabric, especially in filtration applications. This property, expressed in L/m2/s,
was measured using a TEXTEST FX 3300 air permeability tester and according to the ISO
9237:1995 standards. The principle of the method consisted of measuring the air flow
passing perpendicularly through the test surface with a defined differential pressure for a
given time.

2.2.3. Thermal Conductivity

The measurement of the thermal conductivity of the nonwoven fabrics, as well as
that of the Posidonia fibers was carried out according to the method known as the “box
method” [17] (Figure 3).
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To measure the thermal conductivity, we used the device shown in Figure 3. It con-
sisted of an isothermal enclosure (A) kept at a temperature lower than the two cans (B1
and B2) using a heat exchanger fed by a cryostat (K). The enclosure (A) constituted the
cold source of the system. The heat source was provided by two heating plates, each
located in a box fed by a rheostat (R) and containing the samples to be tested. A uniform
temperature was imposed in the box through electrical voltage applied to the terminals of
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the plate. A console indicated the value of this voltage, and an ohmmeter made it possible
to measure the resistances of each box. The amount of heat dissipated by the system was
then evaluated. Platinum thermostats were used to detect temperatures on the upper and
lower surfaces of the sample, and two sensors measured the ambient temperature in the
box and the temperature in the room. The thermal gradient imposed between the box (B)
and the isothermal enclosure (A) created a heat flow between the upper and lower surfaces
of the sample.

2.3. Design of Experiments

The nonwoven wet-laid properties were affected by the following [18]:

1. Fibers, pulp, and binder properties P1;
2. Manufacturing process parameters P2;
3. Web characteristics (web density, fiber, pulp, and binder ratio) P3.

Because we aimed to develop a new product, we opted to fix P1 and P2 and to vary
P3. For the web characteristics, three factors were studied:

1. Sheet weight (g/m2);
2. Percentage of binder (%);
3. Percentage of pulp (%).

To study the effect of the web characteristics on the strength and on the physical
and mechanical properties of the nonwoven, we used a Box–Behnken surface design plan
with 3 factors and a total of 15 experiments. A Box–Behnken design is a plan in which
all the design points are at the center of the design and centered on the edges of the cube,
equidistant from the center. Key features of this design are as follows:

1. It allows efficient estimation of quadratic terms in a regression model;
2. It usually consists of fewer design points and, therefore, is less expensive to run than

central composite designs.

Our regression model can be estimated by the following Equation (1):

Y = b0 + b0 XS.W + b2 XB + b3 Xp + b11 X2
S.W + b22 X2

B + b33 X2
P + b12 XS.W XB + b13 XS.W XP + b23XBXP (1)

where Y is the response of the dependent variable (air permeability, strength at break
and elongation); XS.W, XB and XP are the normalized values of S.W, B, and P, respectively;
b0, bi, and bij are unknown characteristic constants estimated from the experimental data.

Tables 2 and 3 show the levels of different factors and the absolute and normalized
values obtained for the independent variables in the 15 tests required to construct the model.

Table 2. Levels of the Box–Behnken design.

Levels

Factors −1 0 1
Sheet weight (g/m2) 15 22.5 30

Percentage of binder (%) 5 10 15
Percentage of pulp (%) 10 15 20

We chose the ranges of the pulp and binder percentage according to our research
based on good practices for nonwoven mills [17].

After the preliminary study, we found that a maximum sheet weight of 30 g/m2 could
be obtained on our machine. When the sheet weight was less than 15 g/m2, the cohesion of
the sheet was very low; the obtained nonwoven could not be manipulated at later stages.
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Table 3. Absolute and normalized values of the operational variables.

Test S.W (g/m2) B (%) P (%) XS.W XB XP

1 15.0 15 15 −1 1 0
2 22.5 10 15 0 0 0
3 22.5 5 10 0 −1 −1
4 22.5 10 15 0 0 0
5 30.0 5 15 1 −1 0
6 15.0 10 20 −1 0 1
7 30.0 15 15 1 1 0
8 22.5 5 20 0 −1 1
9 30.0 10 10 1 0 −1

10 15.0 5 15 −1 −1 0
11 22.5 15 20 0 1 1
12 22.5 10 15 0 0 0
13 22.5 15 10 0 1 −1
14 30.0 10 20 1 0 1
15 15 10 10 −1 0 −1

3. Results and Discussion

Values of the coefficients for the different dependent variables are presented in Table 4.
R2 is the coefficient of determination of our models.

Table 4. Values of the coefficients for the different dependent variables.

Coefficients and Statistical Air Permeability Strength at Break Elongation

parameters (−l L/m2/s) (N) (%)
b0 404.2 137.2 0.828
b1 −319.8 41.32 0.204
b2 −225.6 32.90 −0.874
b3 −180.8 −3.70 −0.150
b11 140.0 −28.21 0.631
b22 220.3 −68.61 0.381
b33 −153.2 −13.29 −0.009
b12 −170.9 +23.21 0.121
b13 288.7 −33.75 0.300
b23 79.7 −14.88 −0.127
R2 0.9430 0.969 0.791

3.1. Influence of Control Factors on the Properties of the Nonwovens Studied

The analysis of variance is presented in Table 5. We accepted the hypothesis H0 if P is
less than 0.05.

