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ABSTRACT
Secretion of pathogen proteins is crucial for the establishment of disease in animals
and plants. Typically, early interactions between host and pathogen trigger regulated
secretion of pathogenicity factors that function in pathogen adhesion and host pene-
tration. During the onset of plant infection by spores of the Oomycete, Phytophthora
nicotianae, proteins are secreted from three types of cortical vesicles. Following in-
duction of spore encystment, two vesicle types undergo full fusion, releasing their
entire contents onto the cell surface. However, the third vesicle type, so-called large
peripheral vesicles, selectively secretes a small Sushi domain-containing protein,
PnCcp, while retaining a large glycoprotein, PnLpv, before moving away from the
plasma membrane. Selective secretion of PnCcp is associated with its compart-
mentalization within the vesicle periphery. Pharmacological inhibition of dynamin
function, purportedly in vesicle fission, by dynasore treatment provides evidence that
selective secretion of PnCcp requires transient fusion of the large peripheral vesicles.
This is the first report of selective protein secretion via transient fusion outside mam-
malian cells. Selective secretion is likely to be an important aspect of plant infection
by this destructive pathogen.

Subjects Cell Biology, Microbiology, Plant Science
Keywords Dynamin, Kiss-and-run, Sub-vesicle compartmentalization, Regulated secretion,
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INTRODUCTION
Secretion is a fundamental process essential for many aspects of development including cell

adhesion, migration, communication and differentiation. Secretion also plays a vital role

in the establishment of disease in animals and plants. During host-pathogen interactions,

prokaryotic and eukaryotic pathogens release a wide range of pathogenicity factors that are

required for infection. In malaria parasites such as Plasmodium and Toxoplasma species,

for example, successful invasion of host cells is dependent upon the regulated secretion of

proteins located in three categories of apical vesicles (Carruthers & Sibley, 1997). Fungal

pathogens of plants also secrete a wide range of effector proteins that facilitate infection

by aiding adhesion and penetration or by suppressing the plant defence response (Gan et

al., 2010; Koeck, Hardham & Dodds, 2011). In addition, secretion plays a vital role in host
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immunity because potential hosts release a range of antimicrobial compounds as part of

their defence against pathogen attack.

Protein secretion is a key feature in the establishment of disease in animals and plants

by Oomycete pathogens. Oomycetes are morphologically similar to filamentous fungi

but are phylogenetically related to organisms, including the malarial parasites, in the

Kingdom Protista (Simpson, Inagaki & Roger, 2006). Oomycete species are responsible for

extensive losses in salmon and crayfish populations and for debilitating, sometimes lethal,

infections in mammals, including humans (Robertson et al., 2009; Cerenius, Andersson

& Söderhäll, 2009; Mendoza, 2009). In addition, over 80 Oomycetes in the Phytophthora

genus are responsible for highly destructive plant diseases, including many of agricultural

importance and some that threaten natural ecosystems on a vast scale (Lamour & Kamoun,

2009; Lamour, 2013). Phytophthora disease development is initiated by wall-less, motile

spores, termed zoospores. Zoospores swim chemotactically to the surface of potential

hosts where they encyst, a process involving secretion of adhesives, mucilages and cell

wall material. The cysts subsequently germinate and secrete enzymes that enable host

penetration.

During Phytophthora zoospore encystment, proteins are secreted from three different

types of vesicles that lie next to the plasma membrane within the zoospore cortical

cytoplasm (Hardham & Hyde, 1997). The regulated secretion of the contents of small,

so-called ventral and dorsal vesicles delivers an adhesin and a putative protective coating,

respectively, onto the surface of the cysts (Robold & Hardham, 2005). Secretion of a

10 kDa putative adhesive, a Sushi domain-containing protein named PnCcp, from the

third category of cortical vesicle, the so-called large peripheral vesicles, has also been

observed (Škalamera & Hardham, 2006). Secretion of PnCcp was unexpected because

in previous studies there had been no evidence for the secretion of a high molecular

weight glycoprotein, PcLpv, from the large peripheral vesicles nor for large peripheral

vesicle exocytosis during zoospore encystment (Gubler & Hardham, 1990). Instead, after

encystment, the large peripheral vesicles become randomly distributed throughout the cyst

cytoplasm. How could one protein be secreted, another retained and integrity of the large

peripheral vesicles maintained during zoospore encystment?

These observations could be explained by the operation of an unusual mode of secretion

termed transient fusion or kiss-and-run secretion. In the classical mode of secretion,

proteins and glycoproteins destined for the extracellular environment are packaged into

vesicles which fuse with and fully collapse into the plasma membrane, thus releasing their

entire contents outside the cell. However, there is evidence that in some cases vesicles

fuse with the plasma membrane only transiently before the fusion pore closes and the

vesicles pinch off and move away (Harata, Aravanis & Tsien, 2006). During this transient

fusion, vesicle contents are only partially released. This non-classical mode of secretion

is thought to be employed as a mechanism to regulate secretory output and/or rapidly

recycle secretory vesicles. It has been documented in mammalian neuronal (He et al.,

2006), endothelial (Babich et al., 2008), neuroendocrine and endocrine cells (Taraska

et al., 2003; van Kempen et al., 2011) but the extent to which transient fusion occurs
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outside these mammalian cells is not known. It has been postulated to be present in plant

protoplasts but the evidence is limited (Weise et al., 2000; Bandmann, Kreft & Homann,

2011). Does the process of transient fusion explain the apparent differential secretion of

proteins from Phytophthora large peripheral vesicles or do alternative scenarios fit the data

better? In either case, can this novel system reveal new information on the mechanisms that

contribute to the regulation of selective protein secretion?

These questions have been addressed in the research reported in this paper. Our results

reveal temporal differences in the packaging and spatial differences in the localization of

PnCcp and PnLpv proteins in the large peripheral vesicles. Experimental studies indicate

that dynamin plays an important role in selective secretion in this system, possibly by

regulating fusion pore dynamics. Together, our results indicate that the selective secretion

of large peripheral vesicle proteins in Phytophthora zoospores utilizes a kiss-and-run,

transient fusion mechanism similar to that described in mammalian cells, and they provide

new information on factors that may contribute to the mechanics of selective secretion.

MATERIALS AND METHODS
P. nicotianae isolate and culture conditions
P. nicotianae (Breda de Haan) [isolate H1111 (Gabor et al., 1993); ATCC isolate MYA-141]

was grown in V8 broth (Robold & Hardham, 1998). Vegetative and sporulating hyphae,

zoospores and 3 h germinated cysts were cultured and harvested as previously described

(Gan et al., 2009).

Expression of recombinant PnCcp and production of polyclonal
antibodies
PnCcp was amplified using Ex Taq DNA Polymerase (TaKaRa Bio Inc., Shiga, Japan)

from P. nicotianae cDNA with primers (TACTGGATCCGCCAATCTTCGTGGAAG

and CGTAGAATTCGTTAGCCGGAGTAAAGTG) that removed the signal peptide and

placed into the expression vector pGIL (kindly provided by Drs Mark Hinds and Gilles

Rautureau). The protein with an N-terminal hexa-histidine-Maltose-Binding Protein

(His6-MBP) tag was expressed in the Escherichia coli host strain AD494(DE3) and

purified as previously described (Rafiqi et al., 2010). The His6-MBP tag was cleaved

with His6-tobacco etch virus protease (Tropea et al., 2007). A rabbit was inoculated five

times with 0.5 mg of purified PnCcp protein and the resulting polyclonal antiserum was

designated as anti-PnCcpwp.

Immunoblot analysis
Purified PnCcp fusion protein was separated by SDS-PAGE and transferred onto Hybond

C-extra membranes (GE Healthcare) according to manufacturer’s instructions. Binding of

PnCcpwp antiserum and an antibody previously raised against a C-terminal peptide from

PnCcp (Škalamera & Hardham, 2006) (designated PnCcpCpep) was detected using goat

anti-rabbit IgG (GAR) conjugated to alkaline phosphatase (Merck Millipore). Pre-immune

sera and secondary antibodies only were used as controls. Immunoblots of proteins from
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P. nicotianae sporulating hyphae were immunolabelled with monoclonal Lpv-1 antibody

followed by goat anti-mouse IgG (GAM) conjugated to alkaline phosphatase.

