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Simple Summary: Potential bioactive compounds are properties that can play an important role in the
prevention of chronic diseases, exhibit neuroprotective effects, and have antioxidant, anti-aging, and
antiglycation properties. Anserine (β-alanyl-3-methyl-L-histidine) and carnosine (β-alanyl-L-histidine),
dipeptides found in native chicken meat, are good sources of antioxidant substances. Anserine is a
biomarker in the muscle of chickens, making native chicken meat a source of antioxidant compounds.
However, there are no studies on bioactive compounds in Thai native chickens. This study was conducted
to identify the presence of dipeptide anserine in Thai native and Thai native crossbred chicken meat using
nuclear magnetic resonance spectroscopy and to determine the antioxidant activity of chicken breast
extract. We found that Thai native chicken was rich in anserine, anserine/carnosine, and antioxidant
substances; therefore, Thai native chicken might have the potential to be a functional meat source.

Abstract: This study identified anserine and anserine/carnosine in chicken breast of Thai native chicken
(TNC; 100% Thai native), Thai synthetic chicken (TSC; 50% Thai native), and Thai native crossbred chicken
(TNC crossbred; 25% Thai native) compared with commercial broiler chicken (BR; 0% Thai native) using
nuclear magnetic resonance (NMR) spectroscopy and the effect on antioxidant activity using 2,2-diphenyl-
1-picrylhydrazyl assay (DPPH). We conducted experiments with a completely randomized design and
explored principal components analysis (PCA) and orthogonal projection to latent structure-discriminant
analysis (OPLS-DA) to identify the distinguishing metabolites and relative concentrations from 1H NMR
spectra among the groups. The relative concentrations and antioxidant properties among the groups
were analyzed by analysis of variance (ANOVA) using the general linear model (GLM). This study
revealed seven metabolites alanine, inositol monophosphate (IMP), inosine, and anserine/carnosine,
lactate, anserine, and creatine. Lactate, anserine, and creatine were major components. In terms of PCA,
the plots can distinguish BR from other groups. OPLS-DA revealed that anserine and anserine/carnosine
in the chicken breast were significantly higher in TNC, TSC, and TNC crossbred than BR according to
their relative concentrations and antioxidant properties (p < 0.01). Therefore, TNCs and their crossbreeds
might have the potential to be functional meat sources.

Keywords: anserine; carnosine; functional meat; Thai native chicken; antioxidant

1. Introduction

In the past few years, there has been a breeding goal of native chicken improvement
in Asian countries, including Thailand; with this goal, chicken breeding has focused on
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morphological selection, physical properties, and production performance [1–3]. Recently,
global consumers have been interested in natural food or a food that contains special quality
nutrients/bioactive compounds that are beneficial to their health and wellbeing, known
as functional food [4,5]; consumers value these traits because they are concerned that
excess food consumption (overnutrition) is linked to a variety of diseases. The properties
of potential bioactive compounds play an important role in neuroprotective, antioxidant,
anti-aging, and antiglycation properties, as well as the prevention of chronic diseases [6,7].

Native chicken is an important possible source of functional food because it contains
considerable amounts of bioactive compounds when compared with commercial broiler
chicken and other meat, including angiotensin-converting enzyme inhibitors (ACE-I in-
hibitor), L-carnitine, creatine, carnosine, and anserine [8–10]. The dipeptides anserine
(β-alanyl-3-methyl-L-histidine) and carnosine (β-alanyl-L-histidine) are good sources of
antioxidant substances and serve as biomarkers in the muscle of chickens [9,11,12]; inter-
estingly, their levels are higher in native chickens compared with commercial broilers and
other meat [9,10]. In addition, anserine, also available for antifatigue with balancing of
lactic acid, represents a physiological buffer in skeletal muscles [13–15].

