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Abstract
The development of digital pathology and progression of state-of-the-art algorithms

for computer vision have led to increasing interest in the use of artificial intelligence

(AI), especially deep learning (DL)-based AI, in tumor pathology. The DL-based

algorithms have been developed to conduct all kinds of work involved in tumor pathol-

ogy, including tumor diagnosis, subtyping, grading, staging, and prognostic predic-

tion, as well as the identification of pathological features, biomarkers and genetic

changes. The applications of AI in pathology not only contribute to improve diagnos-

tic accuracy and objectivity but also reduce the workload of pathologists and subse-

quently enable them to spend additional time on high-level decision-making tasks. In

addition, AI is useful for pathologists to meet the requirements of precision oncol-

ogy. However, there are still some challenges relating to the implementation of AI,

including the issues of algorithm validation and interpretability, computing systems,

the unbelieving attitude of pathologists, clinicians and patients, as well as regulators

and reimbursements. Herein, we present an overview on how AI-based approaches

could be integrated into the workflow of pathologists and discuss the challenges and

perspectives of the implementation of AI in tumor pathology.

Abbreviations: AI, artificial intelligence; AR, androgen receptor; ATC, anaplastic thyroid carcinoma; AUC, area under receiver operating characteristic

curve; CLIA, Clinical Laboratory Improvement Amendment; CNN, convolutional neural network; CTC, circulating tumor cell; DL, deep learning; DSS,

disease-specific survival; EGFR, epidermal growth factor receptor; ER, estrogen receptor; FAT1, FAT atypical cadherin 1; FCN, fully convolutional network;

FDA, Food and Drug Administration; FTC, follicular thyroid carcinoma; GAN, generative adversarial network; HE, hematoxylin and eosin; HER2, human

epidermal growth factor receptor 2; HGUC, high-grade urothelial carcinoma; HP, hyperplastic polyp; HPF, high power field; HR, hazard ratio; KRAS,

Ki-ras2 Kirsten rat sarcoma viral oncogene homolog; ML, machine learning; MSI, microsatellite instability; MSS, microsatellite stability; MTC, medullary

thyroid carcinoma; OS, overall survival; PD-L1, programmed death-ligand 1; PTC, papillary thyroid carcinoma; RNN, recurrent neural network; ROI, region

of interest; SETBP1, SET binding protein 1; SPOP, speckle-type POZ protein; SSAP, sessile serrated adenoma/polyp; STK11, serine/threonine kinase 11;

TCGA, The Cancer Genome Atlas; TSA, traditional serrated adenoma; WSI, whole-slide image.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided

the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2020 The Authors. Cancer Communications published by John Wiley & Sons Australia, Ltd. on behalf of Sun Yat-sen University Cancer Center

154 wileyonlinelibrary.com/journal/cac2 Cancer Communications. 2020;40:154–166.

https://orcid.org/0000-0001-8916-9598
http://creativecommons.org/licenses/by-nc-nd/4.0/


JIANG ET AL. 155

K E Y W O R D S

artificial intelligence-assisted bioinformatic analysis, artificial intelligence, deep learning, pathology, tumor

1 BACKGROUND

Artificial intelligence (AI) was termed by McCarthy et al.

[1] in the 1950s, referring to the branch of computer science

in which machine-based approaches were used to make pre-

dictions to mimic what human intelligence might do in the

same situation. AI, currently a hot and controversial topic,

has been introduced into many aspects of our everyday life,

including medicine. Compared with other applications in the

treatment of diseases, AI is more likely to enter the diagnostic

disciplines based on image analysis such as pathology, ultra-

sound, radiology, and ophthalmic and skin disease diagnosis

[2, 3]. Among these applications, the implementation of AI in

pathology presents a special challenge due to the complexity

and great responsibility of pathological diagnosis.

The progress of AI in pathology depended on the growth

of digital pathology. In the 1960s, Prewitt et al. [4] scanned

simple images from a microscopic field of a common blood

smear and converted the optical data into a matrix of opti-

cal density values for computerized image analysis, which

is regarded as the beginning of digital pathology. After the

introduction of whole-slide scanners in 1999, AI in digital

pathology using computational approaches grew rapidly to

analyze the digitized whole-slide images (WSIs). The cre-

ation of large-scale digital-slide libraries, such as The Cancer

Genome Atlas (TCGA), enabled researchers to freely access

richly curated and annotated datasets of pathology images

linked with clinical outcome and genomic information, in

turn promoting the substantial investigations of AI for digital

pathology and oncology [5, 6]. Our group identified an inte-

grated molecular and morphologic signature associated with

chemotherapy response in serous ovarian carcinoma using

TCGA data in 2012 [7], which contains rudimentary model

of machine learning (ML) on WSIs of TCGA.