Preparation of material for immunolabelling
For surface labelling of P. nicotianae zoospores and cysts, spores were fixed in 4%

formaldehyde plus 0.2% glutaraldehyde in 50 mM PIPES buffer (Hardham, 1985).

For intracellular and surface labelling, zoospores were fixed in 4% formaldehyde in

50 mM PIPES buffer. To detect intracellular cyst proteins, cyst walls were digested with

1 mg/mL cellulase (Sigma-Aldrich) and 20 mg/mL driselase (Sigma-Aldrich) in phosphate

buffered saline (PBS, 16 mM Na2HPO4, 4 mM NaH2PO4, 150 mM NaCl, pH 7) for

45 min. For immunofluorescence labelling of hyphae, samples were fixed and sectioned

as previously described (Dearnaley, Maleszka & Hardham, 1996). For labelling of cysts

in planta, 2 d lupin (Lupinus angustifolius cultivar Gungurru) seedlings were inoculated

with a suspension containing 10,000 P. nicotianae zoospores/mL for 10 min and root

segments were fixed, embedded and cryosectioned as for hyphae.

Labelling of large peripheral vesicles was analyzed in mycelial blocks taken every

5 mm from the center of a colony grown for 5 d on V8 agar. Blocks were fixed in 4%

formaldehyde as described above and cryosections double-labelled with PnCcpCpep and

Lpv-1 antibodies. For quantitative analysis, the percentage of vesicles labelled by Lpv-1

only was determined from counts in 100 hyphal fragments in sections from each of three

samples from each location.

For ultrastructural studies, P. nicotianae sporulating hyphae were cryofixed and freeze-

substituted following two protocols. Tufts of hyphae were plunged into liquid propane

and freeze-substituted in acetone containing 0.2% uranyl acetate and 1% glutaraldehyde

(McDonald & Webb, 2011) overnight at −85◦C, washed with acetone at −20◦C and

slowly infiltrated in Lowicryl K4M before embedding and polymerization under UV

light at −20◦C. Tufts of hyphae were plunged into liquid ethane and freeze-substituted

in acetone containing 0.5% uranyl acetate and 0.25% glutaraldehyde at−90◦C for 72 h.

After warming over 9 h to−45◦C and washing in dry acetone, samples were infiltrated at

−20◦C with LR White resin before polymerization under UV light at−20◦C. Ultrathin

sections were cut using a Reichert-Jung ultramicrotome and collected on formvar-coated

gold grids.

Immunofluorescence labelling
PnCcp was localized with rabbit PnCcpCpep or PnCcpwp antibodies diluted 1:150 in

1% BSA and 0.1% fish skin gelatin (Sigma-Aldrich) in PBS. Phytophthora zoospore

vesicle antigens PnLpv, PnVsv and PnCpa were localized with undiluted Lpv-1 and

Vsv-1 monoclonal antibody supernatants and 10 µg/mL purified Cpa-2 monoclonal

antibody, respectively (Hardham et al., 1994). P. nicotianae cyst wall protein was localized

with undiluted Cpw-4 monoclonal antibody supernatant. All antibody incubations

were at 37◦C for 45 min and followed by rinsing in PBS. Secondary antibodies were

fluorescein-conjugated sheep anti-mouse IgG (Jackson ImmunoResearch Laboratories,

West Grove, PA, USA) diluted 1:150 or Alexa Fluor 488-GAR (Life Technologies, Carlsbad,
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CA, USA) diluted 1:1000. For double labelling, samples were incubated with PnCcpCpep

or PnCcpwp antibody at 4◦C overnight followed by 45 min at 37◦C with Alexa Fluor

488-GAR. Samples were then incubated with Lpv-1 followed by Texas Red-conjugated

GAM (Jackson ImmunoResearch), each for 45 min at 37◦C.

Immunogold labelling
Sections were blocked in 1% BSA and 0.1% fish skin gelatin in PBS for 20 min then labelled

with PnCcpCpep (diluted 1:600) or Lpv-1 (undiluted supernatant) antibodies, followed by

GAM (GE Heathcare) or GAR (British BioCell) conjugated to 10 nm gold. For double

immunogold labelling, sections were incubated in Lpv-1 and PnCcpCpep antibodies,

followed by incubation in 5-nm gold-GAM (GE Healthcare) and 10-nm gold-conjugated

GAR. Sections were counterstained with uranyl acetate and lead citrate before imaging

(Hardham, 2001).

Microscopy
Immunofluorescence was examined using an Axioplan epifluorescence microscope (Zeiss,

Oberkochen, Germany) and photographed using MicroMax software with a black and

white digital camera (Princeton Instruments, Trenton, NJ, USA). A Zeiss LSM780 confocal

laser scanning microscope with a 1.4 NA 40× oil-immersion objective was used to examine

P. nicotianae cells double-labelled with PnCcpCpep and Lpv-1 antibodies. Images were ac-

quired using the Online Fingerprinting mode of Zen 2011 digital imaging software (Zeiss)

in conjunction with multiphoton excitation at 810 nm (MaiTai eHP laser Spectra-Physics,

Stahnsdorf, Germany). Laser group velocity was optimized using the MaiTai DeepSee

attachment and associated software (Spectra-Physics). For ultrastructural studies, sections

were examined with a Hitachi H7100FA transmission electron microscope.

Enzyme-linked immunosorbent assay
P. nicotianae zoospore suspensions (∼10,000 zoospores per well) were loaded into 96-well

filtration plates with 1.2 µm hydrophilic durapore membrane (Merck Millipore) on a

vacuum manifold that facilitated rapid solution changes without loss of cells. Zoospore

encystment was induced by addition of Ca(NO3)2 to a final concentration of 5 mM (Byrt,

Irving & Grant, 1982) and cells fixed at selected time points thereafter in 4% formaldehyde

and 0.2% glutaraldehyde in 50 mM PIPES buffer for 30 min. After washing in PBS and

blocking in 3% BSA in PBS, primary antibodies diluted in PBS (PnCcpCpep at 1:150;

Vsv-1 and Cpa-2 at 10 µg/mL; Cpw-4 undiluted supernatant) were added for 1 h at room

temperature. After washing in PBT (0.5% v/v Tween 20 in PBS), samples were incubated

in either sheep anti-mouse or sheep anti-rabbit IgG conjugated to horseradish peroxidase

(Merck Millipore) diluted 1:2000 for 1 h at room temperature. Wells were washed in PBT

before incubation in ABTS [2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)]

substrate solution for 20 min. Absorbance at 405 nm was measured on a Multiskan RC

microtiter plate reader (MTX Lab Systems, VA, USA). Three or four biological replicates

were performed for each treatment and primary antibodies were omitted for controls.
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Dynamin inhibitor experiments
In dynamin inhibition experiments, the zoospore suspension was treated with 80 µM

dynasore (Abcam Inc., Cambridge, MA, USA) in 0.8% dimethyl sulphoxide (DMSO)

and immediately triggered to encyst with 5 mM Ca(NO3)2. In controls, zoospores were

treated with 0.8% DMSO. For immunofluorescence labelling, the cells were fixed 2 min

later in 4% formaldehyde as described above. The experiment was repeated four times. For

membrane labelling of dynasore-treated cells, FM4-64 (Molecular Probes, Oregon, USA),

to a final concentration of 1.5 µM, was added to the zoospore suspension treated with

80 µM dynasore (or 0.8% DMSO in controls). FM4-64 was added immediately after

cells were triggered to encyst. Fluorescence was checked after 5 min. The experiment

was repeated three times. For electron microscopy, zoospores were treated with 80 µM

dynasore (or 0.8% DMSO in controls) and encystment immediately triggered with 5 mM

Ca(NO3)2. Cysts were fixed in 1% glutaraldehyde in 100 mM PIPES buffer 5 min

after induction of encystment and embedded in Lowicryl K4M as previously described

(Hardham, 2001).