From the above, Thai native chickens (TNCs) might have the potential to be a func-
tional chicken meat. These chickens are an important genetic resource for Thailand. A few
years ago, performance improvements in TNC were achieved in terms of growth and egg
production by the Research and Development Network Center for Animal Breeding (Na-
tive Chicken). Pradu Hang Dam Mor Kor 55 (PD) exhibited excellent growth performance,
whereas Chee KKU 12 (CH) was superior in egg production. Consequently, both breeds
are popular, and PD has been used as a purebred animal, especially in the northeast of
Thailand, because of its excellent appearance, morphological features, and growth rate.
In terms of CH, in this breed, researchers have been working on accelerating growth and
improving egg production to achieving have developed Thai synthetic chicken (TSCs)
which are sustainable with TNC utilization to retain the native genetic fraction 50% and
have developed a terminal cross to retained the native genetic fraction 25% known as KKU-
ONE. Although these birds are being used for growth and egg performance, their meat
quality potential has not been fully exploited, despite the high importance of this aspect
for current consumers. From an animal breeding viewpoint, identification of bioactive
compounds as new traits is interesting for building up a new breeding goal that follows
recent consumer trends. According to many enterprises, it is interesting to try to take
TNC and their crossbred up on modern trade, which requires the products contain quality
nutrients/bioactive compounds that are beneficial to human health and wellbeing.

In the past, the perception and promotion of Thai native chicken meat have related to
production performance, physical properties, such as the characteristics of muscle fibers
and shear force [16,17], which are responsible for the meat’s unique texture. Regarding
biochemical properties, chicken meat contains high levels of collagen, protein, and inositol
monophosphate (IMP) [18,19]. However, there is no information about the potential
bioactive compounds in TNC and their crossbred counterparts. Therefore, this study
focused on the identification of essential elements/active ingredients/bioactive in TNC
and their crossbred to finding a new trait that is useful for setting up a further new breeding
goal. Moreover, to increase community income in a sustainable way by developing and
promoting functional food and products for an aging society, the findings are expected
to open opportunities for enhancing the competitiveness of the healthy food market. The
value added to natural meat or products is determined based on a study of chemical
properties and compared among native and crossbred chickens, in relation to commercial
chickens, using advanced techniques.

One alternative is the use of nuclear magnetic resonance (NMR) spectroscopy, which
has advanced beyond conventional methods because it is a rapid method to identify all
metabolite profiles; it has been successfully applied to the analysis of chicken meat quality
at the metabolite level [20]. Moreover, some of the special properties of NMR are that it
is non-destructive, involves non-targeted analysis, provides high-throughput data, and
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directly measures components at the molecular level, requiring only a single standard to
quantify several components simultaneously [21,22]. Therefore, this study was conducted
to identify the presence of dipeptide anserine in chicken breast extract of Thai native and
crossbred chickens using NMR spectroscopy and to determine the antioxidant activity of
chicken breast extract.

2. Materials and Methods
2.1. Animal Raising and Tissue Collection

The experiment was approved by the Institutional Animal Care and Use Committee
of Khon Kaen University (IACUC-KKU-58/62). A total of 500 birds from two breeds of
TNC (100% Thai native), PD and CH; Thai synthetic chicken (TSC; 50% Thai native), Khai
Mook E-san (KM), and Thai native crossbred chicken (TNC crossbred; 25% Thai native),
KKU-ONE. We used 100 day-old chicks per breed from the Research and Development
Network Center for Animal Breeding of Khon Kaen University. Except for commercial
broiler chicken, we used day-old chicks from Arbor Acer, part of the Charoen Pokphand
Company, which were assigned to a completely randomized design with four replications
within the breeds. All chickens were raised under the same environmental conditions,
with open-air housing and a vaccination program. Feed was provided ad libitum with a
commercial broiler diet; first, a starter feed containing 21% crude protein (CP), 3100 kcal
of ME/kg, and 5% crude fiber was given to chicks aged 1–3 weeks; then, for the growing
period, second, the feed contained 19% CP and 3200 kcal of ME/kg, and this was fed at
4 weeks of age until slaughtering. Both feeds consisted of soybean meal, bone meal, mineral,
amino acids, and so on in the formula. However, there were no details on the amount and
kind of amino acids in these commercial diets.