AI models in pathology have developed from expert sys-

tems to traditional ML and then to deep learning (DL). Expert

systems rely on rules defined by experts, and traditional ML

needs to define features based on expert experience, while

DL directly learns from raw data and leverages an output

layer with multiple hidden layers (Figure 1) [8]. Compared

with expert systems and hand-crafted ML approaches, DL

approaches are easier to be conducted and have high accu-

racy. The increase in computational processing power and

blooming of algorithms, such as convolutional neural network

(CNN), fully convolutional network (FCN), recurrent neural

network (RNN), and generative adversarial network (GAN),

have led to multiple investigations on the usage of DL-based

AI in pathology. The application of AI in pathology helps to

overcome the limitations of subjective visual assessment from

pathologists and integrate multiple measurements for preci-

sion tumor treatment [9].

The Food and Drug Administration (FDA) in the USA

approved the Philips IntelliSite whole-slide scanner (Philips

Electronics, Amsterdam, Netherlands) in 2017, which is

a milestone for true digital pathology laboratories. The

application of AI in pathology is also promoted by startups,

for example, PAIGE.AI [10], Proscia [11], DeepLens [12],

PathAI [13] and Inspirata [14], who are using DL-based AI

tools for detecting, diagnosing and predicting the prognosis of

several types of cancers. Several institutions have decided to

digitize their entire pathology workflow [15-17]. Therefore,

the application of AI in pathology has been on the road. In

this review, we summarized current studies on DL-based AI

application in tumor pathology, analyzed the advantages and

challenges of AI application, and discussed the optimized

workflow and perspectives of human-machine cooperation in

tumor pathology.

2 APPLICATION OF DL-BASED AI
IN TUMOR PATHOLOGY

The implementation of AI in tumor pathology refers to almost

all kinds of tumors (Table 1) and is involved in tumor diagno-

sis, subtyping, grading, staging, and prognosis prediction as

well as the identification of pathological features, biomarkers,

and genetic changes.

2.1 Tumor diagnosis

It is the most important for pathologists to distinguish tumors

from other lesions and distinguish malignant from benign

tumors as these can directly affect treatment decisions for dif-

ferent therapeutic strategies. Araújo et al. [18] developed a

CNN-based AI algorithm to classify breast WSI images into

two categories (carcinoma and non-carcinoma) with an accu-

racy of 83.3% and into four categories (normal tissue, benign

lesions, carcinoma in situ, and invasive carcinoma) with an

accuracy of 77.8%. Bejnordi et al. [19] developed a context-

aware stacked CNN which was first trained to recognize the

lower-level features and then used as input data to train the
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F I G U R E 1 General workflow of deep learning-based artificial intelligence in pathology. First, tissue slides are transformed into whole-slide

images (WSIs) through digital scanners. Next, various neural networks learn and extract features from the images patch-to-patch. Finally, features are

selected and classified to construct different diagnosis- or prognosis- models

next stacked network to recognize the higher-level features.

Using this CNN, they obtained an area under the receiver

operating characteristic curve (AUC) of 0.962 to distinguish

breast malignant tumors from non-malignant lesions and an

accuracy of 81.3% to classify benign lesions, ductal carci-

noma in situ, and invasive ductal carcinoma. Considering the

effect of stroma on tumors, Ehteshami Bejnordi et al. [20]

designed a CNN-based model to combine stroma features to

distinguish breast invasive cancer from benign lesions. DL-

based AI algorithms also gained comparable accuracy with

professional pathologists in discriminating between benign

and malignant colorectal tumors [21, 22], and melanoma from

nevus [23].

Using the weakly supervised DL models that dramatically

reduced labeling workload, Mercan et al. [24] classified breast

lesions into non-proliferative, proliferative, atypical hyperpla-

sia, carcinoma in situ, and invasive carcinoma using WSIs of

breast biopsy specimens with a precision of 81%. Wang et al.

[25] classified gastric lesions into normal, dysplasia, and can-

cer with an accuracy of 86.5% and Tomita et al. [26] classified

esophagus lesions into Barrett esophagus, dysplasia, and can-

cer with an accuracy of 83%.

In addition to biopsy and resection specimens, pathologists

should perform cytology diagnosis in routine work. For cervi-

cal cytological diagnosis, AI could classify cells as normal or

abnormal in smear-based and liquid-based images, reaching

an accuracy of 98.3% and 98.6%, respectively [27]. In liquid-

based urine cytology, AI could separate high-grade urothelial

carcinoma (HGUC) and suspicious HGUC from other lesions

based on cell level-features [28] or WSI level-features [29].