Gene expression analysis
Expression of PnCcp and PnLpv genes was measured in three biological replicates by qPCR

with WS041 as the normalising gene as previously described (Gan et al., 2009). The 3′ end

of PnLpv was cloned from P. nicotianae gDNA using degenerate primers designed against

partial P. cinnamomi (NCBI accession AF315064) and P. sojae (Joint Genome Initiative

accession jgi|Physo3|555774|estExt Genewise1Plus.C 2 t20233) Lpv genes. Primers for

PnCcp and PnLpv were ATGCTGCCACTTCTTCGC, CCGGAGTCGTGTTTGAGAAT,

and AGGAAGAGGCTCGGGCTAAG, CTGGAAGTGCGGTGGCTG.

Identification of dynamin homologs in P. nicotianae
Putative dynamins were identified by Pfam domain searches of proteins annotated by the

P. parasitica INRA-310 Sequencing Project (http://www.broadinstitute.org/) and analysed

with motif identification programs MyHits [http://myhits.isb-sib.ch/, (Pagni et al., 2007)],

PROSITE [http://prosite.expasy.org/scanprosite/, (Sigrist et al., 2013)] and NCBI blastp

[http://www.ncbi.nlm.nih.gov/, (Altschul et al., 1997)].

RESULTS
Selective secretion of PnCcp from P. nicotianae zoospore large
peripheral vesicles
Immunolabelling studies using a monoclonal antibody, Lpv-1, directed towards the

high molecular weight glycoprotein, PcLpv, stored in the large peripheral vesicles in

P. cinnamomi zoospores indicated that large peripheral vesicles do not undergo exocytosis

during zoospore encystment but instead became dispersed throughout the cyst cytoplasm

(Gubler & Hardham, 1988). Subsequent studies of another Phytophthora species,

P. nicotianae (synonymous with P. parasitica var. nicotianae), revealed the presence of a

second protein, PnCcp, within large peripheral vesicles (Škalamera & Hardham, 2006).
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Figure 1 Immunolabelling of PnCcp and PnLpv proteins. (A) Double-immunofluorescence labelling
of PnCcp (green) and PnLpv (red) proteins in Phytophthora nicotianae zoospores and cysts (10 min post-
induction of encystment). In zoospores, PnCcp and PnLpv colocalize within large peripheral vesicles.
During encystment, PnCcp, but not PnLpv, is secreted onto the cyst surface whereas PnLpv remains in
large peripheral vesicles in the cyst cytoplasm. (B) Immunolabelling shows secretion of PnCcp during
P. nicotianae zoospore encystment and attachment to the surface of Lupinus angustfolius roots (R). PnLpv
proteins are retained within large peripheral vesicles in the cysts. (C) Immunolocalization of PnCcp using
the PnCcpwp antibody raised against the full-length PnCcp protein in P. nicotianae. PnCcpwp labels
zoospore large peripheral vesicles and the cyst surface. (D) Immunoblot assay of purified PnCcp fusion
protein coupled to maltose binding protein (MBP) labelled with PnCcpCpep and PnCcpwp antibodies.
The Mr of 53 kDa of the labelled polypeptide corresponds to the predicted size of PnCcp-MBP fusion
protein. (E) Immunoblot assay of P. nicotianae proteins labelled with Lpv-1 antibody which reacts with
two PnLpv isoforms with a Mr > 400 kDa.

Surprisingly, immunolabelling indicated that this protein was secreted from the large

peripheral vesicles during zoospore encystment (Škalamera & Hardham, 2006).

We have performed immunofluorescence double-labelling of P. nicotianae zoospores

and cysts using the PnCcp polyclonal antibody which was raised against a C-terminal

peptide (hereafter designated, PnCcpCpep antibody) and the Lpv-1 monoclonal antibody

to re-assess the initial observations. In zoospores, PnCcpCpep and Lpv-1 antibodies label

the same vesicles within the zoospore cortex (Fig. 1A). However, in young cysts, PnCcpCpep

antibody labels the cyst surface, whereas Lpv-1 antibody continues to label the large

peripheral vesicles within the cyst cytoplasm (Fig. 1A). These results indicate that PnCcp

and PnLpv are both stored in the large peripheral vesicles in zoospores and that during

zoospore encystment, PnCcp is secreted from the vesicles while PnLpv is not.

The experiments described above were conducted in vitro, with zoospore encyst-

ment induced by vortexing. To investigate whether selective secretion of PnCcp also

occurred during plant infection, lupin (Lupinus angustifolius) roots were inoculated with
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P. nicotianae zoospores before being fixed and immunofluorescently labelled with

PnCcpCpep antibody. Labelling of PnCcp proteins was detected on the surface of the cysts

attached to the root surface (Fig. 1B). No labelling of PnLpv proteins was observed on the

surface of the cysts that were attached to the plant roots (Fig. 1B).

Verification of the specificity of the PnCcpCpep antibody
The PnCcpCpep polyclonal antibody was raised against a 15-amino acid synthetic peptide

from the C-terminus of the PnCcp protein (Škalamera & Hardham, 2006). To verify

the specificity of the PnCcpCpep antibody, the full length of the PnCcp protein (lacking

the signal peptide) was expressed as a recombinant protein in E. coli, purified and

used to raise a new polyclonal antiserum (designated PnCcpwp for “whole protein”).

Immunofluorescence labelling with the PnCcpwp antiserum showed the same localization

as that obtained with the PnCcpCpep antibody. PnCcpwp antibodies labelled the large

peripheral vesicles in zoospores and the surface of cysts (Fig. 1C). When the PnCcpCpep

and PnCcpwp antibodies were tested on immunoblots containing PnCcp fusion protein

purified from E. coli, both antibodies reacted with a single polypeptide with a relative

molecular weight of 53 kDa (Fig. 1D). This size was the same as that predicted for the

recombinant PnCcp protein which was fused to the maltose binding protein (MBP).

Pre-immune sera displayed no labelling in immunofluorescence or immunoblot assays

when used at the same concentrations as the immune sera. Neither antiserum labelled

immunoblots of proteins extracted from P. nicotianae cells, possibly because of the small

size of the PnCcp protein. In immunoblots, the Lpv-1 monoclonal antibody reacts with

two polypeptides of relative molecular mass greater than 400 kDa (Fig. 1E).

Timing of secretion of PnCcp
The large peripheral vesicles move away from the plasma membrane about 5 min after

commencement of zoospore encystment (Gubler & Hardham, 1988). In order to determine

whether the secretion of PnCcp occurs while the large peripheral vesicles are close to the

plasma membrane or after their migration out of the cell cortex, we investigated the timing

of PnCcp secretion by immunofluorescence labelling and enzyme-linked immunosorbent

assays (ELISAs). As well as PnCcpCpep and Lpv-1 antibodies, monoclonal antibodies

Vsv-1, Cpa-2 and Cpw-4 (Hardham et al., 1994) were also used to allow comparison of the

relative timing of exocytosis of PnCcp with that of PnVsv and PnCpa proteins from ventral

and dorsal vesicles, respectively, and of a cyst wall protein, PnCpw. In these experiments,

P. nicotianae zoospores were induced to encyst by the addition of Ca(NO3)2 and samples

taken at intervals during the first 5 min of the encystment process. Zoospores were

chemically fixed using a formaldehyde fixative that does not preserve the zoospore plasma

membrane and which thus allows antibodies to react with intracellular proteins. Encysting

cells were fixed with a fixative that contained glutaraldehyde in addition to formaldehyde.

This fixative preserves the spore plasma membrane which prevents antibody access to

intracellular proteins (Hardham, 1985). This ensured that the antibodies labelled only
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Figure 2 Immunofluorescence labelling of zoospores and encysting cells. (A) Fixation of zoospores allowed intracellular labelling but fixation
of 0–5 min encysting cells allowed only cell surface labelling. PnCcp (labelled with PnCcpCpep), PnVsv and PnCpa proteins are stored in cortical
vesicles in the zoospores and are secreted rapidly during spore encystment. PnLpv protein is also stored in zoospore peripheral vesicles but is not
secreted. PnCpw, a cyst wall-associated protein, accumulates progressively on the cyst surface. (B) ELISA quantification of protein secretion. PnCcp
(red circles), PnVsv (blue squares), PnCpa (green triangles) and PnCpw (purple inverted triangles), are released during the first 5 min after induction
of zoospore encystment. Data are expressed as a percentage of the maximum absorbance for each antibody. Because of technical constraints, “zero”
min points are∼10 s post-induction of encystment. Bars indicate s.e.m. (n= 3).

material that had been secreted onto the cell surface in the samples fixed after induction of

encystment.