Fifty chicken breasts (pectoralis major) from five males and five females of each breed
were sampled at marketing age at 8 (TNC crossbred), 10 (TSC), and 12 (TNC) weeks old,
following the local market of Thailand, Thai consumer usual consumed approximately
1.2–1.6 kg of chicken weight [23]. Commercial broiler chickens were sampled at 6 weeks old
following the retail cut market in Thai supermarkets. Fifty chicken breasts were slaughtered
according to Jaturasitha et al. [17], with some modifications. We collected the individual
left chicken breasts and stored them at −20 ◦C in a sealed bag until analysis with NMR
spectroscopy and antioxidant assay using DPPH.

2.2. NMR Spectroscopy Assay
2.2.1. Chicken Metabolite Extraction

A total of 50 chicken breasts (pectoralis major) were processed; briefly, 300 mg of minced
chicken breast was transferred into 15 mL centrifuge tubes and extracted according to Fathi
et al. [24] with some adjustments. After the addition of 4 mL of methanol and 0.85 mL
of purified water (high-performance liquid chromatography [HPLC] grade) per gram
of chicken tissue, the samples were vortexed. Subsequently, we added another 2 mL of
chloroform per 1 g of sample, followed by vortexing. Next, another 2 mL of chloroform
and purified water were added per gram of the sample, and the mixture was placed on ice
for 15 min. The samples were vortexed again and centrifuged at 1000× g for 15 min at 4 ◦C.
The extracted samples were separated into two phases—aqueous extract samples and the
upper methanol/water phase (polar metabolites)—then transferred into a micro-centrifuge.
After removing the solvents with a speed vacuum concentrator (CentriVap Concentrator,
Labconco, Kansas City, MO, USA), the samples were kept at 80 ◦C until NMR analysis and
antioxidant assay by DPPH.

2.2.2. 1H NMR Metabolic Profiling, Data Pre-Processing, and Metabolite Identification

The aqueous extracts were re-suspended with 580 µL of 100 mM sodium phosphate
buffer in D2O containing 0.1 mM 3-trimethysilypropionic acid (TSP; Cambridge Isotype
Laboratories, Cambridge, MA, USA) and 0.2% NaN3 at pH 7.4. The mixture was vortexed
and centrifuged at 12,000× g for 1 min. Subsequently, 550 mL of the supernatant was
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transferred into an NMR tube with a diameter of 5 mm. Untargeted 1H NMR metabolomic
profiling was conducted, and spectra were recorded using a 400 MHz NMR spectrometer
with a CryoProbe (Bruker, Billerica, MA, USA). All samples were detected in a standard
1-dimension pulse sequence (recycle delay-90◦-t1-90◦-tm-◦-acquisition) with t1 and 3 ms,
tm to 10 ms, and 90◦ pulse to 10 µs in 64 scans. Chemical shift referencing, baseline
correction, and phasing were performed using TopSpin (version 4.0) software to adjust the
peak alignment, normalization, and scaling. The water peak was excised from the tissue
spectra to minimize the effect of the remaining baseline distortion caused by imperfect
water suppression. To confirm the assignment of correlated resonances, statistical total
correlation spectroscopy (STOCSY) was employed [25]. Moreover, the resonances of
interest were searched against online metabolite databases, such as the Biological Magnetic
Resonance DataBank and the Human Metabolome Database.

2.2.3. Multivariate Statistical Analysis

A processed spectral data matrix was employed to conduct principal component
analysis (PCA) with a unit variance (uv) scaling method to visualize metabolic similar-
ities and differences and to identify possible outliers, followed by an orthogonal signal
correction–projection to latent structures–discriminant analysis (OPLS-DA) in a MATLAB
R2015a (MathWorks, Natick, MA, USA) environment. OPLS-DA scores and coefficient
plots were generated, with a color visualization of the correlation values |r| of each vari-
able. Red indicates higher correlation, whereas blue indicates lower correlation of the
variables with the classification. The fitness and predictability of the models obtained
from the OPLS-DA were determined by the R2 and Q2 values, respectively. The model
validity was determined by the permutation p-value of each model. The OPLS-DA models
in the current study were constructed based on one PLS component and one orthogonal
component using mean-centered and uv-scaled spectral datasets. The validation of all
OPLS-DA and OPLS models involved in this study was assessed using the permutation
p-value (p < 0.05).