AI also performed showed promising ability in the differen-

tial diagnosis for thyroid tumors on the basis of cytological

images [30]. In summary, DL-based AI has shown promise

in histological and cytology diagnosis for many kinds of

tumors.

2.2 Tumor subtyping

The therapeutic strategies are different in various subtypes

of cancers. A CNN-based model automatically differenti-

ated lung adenocarcinoma, squamous cell carcinoma and nor-

mal lung tissue on images from biopsies, frozen tissues and

formalin-fixed paraffin-embedded tissues with a high AUC

(0.83-0.97) [31]. Considering different growth patterns of

invasive lung adenocarcinoma cells are related with the clin-

ical outcomes of patients, Gertych et al. [32] and Wei et al.

[33] developed CNN algorithms to sort each image tile into

individual growth pattern and generate a probability map for

a WSI, facilitating pathologists to quantitatively report the

major and more malignant components of lung adenocarci-

noma, such as micropapillary and solid components. Simi-

larly, DL-based AL were performed for multi-categorization

of colorectal polyp [34], ovarian cancer [35], thyroid tumor

[36], breast tumor [37], and cervical squamous cell carcinoma

[38]. On the basis of cytological image, AI could recognize

the histological subtypes of lung cancer with an accuracy of

60%-89% [39].

2.3 Tumor grading

Pathologists often evaluate tumor grades according to the

differentiation of tumor cells, glandular architecture, mitosis,
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T A B L E 1 Applications of AI in tumor pathology

Applications The diagnostic points of AI in the studies Performance References
Breast cancer

Diagnosis Carcinoma/Non-carcinoma Accuracy: 83.3% [18]

Normal/Benign/Carcinoma in situ/Invasive

carcinoma

Accuracy: 77.8% [18]

Non-malignant/Malignant AUC: 0.962 [19]

Benign/Ductal carcinoma in situ/Invasive ductal

carcinoma

Accuracy: 81.3% [19]

Invasive cancer/Benign lesion based on both tumor

cells and stroma

AUC: 0.962 [20]

Non-proliferative/Proliferative/Atypical

hyperplasia/Carcinoma in situ/Invasive

carcinoma

Precision: 81% [24]

Tumor subtyping Adenosis/Fibroadenoma/Tubular

adenoma/Phyllodes tumor/Ductal

carcinoma/Lobular carcinoma/Mucinous

carcinoma/Papillary carcinoma

Accuracy:

90.66%-93.81%

[37]

Tumor grading Low/Intermediate/High grade Accuracy: 69% [42]

Tumor staging Heatmap for the region of invasive cancer Dice coefficient:

75.86% and 76.00%

[44], [45]

With/Without lymph node metastasis AUC: 0.994 and 0.996 [46], [47]

Metastatic regions in lymph node Sensitivity: 0.807-0.910 [46]-[48]

Evaluation of pathological features Mitotic count F-score: 0.611 [57]

Ki-67 index F-score: 0.91 [64]

Proliferation score Kappa: 0.613 [58]

Immune cell-rich/Immune cell-poor regions AUC: 0.99 [62]

Evaluation of biomarkers HER2 status: Negative (0 and 1+)/ Equivocal

(2+)/Positive (3+)

Accuracy: 83% and

87%

[66], [67]

Lung cancer

Tumor subtyping Small cell cancer/Non-small cell cancer (Cytology) Accuracy: 85.6% [39]

Adenocarcinomas/Squamous cell

carcinomas/Small cell carcinomas (Cytology)

Accuracy: 60%-89% [39]

Adenocarcinoma/Squamous cell carcinoma AUC: 0.83-0.97 [31]

Solid/Micropapillary/Acinar/Cribriform subtype F-score: 0.60-0.96 [32]

Lepidic/Solid/Micropapillary/Acinar/

Cribriform subtype

AUC: 0.961-0.997 [33]

Evaluation of pathological features Immune cell count Accuracy: 98.6% [63]

Evaluation of biomarkers PD-L1 status: Negative/Positive AUC: 0.80 [69]

Evaluation of genetic changes Predict the most commonly mutated genes AUC: 0.733-0.856 [31]

Prognosis prediction Low/High risk Hazard ratio: 2.25 [76]

Colorectal cancer

Diagnosis Benign/Malignant Accuracy: 95%-98% [21]