The immunofluorescence assay revealed that 30 s after the induction of encystment,

labelling of PnCcp could be observed on some regions but not the entire surface of

encysting spores (Fig. 2A). Labelling of ventral vesicle, dorsal vesicle and cyst wall proteins

with Vsv-1, Cpa-2 and Cpw-4, respectively, was also detected on the cyst surface 30 s after

induction of encystment (Fig. 2A). This suggested that secretion of PnCcp from the large

peripheral vesicles begins at a similar time to that of the secretion of ventral and dorsal

vesicle proteins and the cyst wall protein. As encystment continued, labelling of PnCcp

appeared stronger and 2 min after encystment induction, the entire surface of most cysts

was labelled by PnCcpCpep antibody. Labelling by Vsv-1, Cpa-2 and Cpw-4 showed a

similar temporal and spatial pattern. No secretion of PnLpv proteins was detected at any

time point after encystment was induced (Fig. 2A).

An ELISA was used to quantify the timing of PnCcp protein secretion onto the surface

of spores during zoospore encystment (Fig. 2B). As in the immunofluorescence assay,

the encysting cells were fixed so that only surface proteins were labelled. Because of an
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unavoidable delay between the addition of Ca2+ to induce encystment and addition of

fixative, values at 0 min are about 10–15 s post-induction. The results show that secretion

of PnCcp, PnVsv, PnCpa and PnCpw proteins begins within 30–60 s after encystment

was induced. When values are expressed as a percentage of the maximum absorbance,

the results show that PnVsv is fully secreted and over 90% of PnCcp is secreted by 1 min

post-induction. By contrast, PnCpa is not fully secreted until 3 min post-induction and

PnCpw secretion increases progressively over the 5-min time period. Importantly, the

results indicate that secretion of PnCcp proteins within 1–2 min of the onset of encystment

occurs when the large peripheral vesicles are still in the zoospore cortex.

Synthesis of PnCcp and PnLpv proteins
Earlier studies suggested that large peripheral vesicles are absent from vegetative hyphae,

appear during sporulation and sometimes contain only PnLpv or only PnCcp (Dearnaley,

Maleszka & Hardham, 1996; Škalamera & Hardham, 2006). A possible explanation for the

latter observation could be that the two proteins are synthesized at different locations or

at different times and are subsequently brought together by vesicle fusion. Growing fungal

and Oomycete mycelial colonies have a distinct polarity, with young cells extending by

tip-growth predominantly at the colony’s margin and progressively older hyphae occurring

towards the colony’s centre. To investigate the relative timing of the synthesis of PnCcp

and PnLpv, the occurrence of vesicles containing these proteins in P. nicotianae colonies

growing on V8 agar plates was determined using immunofluorescence double-labelling

with PnCcpCpep and Lpv-1 antibodies. Samples were taken at 5 mm intervals across the

colony, thus representing a time course of development from old to young hyphae.

Analysis of the hyphal samples did not identify any subcellular components that were

labelled only by the PnCcpCpep antibody, however, it did reveal the existence of two

populations of vesicles: one category of vesicle contained both PnCcp and PnLpv proteins

whereas the other category contained PnLpv only (Fig. 3A). The occurrence of these two

categories of vesicle was quantified along the age gradient across the mycelial colony and

the results showed that the percentage of vesicles that contained only PnLpv increased from

37% at the centre of the colony to 56% at the growing edge of the colony (Fig. 3B). These

data suggest that the synthesis of PnLpv precedes that of PnCcp in hyphae at the advancing

edge of the colony, that when at least a proportion of the vesicles are first made they contain

only PnLpv and that PnCcp is subsequently added to the PnLpv-containing vesicles.

Timing of expression of PnCcp and PnLpv genes
The relative timing of production of PnCcp and PnLpv was also investigated by deter-

mining the patterns of expression of PnCcp and PnLpv genes using real-time quantitative

RT-PCR (qPCR). The expression of both genes was up-regulated during sporulation but

maximum expression occurred at different times after induction of sporulation (Fig. 3C).

Both genes were expressed at extremely low levels in vegetative hyphae. After induction

of sporulation, PnCcp transcript levels increased slowly, peaking 6 d after induction.

In contrast, PnLpv transcript levels increased quickly, peaking 12 h after induction of

sporulation. The highest level of PnCcp transcripts detected occurred when the density of
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Figure 3 PnCcp and PnLpv synthesis and packaging into large peripheral vesicles. (A) Double-
immunofluorescence labelling with PnCcpCpep and Lpv-1 antibodies shows only one (arrowhead) of
seven vesicles in a hyphal fragment from the leading edge of mycelium growing on nutrient agar contains
PnCcp in addition to PnLpv proteins. (B) Quantitation of vesicles that contain PnLpv only in hyphae
sampled at 5-mm intervals across a mycelial colony from its centre (0–5 mm) to the advancing edge
(25–30 mm). Bars indicate s.e.m. (n= 3). (C) qPCR quantitation of PnCcp and PnLpv transcript levels
in vegetative hyphae (VH), sporulating hyphae (0 h to 7 days), zoospores (Z) and 3-h germinated
cysts (GH). Expression levels are relative to the normalising gene, WS041. Bars indicate s.e.m. (n = 3).
(D) Density of sporangia (per microscope field of view) in P. nicotianae mycelia growing in liquid culture
after induction of sporulation. Bars show s.e.m. (n= 3). (continued on next page...)
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Figure 3 (...continued)

(E) Double-immunofluorescence labelling with PnCcpCpep and Lpv-1 antibodies of P. nicotianae sporu-
lating hyphae and zoospores. Confocal microscope optical sections show that PnCcp (green) is often
restricted to an outer zone within the large peripheral vesicles while PnLpv (red) occurs throughout the
vesicles. (F, G) Large peripheral vesicles in cleaving sporangia of P. nicotianae prepared by plunge-freezing
and freeze-substitution. Ultrastructural analysis reveals an outer shell of electron-dense material (F)
which is labelled by PnCcpCpep-goat anti-rabbit-10 nm gold (arrowheads). Lpv-1-goat anti-mouse-5 nm
gold labels throughout the vesicle (G).

sporangia reached a maximum level (Fig. 3D). Analysis of other stages of the P. nicotianae

asexual life-cycle showed that PnCcp was most highly expressed in zoospores and that

PnLpv was most highly expressed in 12-h sporulating hyphae (Fig. 3C). The qPCR

results thus provide evidence of the differential expression of PnCcp and PnLpv genes,

with synthesis of PnLpv transcripts occurring much earlier than that of PnCcp during

sporulation.

Compartmentalization of PnCcp in large peripheral vesicles
In order to further investigate details of the formation and function of large peripheral

vesicles, we determined whether there was any evidence of differential distribution of

PnCcp and PnLpv within the vesicles. Localization of PnCcp and PnLpv within individual

vesicles was studied by immunofluorescence double-labelling and two-colour confocal

microscopy and by immunogold transmission electron microscopy.

For confocal microscopy, the ability of multiphoton excitation to simultaneously excite

multiple fluorochromes in a small focal volume was exploited to avoid chromatic aberra-

tion that may occur during multi-wavelength scans in single-photon excitation. Online

Fingerprinting was utilised to remove both non-specific fluorescence and to accurately

compensate for any fluorescent bleed-through between Alexa Fluor 488 and Texas Red.

Reference spectra used for Online Fingerprinting were derived from singly-stained hyphae

and zoospores, using the same preparation and optical configuration as the two-colour

experiments. Vesicles in P. nicotianae sporulating hyphae and zoospores were observed

(Fig. 3E). While Lpv-1 labelling of PnLpv occurred throughout the vesicles, in many cases

PnCcp occupied only part of the vesicle. In 84% of the large peripheral vesicles examined

(data from 1049 vesicles in 16 zoospores), PnCcp was confined to an outer region within

the vesicle.