Table 5. Analysis of variance.

Air Permeability (L/m2/s) Strength at Break (N) Elongation (%)
DF F P DF F P DF F P

S.W 1 29.18 0.003 1 43.39 0.001 1 0.70 0.440
P 1 9.33 0.028 1 27.51 0.581 1 0.38 0.566
B 1 14.52 0.012 1 0.35 0.003 1 12.85 0.016

S.W × P 1 11.89 0.018 1 14.47 0.013 1 0.76 0.424
S.W × B 1 4.17 0.097 1 6.85 0.047 1 0.12 0.74

P × B 1 0.91 0.385 1 2.81 0.154 1 0.14 0.728
S.W × S.W 1 2.58 0.169 1 9.33 0.028 1 3.10 0.139

P × P 1 3.09 0.139 1 2.07 0.210 1 0.00 0.980
B × B 1 6.39 0.053 1 55.20 0.001 1 1.13 0.337
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H0: the factor has a significant effect on the response with a probability P.
According to Table 5, the main factors SW, P, and B and the interaction of Level 2

between SW and P had a significant effect on the air permeability. When the weight of the
sheet was multiplied by two, the permeability of the nonwoven decreased by more than
70% (Figure 4).
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This indicates that depending on the final application, the choice of a good weight
is critical.

For filtration (for example), it would be more appropriate to use a sheet with a
low weight.

Nonwoven fabrics are complex structures composed of fibers arranged in random
directions. Based on the theory of Darcy, Kozeny, and Carman, many experimental and
theorical models have been established to evaluate the permeability of nonwovens. It was
demonstrated that the permeability of nonwovens depends on the fiber diameter, pore
shape and size, and porosity of the structure [19].

In particular, the air permeability of the nonwoven fabric decreased when the thickness
increased and increased when the porosity increased. An increase in the binder ratio
negatively affected the porosity and the permeability of the structure, while the binder,
which is part of the carboxymethylcellulose (CMC) family, coated the structure of the web
and decreased the porosity.

The same phenomenon was observed when a high ratio of pulp was used. The pulp
was formed by a small fiber with a low diameter and length. A high percentage of pulp
affected the average pore size and diameter of the structure and had a negative effect on
the permeability. It is interesting to remark that there was a positive interaction between
the sheet weight and the ratio of the pulp. The effect of the percentage of the pulp on the
permeability was different for a high web weight than for a low sheet weight. For a high
web weight (thick nonwoven), the permeability of the structure depended more on the
pore sizes and shapes. For a low sheet weight (thin nonwoven), the average fiber diameter
(decreased by the addition of a high percentage of pulp) would affect the permeability of the
structure more. Figures 4–6 demonstrate that the mechanical properties of the nonwoven
depended on the weight of the sheet and the binder ratio. In contrast to the woven and
knitted structure formed by yarns with good mechanical properties, the nonwovens were
composed of a fiber structure. The wet-laid nonwoven’s mechanical properties are given
by inter-fiber friction and the binder percentage and properties. The more the quantity of
fibers and binders increased (sheet weight increased), the more the strength increased. The
effect of inter-fiber friction was more important for thick webs than for thin webs, contrary
to the effect of the binder ratio. For thin webs, the binders influenced the resistance of the
nonwoven mor than the inter-fiber friction. This explains the influence of the interaction
between the web thicknesses and the ratio of the fiber to binder (Table 5).
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3.2. Optimization of the Nonwoven Manufacturing Process Using the Graphic Method for a
Specific Application

Since the nonwoven produced can be used in many fields with different types of
performance required, we must select an application and then optimize the parameters
of the manufacturing processes. One big advantage of Posidonia fibers is their fireproof
property. We decided to orient our application to an insulation product. The availability
of the results for other natural fibers in the literature helped us compare our product to
existing structures on the market.

Thus, we adopted the superimposed contour diagram method to determine the op-
timal case. The principle of this graphical method consists of giving for each answer an
objective and an acceptance zone. Then, we graphically sought the zones that met the
criteria. In this method, we set one of the three parameters, which was the sheet weight,
to 22.5 g/m2 and varied the other two to find the isoresponse diagrams for each property.
Then, a study of the optimization was performed according to a pre-established experi-
mental database, while considering the choice of the application. Thus, the choice of the
interval was made in order to obtain:

1. Low air permeability;
2. Important strength and elongation.

This diagram of the superimposed contours was produced using the MINITAB soft-
ware. This made it possible to draw the different contours of each studied parameter and to
implement a compromise zone where each point validates the optimal conditions proposed.
Therefore, the choice of the optimal condition was made in this white area, as shown in the
diagram. From the diagram in Figure 7, we chose:

- Sheet weight: 22.5 g/m2;
- Percentage of binder: 7.5%;
- Percentage of pulp: 18%.
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3.3. Characterization of the Nonwoven Obtained under Optimal Manufacturing Conditions

By proceeding under optimal manufacturing conditions, nonwovens were produced.
Subsequently, the different characteristics of these new materials were determined accord-
ing to the standards, and they are illustrated in Table 6.