Normal/Cancer Accuracy: 97% [22]

Tumor subtyping HP/SSAP/TSA/Tubular adenoma/Tubulovillous

and villous adenoma

Accuracy: 93% [34]

Tumor grading Normal /Low-grade cancer/High-grade cancer Accuracy: 91% [22]

Evaluation of pathological features Number of tumor budding Correlation R2: 0.86 [59]

Evaluation of genetic changes MSI/MSS on HE stained images AUC: 0.77-0.84 [73]

Prognosis prediction DSS, OS: Low/High risk Hazard ratio: 1.65-2.30 [73]-[75]

(Continues)
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T A B L E 1 (Continued)

Applications The diagnostic points of AI in the studies Performance References
Gastric cancer

Diagnosis Normal/Dysplasia/Cancer Accuracy: 86.5% [25]

Evaluation of genetic changes HER2 status: Negative (0 and 1+)/Positive (2+
and 3+)

Accuracy: 69.9% [68]

Prostate cancer

Tumor grading Gleason scoring Accuracy: 75% [40]

Evaluation of genetic changes Distinguish SPOP mutant from non-mutant on HE

stained images

AUC: 0.74-0.86 [70]

Cervical cancer

Diagnosis Normal/Abnormal (Cytology: smear-based and

liquid-based)

Accuracy: 98.3% and

98.6%

[27]

Tumor subtyping Keratinizing/Non-keratinizing/Basaloid squamous

cell carcinoma

Accuracy: 93.33% [38]

Glioma

Tumor grading Grade IV/Grade II/III (Glioblastoma multiform) Accuracy: 96% [41]

Grade II/Grade III Accuracy: 71% [41]

Prognosis prediction OS: Low/Intermediate/High risk Concordance index:

0.754

[77]

Thyroid cancer

Diagnosis PTC/Benign nodules (Cytology) Accuracy: 97.66% [30]

Tumor subtyping Normal tissue/Adenoma/Nodular

goiter/PTC/FTC/MTC/ATC

Accuracy:

88.33%-100%

[36]

Others

Diagnosis for esophagus lesion Barrett esophagus/Dysplasia/Cancer Accuracy: 83% [26]

Diagnosis for melanocytic lesion Nevus/aggressive malignant melanoma AUC: 0.998 [23]

Diagnosis for urinary tract lesion HGUC and Suspicious HGUC/other lesions

(Cytology)

AUC: 0.88 and 0.92 [28], [29]

Subtyping for ovary cancer Serous/Mucinous/Endometrioid/Clear cell

carcinoma

Accuracy: 78.2% [35]

Staging for osteosarcoma Regions of tumor component/Necrosis/non-tumor

component

Accuracy: 92.4% [43]

Biomarker for pancreatic

neuroendocrine neoplasm

Segment tumor regions to calculate Ki-67 index Accuracy: 96.2% [65]

Multiple tasks in breast cancer ER status:Negative/Positive Accuracy: 84% [78]

RNA-based molecular subtypes:

Basal-like/Non-basal-like

Accuracy: 77%

Histological subtypes: Ductal/Lobular Accuracy: 94%

Grade: Low-intermediate grade/High grade Accuracy: 82%

Recurrence-risk: High/Low-medium risk Accuracy: 76%

Multiple cancers

Lung/Breast/Bladder cancer Different cancer types: Lung/Breast/Bladder

cancer

Accuracy: 100% [79]

Adenocarcinoma/Squamous cell carcinoma of lung

cancer

Accuracy: 92%

Identifying biomarkers based on expression pattern Accuracy: 95%

Scoring biomarkers Accuracy: 69%

Prostate/Lung cancer CTC status: Positive/Negative Accuracy: 84% [56]

Abbreviations: AUC, area under receiver operating characteristic curve; HE, hematoxylin and eosin; HP, hyperplastic polyp; SSAP, sessile serrated adenoma/polyp;

TSA, traditional serrated adenoma; MSI/MSS, microsatellite instability/stability; DSS, disease-specific survival; OS, overall survival; PTC/FTC/MTC/ATC, papil-

lary/follicular/medullary/anaplastic thyroid carcinoma; HGUC, high-grade urothelial carcinoma; ER, estrogen receptor; CTC: circulating tumor cell.
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necrosis and more, which are subjective and may possibly

skew treatment decision and clinical monitoring. Arvaniti

et al. [40] proposed an AI model for the Gleason scoring

of prostate cancer; suitable for any Gleason scores. The

agreement between the AI model and each of the two

pathologists (0.75 and 0.71, respectively) was comparable

to that between the two pathologists themselves (0.71).