The compartmentalization of PnCcp was also examined ultrastructurally using

immunogold single- and double-labelling. In chemically-fixed material, the contents of

large peripheral vesicles appear homogeneous, and immunogold labelling with PnCcpCpep

and Lpv-1 antibodies usually occurs throughout the vesicle (Škalamera & Hardham, 2006).

In some cases, however, there was evidence of peripheral labelling of PnCcp within

the vesicles. To minimize artifacts that might be generated during chemical fixation,

P. nicotianae sporulating hyphae were prepared for immunogold labelling by plunge-

freezing and freeze-substitution. Electron microscopy of ultrathin sections of cryop-

reserved P. nicotianae sporangia revealed an electron-dense peripheral ring within the

large peripheral vesicles (Fig. 3F). Immunogold double-labelling showed that PnCcpCpep
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antibody consistently labelled the electron-dense outer region of the vesicles whereas

labelling with the Lpv-1 antibody occurred throughout the vesicle (Fig. 3G).

Role of dynamin in selective secretion of PnCcp
The immunofluorescence and ELISA experiments described above show that PnCcp is

secreted soon after induction of zoospore encystment when the large peripheral vesicles

are in close proximity to the zoospore plasma membrane. An existing model of secretion

that could explain the release of PnCcp and retention of PnLpv is transient fusion, also

called kiss-and-run secretion. In this model, a narrow fusion pore forms between a

secretory vesicle and the plasma membrane, allowing the release of some but not all

of the vesicle contents before the pore reseals and the vesicle pinches away from the

plasma membrane (Harata, Aravanis & Tsien, 2006; van Kempen et al., 2011). Dynamin,

a GTPase associated with the budding and scission of newly formed vesicles in endocytosis

(Chappie et al., 2011), has been reported to also play an important role in kiss-and-run

secretion in mammalian cells, being involved in severing the neck of the fusion pore

and enabling the vesicle to pinch away from the plasma membrane (Jaiswal, Rivera &

Simon, 2009). Bioinformatic analysis of the P. nicotianae genome revealed the presence

of six predicted genes that encode proteins containing from one to three dynamin-like

domains. The six genes have little overall homology. One gene, PPTG 15137, encodes a

predicted protein that contains the GTPase domain, the middle domain and the GTPase

effector domain typical of dynamin-like proteins. It shares 49% amino acid identity with

the human dynamin-1-like protein isoform 2 (NCBI accesssion NP 036193) and 95%

identity to a dynamin-like protein characterised in P. sojae (Li et al., 2013). PPTG 15137

is highly expressed during the infection of lupin roots (LM Blackman and AR Hardham,

unpublished observations). To investigate whether the selective secretion of PnCcp is

due to kiss-and-run secretion, we determined the role of dynamin in large peripheral

vesicle dynamics by treating living P. nicotianae zoospores with dynasore, a cell-permeant

inhibitor of the dynamin GTPase (Macia et al., 2006; Jaiswal, Rivera & Simon, 2009).

Because regulated secretion of PnCcp occurs within 1–2 min after the induction of

encystment, it was necessary that dynasore was able to act rapidly to inhibit dynamin in the

encysting spores. To test this, the ability of dynasore to inhibit endocytosis during zoospore

encystment was investigated by labelling the zoospore plasma membrane with FM4-64.

FM4-64 dye is widely used for tracking endocytosis as it can intercalate into the plasma

membrane and be taken into the cells by endocytosis (Vida & Emr, 1995). The experiments

showed that in P. nicotianae zoospores treated with FM4-64 and 80 µM dynasore for

5 min, the amount of FM4-64-labelled membrane that was internalised into the cytoplasm

was much less than in control cells (Figs. 4A and 4B). FM4-64-labelled vesicle-like

structures that formed in the presence of dynasore remained at the plasma membrane,

possibly indicating that inhibition of dynamin function may have prevented invaginated

membranes from undergoing fission from the plasma membrane. Importantly, the results

confirmed that dynasore could block the activity of dynamin in the short time-frame

necessary for the experiments with living zoospores.
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Figure 4 The effect of the dynamin inhibitor, dynasore, on selective secretion of PnCcp. (A, B) Uptake
of FM4-64-labelled plasma membrane in P. nicotianae zoospores 5 min after induction of zoospore
encystment. (A) In control zoospores incubated in FM4-64, endocytosis of the zoospore plasma mem-
brane during encystment leads to high levels of cytoplasmic fluorescence within the spores. (B) In
zoospores incubated in FM4-64 and 80 µM dynasore, no plasma membrane internalization occurs and
FM4-64-labelled membranes remain at the cell surface. (C) Double-immunofluorescence labelling with
PnCcpCpep and Lpv-1 antibodies of P. nicotianae cells incubated in 0.8% DMSO (control) or 80 µM
dynasore and fixed 2 min after the induction of encystment. Treatment with 80 µM dynasore results in
secretion of PnLpv proteins from the large peripheral vesicles. (D) Lpv-1 immunogold labelling shows
PnLpv proteins on the surface of cyst fixed 5 min after the induction of encystment.
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To monitor the secretion of proteins from the large peripheral vesicles, cells treated with

80 µM dynasore were fixed 2 min after inducing encystment and immunofluorescently

double-labelled with PnCcpCpep and Lpv-1 antibodies. The fixation regime allowed both

internal and surface labelling. In control cells treated with the solvent 0.8% DMSO alone,

PnCcp, but not PnLpv, was secreted onto the spore surface as normal (Fig. 4C). In cells

treated with dynasore, PnCcp was secreted as usual but in addition, PnLpv was also

secreted onto the surface of the spores and there were no longer any large peripheral

vesicles containing PnLpv in the spore cytoplasm (Fig. 4C). Dynasore treatment appeared

to slightly increase the speed of PnCcp secretion. In most control cells in 2-min samples

(either untreated or treated with 0.8% DMSO), PnCcp occurred both in intracellular

vesicles and on the cell surface (Fig. 4C), indicating that secretion of PnCcp was in process

but not complete. By contrast, in the dynasore-treated, 2-min samples, there was no PnCcp

in intracellular vesicles and all PnCcp had been secreted (Fig. 4C). In samples treated with

dynasore, the cells were slightly larger than control cells, a feature that could be due to

inhibition of endocytic plasma membrane retrieval during encystment.

Secretion of PnLpv in the dynasore-treated cysts was confirmed by immunogold

labelling of ultrathin sections with the Lpv-1 antibody. Dynasore-treated samples showed a

reduction in the number of large peripheral vesicles in the cysts. In contrast to the situation

in control cells, where there is no Lpv-1 labelling of the cell surface, in dynasore-treated

cysts, PnLpv labelling was seen outside the cyst cell wall (Fig. 4D). Treatment with

80 µM dynasore had only a small effect on cell viability. On removing the dynasore

after a 2 min treatment, 87.3% of the cysts germinated compared to 93% in controls.

An interpretation of the dynasore experiments is that large peripheral vesicles normally

undergo kiss-and-run secretion but when dynamin activity is inhibited by dynasore, the

fusion pore formed is unable to reseal and all the vesicle contents, including both PnCcp

and PnLpv, are secreted.

DISCUSSION
Protein secretion is a fundamental process in cell life and is critical for the establishment

of infection by bacterial and eukaryotic pathogens of both plants and animals. Protein

secretion required for the initiation of infection is triggered by host factors perceived by the

pathogen after its arrival at the host surface. In the case of fungal and Oomycete pathogens

of plants, both physical and chemical host signals trigger regulated secretion including

that of adhesives and degradative enzymes, however, little is known about the molecular

mechanisms regulating protein secretion in these organisms. The regulated secretion that

occurs during attachment of spores of the plant pathogen P. nicotianae to a potential host

involves an unusual process whereby a protein is selectively secreted from vesicles that

remain otherwise intact. In the research reported in this paper, the selective secretion of the

Sushi domain-containing protein, PnCcp, has been analyzed using immunolabelling and

pharmacological experiments. The results reveal that selective secretion of PnCcp occurs

through the transient fusion of the large peripheral vesicles. To the best of our knowledge,
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selective protein secretion via transient fusion has not heretofore been demonstrated

outside mammalian cells.