Table 6. Properties of the nonwovens obtained by the wet process under optimal manufacturing
conditions.

Properties Optimal

Nonwoven Air permeability (L/m2/s) 581.5 ± 34.12

Tensile strength (N) 80.65 ± 8.34

Elongation (%) 1.75 ± 0.15

The measurement of thermal conductivity was repeated five times for both structures:
nonwoven and fibers. The thermal conductivity of the Posidonia fibers and the nonwoven
fabrics compared to those of some other materials is illustrated in Table 7.

Table 7. Thermal conductivity of Posidonia fibers, nonwovens, and other materials [20–24].

Material Thermal Conductivity λ (W·m−1·K−1)

Posidonia fiber 0.038 ± 0.002
Optimum Wet laid Nonwoven 0.0291 ± 0.0016

The air From 0.024 to 0.026
Polyurethane 0.028

Hemp From 0.04 to 0.06
Flax From 0.04 to 0.046

Mineral wool 0.04
Vermiculite 0.058

Perlite 0.065
Wood and derivatives From 0.12 to 0.17

Glass 1
Reinforced concrete 1.7

Natural stones From 1.4 to 2.91

From this table, we can note that the Posidonia nonwoven had a lower thermal con-
ductivity than that of the Posidonia fibers. This is equivalent to stating that the nonwoven
has a greater thermal resistance than that of the fibers.

In fact, similar results have been found with hemp fibers whose thermal conductivity
varies from 0.04–0.06 W·m−1·K−1, while needle-punched nonwovens based on these fibers
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have a lower thermal conductivity ranging from 0.028–0.04 W·m−1·K−1 [25]. This can be
explained by the structure of the material, which influences their properties.

Compared to other materials, the conductivity of the Posidonia fibers, as well as the ma-
terials at its base is very interesting since it was in the conductivity zone of materials classi-
fied as insulators such as polyurethane, mineral wool, perlite, and vermiculite. The conduc-
tivity of Posidonia-based nonwovens was close to that of air (λ = 0.024–0.026 W·m−1·K−1),
which is the best thermal insulation. This important insulation characteristic of Posidonia
fibers is due to several intrinsic properties of this biomass. Indeed, it is known that the
thermal conductivity of the materials is greatly influenced by their physical structure.
Thus, crystalline materials are better heat conductors than amorphous materials [25]. By
examining the crystallinity index of Posidonia fibers determined in a previous work [26],
it can be seen that the crystalline zones represent only 30% versus 70% for amorphous
fibers. As a result, the amorphous zones in this structure are larger than those in crystalline
materials, hence the low thermal conductivity.

In addition, the thermal conductivity of the materials increased by their porosity. The
more porous the material, the lower its thermal conductivity is [27]. By observing the
structure of the Posidonia fiber reported in earlier research [28], we found that it was
porous, and we show the SEM images in cross-section of the fiber in Figure 8.
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Then, the porosity and the amorphous structure of the Posidonia fibers explain well
the good thermal insulation of this biomass. This further confirmed the possibility of using
these materials as thermal insulation.

4. Conclusions

Posidonia is a marine plant with flowers. In the Mediterranean region, every summer,
the beaches must be cleaned, and this biomass is often removed. According to some
researchers, total Posidonia oceanica production ranges from 5–50 M t per year.

The Posidonia oceanica marine plant was used to produce a wet-laid nonwoven web
for multifunctional applications. To study the effect of some parameters related to the web
characteristics (sheet weight, binder ratio, and pulp ratio) on the mechanical and physical
properties of the web, we used a Box–Behnken design plan with three levels. The results
demonstrated that the web weight (sheet weight) was the most important parameter that
affected the mechanical properties and permeability of the nonwoven. The percentage of
binders also had an important effect, and finally, the percentage of pulp affected the air
permeability more.

We found also that some interactions were non-negligible, for example the cross-effect
between the web weight and the ratio of pulp. The effect of the percentage of pulp on the
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permeability was different for a high web weight than for a low web weight. For a high
web weight (thick nonwoven), the permeability of the structure depended more on pore
sizes and shapes.

For a low web weight (thin nonwoven), the average fiber diameter (decreased by a
high percentage of pulp) would affect the permeability of the structure more.

We decided to use a diagram of the superposed contours graphic method to find the
optimum parameters of the process for the application of a Posidonia nonwoven in the
insulation field.

After the measurement of the thermal conductivity properties using the box method,
the results demonstrated that due to the porosity and the amorphous structure of the
Posidonia fibers, nonwovens from Posidonia oceanica marine waste have good insulation
properties in comparison with other classic natural fibers (e.g., hemp, flax) used in the field
of insulation with the potential to be a natural product.

The multifunctional nonwoven produced can be used in many other technical fields:
composites, agriculture, the food industry, the automotive industry, packaging, and filtration.
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