Moreover, the AI model was superior to the pathologists in

distinguishing low-risk from intermediate-risk cases based

on the Gleason scores calculated by the model. Ertosun

et al. [41] developed two separate CNNs to define the

grade of gliomas. One of them classified the cases as either

glioblastoma multiform (grade IV) or lower grade glioma

(grade II and III), with an accuracy of 96%, and the other

discriminated grade II glioma from grade III with an accuracy

of 71%. For the breast biopsy images, a CNN-based model

distinguished low-, intermediate-, and high-grade breast

cancers with an accuracy of 69% [42]. DL-based models

were also set up to discriminate normal tissue, low-grade and

high-grade colorectal adenocarcinoma with an accuracy of

91% [22]. Overall, AI will be helpful to provide objective

and reproducible results for tumor grading.

2.4 Tumor staging

For resection samples, pathologists should provide as much

information possible for TNM staging that usually determine

therapeutic decisions. In osteosarcoma, a CNN-based model

distinguished three types of region of interests (ROIs), namely

the tumor, necrotic and non-tumor component (e.g., bone,

cartilage), on a patch level (64,000 patches from 82 WSIs)

with an accuracy of 92.4% [43]. In addition, the proportion of

necrosis, a variable factor for prognosis, could be calculated.

Several DL-based networks have also been developed to rec-

ognize tumor regions in breast cancer [24, 44, 45].

The assessment of lymph node metastasis is necessary

for tumor staging but it is time-consuming and error-prone

for pathologists. In the “Cancer Metastases in Lymph Nodes

Challenge” (CAMELYON16), a competition between AI and

pathologists to assess sentinel lymph nodes of breast cancer,

two AI algorithms exceeded pathologists with the best AUC

of 0.994 in slide-level detection (only identifying metastasis

or not), and two algorithms outperformed pathologists

with the best one achieving the mean sensitivity across

six false-positive rates of 0.807 in lesion-level detection

(recognizing all metastases except for isolated tumor cells)

[46]. In the same dataset, Lymph Node Assistant (LYNA), a

more optimized algorithm, gained a higher AUC (0.996) in

slide-level detection and a higher sensitivity with one false

positive per slide (91%) in lesion-level detection through

filtering out artifacts. Of note, LYNA corrected two slides

misdiagnosed as “normal” by the organizers [47]. Another

study demonstrated that LYNA improved the sensitivity of

detecting all micrometastases in lymph nodes from 83% to

91% (P = 0.02) with a significantly shorter review time as

compared to pathologists alone [48].

In the past decade, numerous studies have shown that cir-

culating tumor cells (CTCs) may be used as a marker to pre-

dict disease progression and survival in metastatic [49-51] and

possibly even in early-stage cancer patients [52]. High CTC

numbers were correlated with aggressive disease, increased

metastasis, and decreased time to relapse [53]. Considering

the simplicity and minimally invasion of blood collection,

CTCs are expected to be used as a marker for monitoring

tumor progression and guiding therapeutic management as

well as indicating therapy effectiveness [54]. However, techni-

cal obstacles, such as small quantity and lack of standardized

detection assays and valid marker limit clinical usage [55].

Zeune et al. [56] reported that the manual counting for CTCs

of prostate cancer and non-small cell lung cancer on fluo-

rescent images varied among human reviewers and counting

platforms, whereas DL-based CTC recognition was relatively

stable with higher accuracy than the average level of human

reviewers.

Considering the current contribution of AI to identifying

tumor regions, detecting lymph node metastasis and CTCs,

and the ability of AI to analyze large amounts of data, AI

approaches will potentially help pathologists and oncologists

perform tumor staging.

2.5 Evaluation of pathological features

Mitosis represents the proliferation ability of tumor cells.

However, mitosis count is time-consuming. The Assessment

of Mitosis Detection Algorithms 2013 (AMIDA13) generated

a good algorithm recognizing mitoses with the F1-score of

0.611 on 1000 images at high power fields (HPFs) from breast

cancers, which was comparable to the performance of inter-

observers [57]. The proliferation scores of breast cancers were

reported based on the WSIs-level AI detection in the Tumor

Proliferation Assessment Challenge 2016 (TUPAC16) [58].

Tumor budding is one of the aggressive behavior of tumors.