A transient fusion mechanism underlies selective secretion of
PnCcp
Secretion of PnCcp and retention of PnLpv within large peripheral vesicles during

encystment of P. nicotianae zoospores could be explained by two existing models of

protein trafficking. One is the “sorting-by-retention” model in which some proteins are

retained within a vesicle, possibly due to their aggregated state, while others are removed by

recruitment into clathrin-coated vesicles and trafficked to endomembrane compartments

or the cell surface (Arvan & Castle, 1998; Arvan & Halban, 2004; Robinson, Oliviusson &

Hinz, 2005).

Application of the sorting-by-retention model predicts that PnCcp would be specifically

removed from the large peripheral vesicles in small vesicles, leaving behind other proteins,

including PnLpv. These PnCcp-containing vesicles would then fuse with the zoospore

plasma membrane during encystment, thus releasing PnCcp onto the spore surface.

According to this model, the membrane of the large peripheral vesicle would at no time

fuse with the plasma membrane. Two observations suggest that this model does not apply

to PnCcp secretion. Firstly, small PnCcp-transporting vesicles in the cortex of encysting

spores have not been seen. Secondly, dynasore inhibition of dynamin function in pore

closure leads to PnLpv secretion, indicating that the large peripheral vesicles do indeed fuse

with the spore plasma membrane.

The alternative model that could explain selective secretion of PnCcp is transient fusion,

also called kiss-and-run secretion. According to this model, some vesicle cargo proteins are

released through a narrow fusion pore that forms transiently between vesicle and plasma

membranes (Alabi & Tsien, 2013). This process has been documented in a number of

mammalian cell types. In adrenal chromaffin cells, for example, transient fusion allows

dense-core vesicles to selectively release small soluble catecholamines but retain less mobile

neuropeptides (Fulop, Radabaugh & Smith, 2005; Zhang et al., 2011). In pancreatic beta

cells, transient fusion allows secretory granules to selectively release small transmitters but

retain insulin peptides (Obermüller et al., 2005; MacDonald et al., 2006). In endothelial

cells, transient fusion allows Weibel-Palade bodies to release proinflammatory cytokines

while retaining core proteins (Babich et al., 2008).

Two lines of evidence indicate that transient fusion is the likely mechanism operating

during selective secretion of PnCcp from the large peripheral vesicles in P. nicotianae

zoospores. Firstly, our immunofluorescence labelling and ELISAs show that PnCcp

is secreted 1–2 min after the induction of encystment and thus occurs while the large

peripheral vesicles are closely apposed to the spore plasma membrane (Gubler & Hardham,

1990; Škalamera & Hardham, 2006). Secondly, when dynamin GTPase activity is inhibited

by dynasore, PnCcp and PnLpv are both released from the large peripheral vesicles and the

number of PnLpv-containing vesicles remaining after encystment is greatly reduced. These

experimental results are consistent with dynasore-induced full fusion of large peripheral

vesicles with the plasma membrane and complete release of all vesicle cargo molecules.
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Dynamin forms a constricting collar around the neck of clathrin-coated pits, and facilitates

fission of the membrane connection between vesicles and the plasma membrane during

endocytosis and kiss-and-run secretion (Tsuboi, McMahon & Rutter, 2004; Jaiswal, Rivera

& Simon, 2009; Chappie et al., 2011). In our dynasore experiments, the rate of PnCcp

release was slightly faster than usual. Inhibition of dynamin activity in mammalian

fibrosarcoma cells that normally utilize transient fusion, also results in full fusion and

more rapid release of cargo molecules than occurs during transient fusion (Jaiswal, Rivera

& Simon, 2009). Taken together, these data support the proposal that selective secretion

of PnCcp is achieved through the transient fusion of large peripheral vesicles in encysting

zoospores.

Factors underlying selective secretion of PnCcp
What factors could be responsible for secretion of PnCcp and retention of PnLpv during

transient fusion of large peripheral vesicles during P. nicotianae zoospore encystment?

A prime candidate from other studies is the size of the cargo molecules. Typically, small

soluble molecules are secreted while large less soluble molecules are retained (Fulop,

Radabaugh & Smith, 2005; Obermüller et al., 2005; MacDonald et al., 2006; Babich et al.,

2008; Zhang et al., 2011). Discrimination on the basis of molecule size is achieved through

limitations in the size of the transient fusion pore. Selective secretion of PnCcp, a 10 kDa

protein, and retention of PnLpv, a>400 kDa glycoprotein, from large peripheral vesicles in

Phytophthora zoospores provides another example of this principle.

Our research on secretion in Phytophthora zoospores highlights another factor

potentially involved in selective secretion, namely subcompartmentalization of vesicle

components. Ultrastructural examination and immunocytochemical labeling show that

PnCcp is restricted to an outer electron-dense zone within the large peripheral vesicles in

the Phytophthora zoospores.

Heterogeneity in the appearance of vesicle contents is not unusual but demonstration

of subcompartmentalization of specific vesicle cargo molecules is less common. Notable

examples of sub-organelle molecular compartmentation include rhoptries in malaria

zoites and dense-core vesicles in pancreatic beta cells (Obermüller et al., 2005; Kats et al.,

2006; Boothroyd & Dubremetz, 2008; Suckale & Solimena, 2010). In malarial zoites, proteins

may be confined to the rhoptry tip, neck, bulb or base/periphery (Zuccala et al., 2012).

In pancreatic beta cells, tightly-packed insulin crystals form an electron-dense core that

is surrounded by a halo of small soluble molecules in the dense-core vesicles. These two

examples provide evidence of the importance of sub-vesicle compartmentalization in

regulation of cargo secretion. In malarial parasites, subcompartmentalization of rhoptry

proteins determines the order in which the proteins are released during host cell invasion

(Zuccala et al., 2012). In pancreatic beta cells, subcompartmentalization within dense-core

vesicles is associated with differences in the timing of cargo release during full fusion; the

molecules in the outer zone of the vesicles are released before insulin peptides are released

from the central crystalline core (Obermüller et al., 2005).
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We thus conclude that selectivity of protein secretion from Phytophthora large

peripheral vesicles could be achieved by limitations of fusion pore diameter so that only

small proteins like PnCcp are released, by pore kinetics, by cargo subcompartmentalization

during vesicle biogenesis, or by a combination of these factors. It remains for future

studies to determine their relative importance, however, our quantification of the

co-existence of both proteins within vesicles during development may provide clues

as to how the subcompartmentation is generated. More than 50% of vesicles contain

only PnLpv in young hyphae but this value decreases as hyphae age and in zoospores

all large peripheral vesicles contain both proteins. The data suggest that PnCcp is added

after PnLpv-containing vesicles have formed. High levels of PnCcp gene expression in

zoospores could reflect continued addition of PnCcp proteins in spores. Subsequent

addition of a protein to an existing vesicle is not without precedent. In malaria zoites,

three rhoptry proteins that are synthesized early and stored in the ER and Golgi apparatus

are translocated to the rhoptries once they have formed (Sam-Yellowe, Shio & Perkins, 1988;

Topolska et al., 2004; Siddiqui et al., 2013).

Given their different fates, why is PnCcp not packaged separately from PnLpv? One

possible explanation is that it is a consequence of organelle allocation mechanisms

operating during sporangial cleavage and zoosporogenesis. During sporangial cleavage, the

three categories of peripheral vesicles are translocated to specific regions of the zoospore

plasma membrane as it develops (Hyde et al., 1991). There may be constraints on the

number of vesicle types that can be accurately deployed between elements of the peripheral

cisternae (Hardham, 1987), a membranous system similar to the inner membrane complex

in apicomplexans (Kono et al., 2012).