In colorectal carcinomas, Weis et al. [59] utilized CNN

to obtain the absolute number of tumor budding based on

cytokeratin-stained WSIs and demonstrated the correlation

between the number of budding hotspots and the status of

lymph node. It has been reported that the kind and amount of

tumor-infiltrating immune cells are related with the sensitiv-

ity to immunotherapy and prognostic stratification for tumor

patients [60, 61]. A DL method using CD45-annotated digital

images could quantify immune cells and distinguish immune

cell-rich or -poor regions in breast cancer [62]. The AUC was

0.99 without the limitation of histological types and grades.

The AI algorithm had an excellent performance in counting
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T-cells and B-cells on both cell patch- and WSI-level images

of CD3-, CD8-, and CD20-stained sections from lung tis-

sue, undisturbed by anthracitic pigment [63]. Compared with

the hand-crafted AI focused on hand-crafted pathological fea-

tures, DL-based AI could recognized both hand-crafted fea-

tures and domain-agnostic features which could be applied

across disease and tissue types.

2.6 Evaluation of biomarkers

Saha et al. [64] used a DL-based approach to automatically

detect high-proliferation regions and calculate the Ki-67 index

of breast cancer. Niazi et al. [65] developed AI algorithms

to segment tumor areas from interstitium and normal pancre-

atic tissue on the unevenly Ki-67-immunoreactive WSIs and

accordingly calculated the Ki-67 index more precisely in pan-

creatic neuroendocrine neoplasms.

Furthermore, some biomarkers are used for the selection

of suitable patients for the related therapies. Trastuzumab

could be used on the basis of the status of human epidermal

growth factor receptor 2 (HER2) in breast and gastric cancer.

In breast cancer, a CNN-based algorithm achieved an over-

all agreement of 83% with a pathologist which was similar to

the agreement among pathologists in predicting HER2 nega-

tive (0 and 1+), equivocal (2+), and positive (3+) on WSIs

[66]. The prediction results of AI improved when investiga-

tors segmented cell membranes as the true expression location

of HER2 [67]. Similarly, AI algorithm was also developed

to assess HER2-positive areas (2+ and 3+), HER2-negative

areas (0 and 1+) and tumor-free areas in gastric cancer with an

accuracy of 69.9% [68]. To select potential patients sensitive

to pembrolizumab, an AI algorithm identified the expression

of programmed death-ligand 1 (PD-L1; negative or positive)

on hematoxylin and eosin (HE) stained images of non-small

cell lung cancer with AUC of 0.80 which was comparable to

the assessment of pathologists based on PD-L1 immunohis-

tochemistry images [69]. Based on the immunohistochemical

staining or fluorescent staining WSIs, even on HE staining

WSIs, DL-based AI algorithms performed the evaluation of

biomarkers, which were involved in diagnosis, prognosis and

drug response prediction.

2.7 Evaluation of genetic changes

The morphological changes shown in WSI are manifestations

of underlying genetic changes. To predict whether or not the

speckle-type POZ protein (SPOP) gene is mutated in prostate

cancer, Schaumberg et al. [70] trained multiple ensembles

of residual networks using a cohort of 177 prostate cancer

patients from TCGA where 20 had mutant SPOP and val-

idated their findings in an independent cohort from MSK-

IMPACT of 152 patients where 19 had mutant SPOP. Despite

the training set was from frozen sections and the valida-

tion set was from formalin-fixed paraffin-embedded sections,

mutants and non-mutants of SPOP were accurately distin-

guished (AUC = 0.86). Considering that non-mutant SPOP

ubiquitinylates androgen receptor (AR) to mark AR for degra-

dation [71], identification of SPOP mutation state could lead

directly to precision medicine. Moreover, SPOP mutation is

mutually exclusive with TMPRSS2-ERG gene fusion [72], the

prediction of SPOP mutation status provided indirect infor-

mation of the TMPRSS2-ERG state and potentially others.

Coudray et al. [31] trained the DL network to predict the

ten most commonly mutated genes in lung adenocarcinoma

from TCGA pathology images and found that six of them

(serine/threonine kinase 11 [STK11], epidermal growth fac-

tor receptor [EGFR], FAT atypical cadherin 1 [FAT1], SET

binding protein 1 [SETBP1], Ki-ras2 Kirsten rat sarcoma viral

oncogene homolog [KRAS] and TP53) could be predicted

with AUCs from 0.733 to 0.856. Additionally, an AI model

was developed to identify microsatellite instability (MSI) or

microsatellite stability (MSS) based on HE stained images

of gastrointestinal cancer without performing microsatellite

instability assays, which also showed robustness in snap-

frozen samples, Asian populations, and even endometrial can-

cer with high AUC (0.77-0.84) [73]. Through these AI net-

works, patients with specific genetic changes were identified

based on intrinsic genetic-histologic relationships, which ben-

efited the precision treatment.