Concluding remarks
This study of Phytophthora zoospores presents evidence that transient fusion of one

category of cortical vesicle provides a mechanism for selective protein secretion during

the initial phase of host infection. This is the first demonstration of transient fusion in the

Oomycetes and, we believe, it is the first time that differential secretion of vesicle contents

has been shown outside the animal kingdom. Although patch-clamping experiments

suggest that transient fusion may occur in plant protoplasts (Weise et al., 2000; Thiel, Kreft

& Zorec, 2009), regulation of protein secretion via this mechanism has not been shown in

plants. The cyclical discharge of the water-expulsion vacuole in Dictyostelium discoideum

has been viewed as a form of kiss-and-run secretion (Essid et al., 2012), however, the size

and dynamics of the pore that forms between contractile vacuole bladder and plasma

membrane are likely to be quite different to those of pores forming during vesicular

kiss-and-run secretion; nor is there any evidence of selectivity in vacuole content release. In

malarial cells, the sequential release of rhoptry proteins does not involve transient fusion

(Zuccala et al., 2012).

During Phytophthora zoospore encystment, full fusion of dorsal and ventral vesicles and

transient fusion of large peripheral vesicles are induced simultaneously by the same signal,

be it Ca2+ uptake, ligand binding to the flagella or mechanical stimulation (Byrt, Irving &
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Figure 5 Co-induction of full fusion and transient fusion of Phytophthora zoospores vesicles during
encystment. (A) Localization of dorsal (green), large peripheral (red-yellow) and ventral (blue) vesicles
and their contents within zoospores and a young cyst. (B) Behaviour of the three types of peripheral
vesicles (i) before, (ii) during and (iii) after induction of regulated secretion. Dorsal (green) and ventral
(blue) vesicles undergo full fusion, secreting their entire contents onto the spore surface. Large peripheral
vesicles (red-yellow) undergo transient fusion during which PnCcp proteins (red) are selectively secreted
and PnLpv (yellow) proteins are retained. After fission of the fusion pore, large peripheral vesicles move
away from the plasma membrane.

Grant, 1982; Hardham & Suzaki, 1986). Phytophthora zoospores thus constitute a system

in which controls of the form of regulated secretion may be investigated within co-existing

vesicle populations. In terms of zoospore physiology, selective secretion of PnCcp may be

part of the process of spore attachment to the host surface, as Sushi domain-containing

proteins are often involved in adhesion and protein-protein interactions. PnLpv, on the

other hand, is a storage protein used to support early germling growth before host-derived

nutrients are accessible (Gubler & Hardham, 1990). Further studies of factors that may

regulate secretion during zoospore encystment promise to increase our understanding of

transient fusion and selective protein secretion not only in Phytophthora but also in other

cells.

Zhang et al. (2013), PeerJ, DOI 10.7717/peerj.221 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj.221


ACKNOWLEDGEMENTS
We acknowledge the facilities, and the scientific and technical assistance, of the Australian

Microscopy & Microanalysis Research Facility at the Center for Advanced Microscopy,

ANU and the Australian Centre for Microscopy & Microanalysis, The University of Sydney.

We thank in particular Daryl Webb, Delfine Cheng and Jiwon (Joanne) Lee. We thank

Sharyn Wragg for preparing Fig. 5.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research was funded by Australian Research Council grants to ARH and a Chinese

Scholarship Council scholarship to WZ. The funders had no role in study design, data

collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

Australian Research Council.

Chinese Scholarship Council.

Competing Interests
Adrienne Hardham is an Academic Editor for PeerJ.

Author Contributions
• Weiwei Zhang, Leila M. Blackman and Adrienne R. Hardham conceived and de-

signed the experiments, performed the experiments, analyzed the data, contributed

reagents/materials/analysis tools, wrote the paper.

REFERENCES
Alabi AA, Tsien RW. 2013. Perspectives on kiss-and-run: role in exocytosis, endocytosis, and

neurotransmission. Annual Review of Physiology 75:393–422 DOI 10.1146/annurev-physiol-
020911-153305.
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Cerenius L, Andersson MG, Söderhäll K. 2009. Aphanomyces astaci and crustaceans. In: Lamour
K, Kamoun S, eds. Oomycete genetics and genomics. diversity, interactions, and research tools.
Hokoben, New Jersey: Wiley-Blackwell & Sons, 425–433.

Chappie JS, Mears JA, Fang S, Leonard M, Schmid SL, Milligan RA, Hinshaw JE, Dylewski DP.
2011. A pseudoatomic model of the dynamin polymer identifies a hydrolysis-dependent
powerstroke. Cell 147:209–222 DOI 10.1016/j.cell.2011.09.003.

Dearnaley JDW, Maleszka J, Hardham AR. 1996. Synthesis of zoospore peripheral vesicles
during sporulation of Phytophthora cinnamomi. Mycological Research 100:39–48
DOI 10.1016/S0953-7562(96)80098-0.

Essid M, Gopaldass N, Yoshida K, Merrifield C, Soldati T. 2012. Rab8a regulates the
exocyst-mediated kiss-and-run discharge of the Dictyostelium contractile vacuole. Molecular
Biology of the Cell 23:1267–1282 DOI 10.1091/mbc.E11-06-0576.

Fulop T, Radabaugh S, Smith C. 2005. Activity-dependent differential transmitter release in
mouse adrenal chromaffin cells. Journal of Neuroscience 25:7324–7332
DOI 10.1523/JNEUROSCI.2042-05.2005.

Gabor BK, O’Gara ET, Philip BA, Horan DP, Hardham AR. 1993. Specificities of monoclonal
antibodies to Phytophthora cinnamomi in two rapid diagnostic assays. Plant Disease
77:1189–1197 DOI 10.1094/PD-77-1189.

Gan PHP, Rafiqi M, Hardham AR, Dodds PN. 2010. Effectors of biotrophic fungal plant
pathogens. Functional Plant Biology 37:913–918 DOI 10.1071/FP10072.

Gan PHP, Shan WX, Blackman LM, Hardham AR. 2009. Characterization of cyclophilin-
encoding genes in Phytophthora. Molecular Genetics & Genomics 281:565–578
DOI 10.1007/s00438-009-0431-0.

Gubler F, Hardham AR. 1988. Secretion of adhesive material during encystment of Phytophthora
cinnamomi zoospores, characterized by immunogold labelling with monoclonal antibodies to
components of peripheral vesicles. Journal of Cell Science 90:225–235.

Gubler F, Hardham AR. 1990. Protein storage in large peripheral vesicles in Phytophthora
zoospores and its breakdown after cyst germination. Experimental Mycology 14:393–404
DOI 10.1016/0147-5975(90)90062-X.

Harata NC, Aravanis AM, Tsien RW. 2006. Kiss-and-run and full collapse fusion as
modes of exo-endocytosis in neurosecretion. Journal of Neurochemistry 97:1546–1570
DOI 10.1111/j.1471-4159.2006.03987.x.

Hardham AR. 1985. Studies on the cell surface of zoospores and cysts of the fungus Phytophthora
cinnamomi: the influence of fixation on patterns of lectin binding. Journal of Histochemistry and
Cytochemistry 33:110–118 DOI 10.1177/33.2.3918095.

Hardham AR. 1987. Ultrastructure and serial section reconstruction of zoospores of the
fungus Phytophthora cinnamomi. Experimental Mycology 11:297–306 DOI 10.1016/0147-
5975(87)90018-1.

Zhang et al. (2013), PeerJ, DOI 10.7717/peerj.221 21/24

https://peerj.com
http://dx.doi.org/10.1038/nrmicro1800
http://dx.doi.org/10.1016/j.cell.2011.09.003
http://dx.doi.org/10.1016/S0953-7562(96)80098-0
http://dx.doi.org/10.1091/mbc.E11-06-0576
http://dx.doi.org/10.1523/JNEUROSCI.2042-05.2005
http://dx.doi.org/10.1094/PD-77-1189
http://dx.doi.org/10.1071/FP10072
http://dx.doi.org/10.1007/s00438-009-0431-0
http://dx.doi.org/10.1016/0147-5975(90)90062-X
http://dx.doi.org/10.1111/j.1471-4159.2006.03987.x
http://dx.doi.org/10.1177/33.2.3918095
http://dx.doi.org/10.1016/0147-5975(87)90018-1
http://dx.doi.org/10.1016/0147-5975(87)90018-1
http://dx.doi.org/10.7717/peerj.221


Hardham AR. 2001. Investigations of oomycete cell biology. In: Talbot NJ, ed. Molecular and cell
biology of filamentous fungi: a practical approach. Oxford: Oxford University Press, 127–155.