2.8 Prognosis prediction

Bychkov et al. [74] used HE-stained tissue microarray images

of colorectal cancer to invent a DL-based method to divide

the patients into low- or high-risk groups. It is noticeable

that the annotation in the training set was patients’ out-

come rather than the labeled WSIs. The AI exceeded his-

tological grade (hazard ratio [HR], 2.30 vs. 1.65) and was

demonstrated to be an independent prognostic factor with

multivariate Cox proportional hazard model analysis. Kather

et al. [75] showed that integrated interstitium characteristics

(including adipose, debris, lymphocytes, muscle, and desmo-

plastic stroma) extracted by CNN could independently fore-

cast the overall survival (HR, 2.29) and relapse-free survival

(HR, 1.92) of patients with colorectal cancer in multi-centers

dataset, regardless of clinical stage. It was demonstrated that

DL approaches could predict the prognostic risk by learning

histologic features in lung adenocarcinoma [76] and glioma

[77]. Kather et al. [73] reported that their algorithm-based

prediction of MSI was also fit for predicting overall survival

in gastrointestinal cancer. The above investigations indicated

that AI algorithms could be used to predict clinical outcome

besides pathological diagnosis for cancer patients.
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2.9 Algorithm for multiple tasks and multiple
tumors

Most of the above AI algorithms were designed to conduct a

specific job in a certain tumor type. As a result, the patholo-

gists need to run many AI algorithms to complete a pathologi-

cal report, in which the tumor were to be diagnosed, subtyped,

graded by different algorithms and the high-risk features were

to be assessed by another individual algorithms.

Couture et al. [78] developed a DL-based algorithm to com-

plete multiple tasks in HE-stained tissue microarray images

of breast cancer, including identifying histological subtypes

(ductal or lobular) with an accuracy of 94%, classifying histo-

logical grade (low-intermediate grade or high grade) with an

accuracy of 82%, and assessing the status of estrogen receptor

(ER; positive or negative) with an accuracy of 84%, discrimi-

nating molecular subtypes (basal-like or non-basal-like types)

with an accuracy of 77%, as well as stratifying recurrence-risk

(high or low-to-medium) with an accuracy of 76%. Another

system equipped with six state-of-the-art DL architectures has

the potential to determine tumor, subtypes, as well as biomark-

ers’ score in lung, breast, and bladder cancer [79].

3 CHALLENGES AND
PERSPECTIVES

As displayed in the above explorations, DL-based AI has

appealing perspective for elevating the efficiency of patho-

logical diagnosis and prognosis. However, there are still some

obstacles and challenges in the implementation of AI in tumor

pathology.

3.1 Validation

Current AI algorithms are mainly established on small-scale

data and images from single-center. The data from single cen-

ter were still deviation, although researchers have developed

methods to augment the dataset, including but not limited to

random rotation and flipping, color jittering, and Gaussian

blur [32, 35, 38, 39]. Variations exist in slide preparation,

scanner models and digitization among different centers. Zech

et al. [80] reported that a CNN for pneumonia detection per-

formed significantly poorer when it was trained using data

from one institution and validated independently using data

from two other institutions than when it was trained using data

from all three institutions (P < 0.001). AI algorithms need to

be sufficiently validated using multi-institutional data before

clinical adoption.

Fortunately, we can find some well-curated, accurate WSI

reference datasets across cancer subtypes with annotated

cancerous regions, which contribute to standardizing the

evaluation of AI algorithms. Moreover, we can use some

large-scale digital-slide libraries, including TCGA, like train-

ing or validation datasets. Building comprehensive quality

control and standardization tools, data share and validation

with multi-institutional data can increase the generalizabil-

ity and robustness of the AI algorithms. In addition, AI algo-

rithms need to be continually validated and corrected by the

diagnosis of expert pathologists.

3.2 Interpretability

Based on the ‘black-box’ methods, deep learning-based AI

has been questioned about the lack of interpretability which is

an obstacle towards the clinical adoption of AI [81-83]. Sev-

eral studies used post hoc methods or supervised ML mod-

els to explain the output of deep learning-based algorithms

after DL algorithms made its prediction [47, 48]. However,

post hoc analyses of DL methods have been criticized because

additional models should not be required to explain how a DL

model works [82]. Recently, some researchers integrated DL

algorithms and hand-crafted ML approaches to raise the bio-

logical interpretability of the model. Wang et al. [84] used

a DL approach to segment nuclei in digital HE images of

early-stage non-small cell lung cancer to predict tumor recur-

rence before applying a hand-crafted method involving the

interrogation of nuclear shape and texture. More strategies are

needed to increase the interpretability of AI algorithms and

gain confidence of doctors and patients.