Hardham AR, Cahill DM, Cope M, Gabor BK, Gubler F, Hyde GJ. 1994. Cell surface antigens
of Phytophthora spores: biological and taxonomic characterization. Protoplasma 181:213–232
DOI 10.1007/BF01666397.

Hardham AR, Hyde GJ. 1997. Asexual sporulation in the Oomycetes. Advances in Botanical
Research 24:353–398.

Hardham AR, Suzaki E. 1986. Encystment of zoospores of the fungus, Phytophthora cinnamomi,
is induced by specific lectin and monoclonal antibody binding to the cell surface. Protoplasma
133:165–173 DOI 10.1007/BF01304632.

He L, Wu X-S, Mohan R, Wu L-G. 2006. Two modes of fusion pore opening revealed by
cell-attached recordings at a synapse. Nature 444:102–105 DOI 10.1038/nature05250.

Hyde GJ, Lancelle S, Hepler PK, Hardham AR. 1991. Freeze substitution reveals a new model
for sporangial cleavage in Phytophthora, a result with implications for cytokinesis in other
eukaryotes. Journal of Cell Science 100:735–746.

Jaiswal JK, Rivera VM, Simon SM. 2009. Exocytosis of post-Golgi vesicles is regulated by
components of the endocytic machinery. Cell 137:1308–1319 DOI 10.1016/j.cell.2009.04.064.

Kats LM, Black CG, Proellocks NI, Coppel RL. 2006. Plasmodium rhoptries: how things went
pear-shaped. Trends in Parasitology 22:269–276 DOI 10.1016/j.pt.2006.04.001.

Koeck M, Hardham AR, Dodds PN. 2011. The role of effectors of biotrophic and hemibiotrophic
fungi in infection. Cellular Microbiology 13:1849–1857 DOI 10.1111/j.1462-5822.2011.01665.x.

Kono M, Hermann M, Loughran NB, Cabrera A, Engelberg K, Lehmann C, Sinha D, Prinz B,
Ruch U, Heussler V, Spielmann T, Parkinson J, Gilberger TW. 2012. Evolution and
architecture of the inner membrane complex in asexual and sexual stages of the malaria parasite.
Molecular Biology and Evolution 29:2113–2132 DOI 10.1093/molbev/mss081.

Lamour K. 2013. Phytophthora. A global perspective. Wallingford: CABI.

Lamour K, Kamoun S. 2009. Oomycete genetics and genomics. Diversity, interactions, and research
tools. Hoboken, New Jersey: Wiley-Blackwell.

Li D, Zhao Z, Huang Y, Lu Z, Yao M. 2013. PsVPS1, a dynamin-related protein, is involved
in cyst germination and soybean infection of Phytophthora sojae. PLoS ONE 8:e58623
DOI 10.1371/journal.pone.0058623.

MacDonald PE, Braun M, Galvanovskis J, Rorsman P. 2006. Release of small transmitters
through kiss-and-run fusion pores in rat pancreatic β cells. Cell Metabolism 4:283–290
DOI 10.1016/j.cmet.2006.08.011.

Macia E, Ehrlich M, Massol R, Boucrot E, Brunner C, Kirchhausen T. 2006. Dynasore, a
cell-permeable inhibitor of dynamin. Developmental Cell 10:839–850
DOI 10.1016/j.devcel.2006.04.002.

McDonald KL, Webb RI. 2011. Freeze substitution in 3 hours or less. Journal of Microscopy
243:227–233 DOI 10.1111/j.1365-2818.2011.03526.x.

Mendoza L. 2009. Pythium Insidiosum and mammalian hosts. In: Lamour K, Kamoun S, eds.
Oomycete genetics and genomics. diversity, interactions, and research tools. Hokoben, New Jersey:
Wiley-Blackwell, 387–405.

Obermüller S, Lindqvist A, Karanauskaite J, Galvanovskis J, Rorsman P, Barg S. 2005. Selective
nucleotide-release from dense-core granules in insulin-secreting cells. Journal of Cell Science
118:4271–4282 DOI 10.1242/jcs.02549.

Zhang et al. (2013), PeerJ, DOI 10.7717/peerj.221 22/24

https://peerj.com
http://dx.doi.org/10.1007/BF01666397
http://dx.doi.org/10.1007/BF01304632
http://dx.doi.org/10.1038/nature05250
http://dx.doi.org/10.1016/j.cell.2009.04.064
http://dx.doi.org/10.1016/j.pt.2006.04.001
http://dx.doi.org/10.1111/j.1462-5822.2011.01665.x
http://dx.doi.org/10.1093/molbev/mss081
http://dx.doi.org/10.1371/journal.pone.0058623
http://dx.doi.org/10.1016/j.cmet.2006.08.011
http://dx.doi.org/10.1016/j.devcel.2006.04.002
http://dx.doi.org/10.1111/j.1365-2818.2011.03526.x
http://dx.doi.org/10.1242/jcs.02549
http://dx.doi.org/10.7717/peerj.221


Pagni M, Ioannidis V, Cerutti L, Zahn-Zabal M, Jongeneel CV, Hau J, Martin O, Kuznetsov D,
Falquet L. 2007. MyHits: improvements to an interactive resource for analyzing protein
sequences. Nucleic Acids Research 35:W433–W437 DOI 10.1093/nar/gkm352.

Rafiqi M, Gan PHP, Ravensdale M, Lawrence GJ, Ellis JG, Jones DA, Hardham AR, Dodds PN.
2010. Internalization of flax rust avirulence proteins into flax and tobacco cells can occur in the
absence of the pathogen. The Plant Cell 22:2017–2032 DOI 10.1105/tpc.109.072983.

Robertson EJ, Anderson VL, Phillips AJ, Secombes CJ, Diéguez-Uribeondo J, Van West P. 2009.
Saprolegnia-fish interactions. In: Lamour K, Kamoun S, eds. Oomycete genetics and genomics.
diversity, interactions, and research tools. Hokoben, New Jersey: Wiley-Blackwell, 407–424.

Robinson DG, Oliviusson P, Hinz G. 2005. Protein sorting to the storage vacuoles of plants: a
critical appraisal. Traffic 6:1–11 DOI 10.1111/j.1600-0854.2005.00303.x.

Robold AV, Hardham AR. 1998. Production of species-specific monoclonal antibodies that react
with surface components on zoospores and cysts of Phytophthora nicotianae. Canadian Journal
of Microbiology 44:1161–1170.

Robold AV, Hardham AR. 2005. During attachment Phytophthora spores secrete proteins
containing thrombospondin type 1 repeats. Current Genetics 47:307–315
DOI 10.1007/s00294-004-0559-8.

Sam-Yellowe TY, Shio H, Perkins ME. 1988. Secretion of Plasmodium falciparum rhoptry protein
into the plasma membrane of host erythrocytes. Journal of Cell Biology 106:1507–1513
DOI 10.1083/jcb.106.5.1507.

Siddiqui FA, Dhawan S, Singh S, Singh B, Gupta P, Pandey A, Mohmmed A, Gaur D,
Chitnis CE. 2013. A thrombospondin structural repeat containing rhoptry protein from
Plasmodium falciparum mediates erythrocyte invasion. Cellular Microbiology 15:1341–1356
DOI 10.1111/cmi.12118.

Sigrist CJA, de Castro E, Cerutti L, Cuche BA, Hulo N, Bridge A, Bougueleret L, Xenarios I.
2013. New and continuing developments at PROSITE. Nucleic Acids Research 41:D344–D347
DOI 10.1093/nar/gks1067.

Simpson AGB, Inagaki Y, Roger AJ. 2006. Comprehensive multigene phylogenies of excavate
protists reveal the evolutionary positions of “primitive” eukaryotes. Molecular Biology and
Evolution 23:615–625 DOI 10.1093/molbev/msj068.
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