3.3 Computing system

Histopathological image has large file sizes, being about

1,000 times of an X-ray and 100 times of a CT image. As

a result, high specs hardware is required for both storage and

processing. It is necessary to design a powerful AI model and

build efficient and scalable storage and computing system to

analyze the images. With the usage of cloud platforms, there

are challenges in the massive bandwidth required to transmit

gigapixel-sized WSI images into data clouds as well as man-

aging permanent and uninterrupted communication channels

between end-users and the cloud. These challenges would be

addressed in the foreseeable future brought by improvements

in information technology such as universal adoption of 5G.

3.4 Attitude of pathologists

In addition to the lack of interpretability of AI, some pathol-

ogists are afraid of the change in workflow. When AI is

used, the pathologists won’t observe the histopathological

morphology with a microscope, but on an accelerated parallel
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processing (APP). How would the pathologists describe the

diagnosis evidence from AI in the diagnosis report? How

much responsibility should the pathologists have when they

assign a diagnosis report with the help of AI? These issues

need to be resolved before the real human-machine cooper-

ation are implemented in clinical practice. In addition, with

the development of AI, more and more algorithms/platforms

are being developed. Another important issue for pathologists

is how to choose an adaptable one and standardize the output

from different algorithms/platforms.

3.5 Attitude of clinicians and patients

All of the diagnostic reports serve clinicians to develop suit-

able intervention programs for patients. As a result, the output

of AI should be understood and trusted by the clinicians. In

addition, considering the cost of patients, the clinician needs

to decide the minimum diagnostic assays as well as prognos-

tic and predictive assays. The AI-based diagnostic and prog-

nostic/predictive assays should have a high accuracy and be

convenient for routine clinical use. Similarly, AI-based tests

should be trusted by patients. It is better for AI-based tests to

be set up as Clinical Laboratory Improvement Amendments

(CLIA)-based tests and enter into clinical guidelines.

3.6 Regulators and reimbursements

Besides the accreditation of doctors and patients, the clinical

adoption of AI digital pathology needs approval by regula-

tory agencies. The key principle guiding the approval process

in most countries is the requirement of an explanation of how

the software works [85–87]. The lack of interpretability limits

the approval for DL-based AI approaches [82]. Recently, the

FDA has started granting approval to DL-based approaches

for clinical use in the USA. Philips received an approval for

a digital pathology whole-slide scanning solution (IntelliSite)

in 2017 [88], and subsequently, the digital pathology solution

PAIGE.AI [89] was granted Breakthrough Device designation

by the FDA in 2019 [90]. Despite of the above achievements,

AI-based devices tend to be assigned to Class II or III in the

FDA three-class system for the approval of medical devices,

in which Class I devices deem to have the lowest risk and

Class III devices to have the highest risk. In the European

Union, no AI solutions with prognostic/predictive intent have

a Conformité Européenne marking, but the digital pathology

solutions developed by Philips, Sectra and OptraSCAN have

secured clearance to carry such a designation. Although the

FDA apparently intends to regulate CLIA-based tests more

stringently, it seems to be a better way for AI-based diag-

nostic assays to follow the model established by CLIA-based

genomic tests to get approval for clinical usage.

Reimbursement of the costs of AI-based diagnostic and

prognostic/predictive assays is one of the major issues that

affect the application of these assays in clinic [91]. In the

USA, insurance companies standardize expenses on the basis

of the current procedural terminology codes maintained by

the American Medical Association and reported by medical

professionals [92-95]. At present, there are no dedicated pro-

cedure codes for the use of AI in digital pathology with diag-

nostic or prognostic intent. AI-based tools probably need to

be approved by FDA before they get the new procedure codes

and are reimbursable. In China, AI-based tools have not been

covered by social medical insurance or insurance companies.

3.7 Summary

Future pathological diagnosis probably needs to incorporate

multimodal measurements, such as proteomics, genomics,

and measurements from multiplexed marker-staining plat-

forms, in order to supply a comprehensive patient-specific

portrait for tumor precision treatment [96]. Despite the

above challenges and obstacles, the potential of DL-based

AI approaches for digital pathology is promising since AI

has strong feature representation learning capability enabled

by improvements in algorithm, accumulation of big data

and increased computing power. People will have more

confidence in AI algorithms after they are validated using

multi-center data and have increased interpretability. The

collaboration between pathologists and AI will promote

tumor precision treatment.
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