2.2.4. Relative Concentrations of Anserine and Anserine/Carnosine Content

The area under the peak of anserine and anserine/carnosine was calculated as the
relative concentration using MATLAB software (R 2015a). The least square means of
relative concentrations among groups were analyzed via analysis of variance (ANOVA)
using the general linear model (GLM) as follows: Yijkl = Breedi + Sexj + εijkl , where Yijkl is
the relative concentration of anserine and anserine/carnosine; Breedi represents KKU-ONE,
KM, CH, PD, and BR; Sexj is male or female; and εijkl is the experimental error by the
Statistical Analysis System (SAS) statistical procedure (SAS, 2019).

2.3. Antioxidant Assay
2.3.1. Breast Extracts Rich in Dipeptides (Anserine and Carnosine)

Using a total of 20 chicken breasts (two males and two females from each breed), the
dipeptide-rich chicken extracts were obtained according to ref. [9] with some modifications.
Briefly, 1 g of finely chopped chicken breast was transferred into a 15 mL centrifuge
tube and homogenized after adding 10 mL of distilled water via a homogenizer (Witeg,
Wertheim, Germany) at 25,000× g for 1 min. The homogenized sample was centrifuged
at 4500× g and 4 ◦C for 15 min, and the supernatant was transferred and incubated at
80 ◦C for 10 min in a water bath. The aqueous extracts were filtrated through a 0.45 µm
membrane (Filtrex, AMK, Singapore) after centrifugation at 4500× g for 30 min. The
chicken extracts containing dipeptides (anserine and carnosine) were mixed sexes with
four samples comprising two males and two females of each breed; this mixing because
of previous results showing that interactions between breed and sex have no significance.
They were stored at −20 ◦C until further analysis.
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2.3.2. Antioxidant Effects of Chicken Extracts Containing Dipeptides (Anserine and Carnosine)

The antioxidant activity of the chicken extracts was investigated using the DPPH
assay. A DPPH working solution was prepared at a ratio of 5:1:2 (0.2 M 1,1-diphenyl-2-
picrylhydrazyl; DPPH, 0.4 M MES, and MilliQ water, respectively). The chicken breast
extracts containing dipeptides were prepared at 10−1, 10−3, 10−5, 10−7, and 10−9 dilutions
using distilled water. The mixtures were incubated for 10 min at room temperature after
adding the DPPH working solution (wrapped in aluminum foil), and the absorbance
was measured spectrophotometrically at a wavelength of 520 nm and calculated using
this equation:

The anti-oxidation ratio (%) was calculated by
(

1− (Sample−Blank)
Control

)
× 100. The antiox-

idants were analyzed by ANOVA using the GLM as follows: Yijkl = Breedi + Sexj + εijkl ,
where Yijkl is the antioxidant; Breedi represents KKU-ONE, KM, CH, PD, and BR; and εijkl
is the experimental error by the SAS statistical procedure [26].

3. Results and Discussion

3.1. Global 1H-NMR Metabolic Profiling of Chicken Extract

Representative 1H-NMR spectra (0–10 ppm) obtained from the chicken breast extracts
of TNC, TSC, TNC crossbreds, and commercial broilers exhibited seven major metabo-
lites that are shown in Table 1 and Figure S1. These include lactate, alanine, anserine,
anserine/carnosine, IMP, creatine, and inosine. Most of these metabolites have also been
previously found in chicken meat [27,28]. In the current study, three metabolites—creatine,
lactate, and anserine—were found to be most abundant, which is consistent with previous
studies [20,27,28]. Creatine is a key metabolite associated with energy metabolism in mus-
cles, and it is related to reduced accumulation of lactate in muscle; hence, it can potentially
improve chicken meat quality [29]. Furthermore, lactate has been shown to be related to
meat quality and to negatively contribute to the water-holding capacity, and consequently,
meat tenderness [30]. Anserine is a dipeptide that plays an important role in antioxidant,
anti-aging, and antiglycation activities, along with strong buffering properties; it is found
in the muscles of most vertebrates and acts as a biomarker in chicken muscle [9,11,12].

Table 1. Metabolites and their values based on 1H NMR spectra.

Metabolite ppm

Lactate 1.344 (d); 4.11 (q)
Alanine 1.48 (d); 3.79 (q)

Anserine/carnosine 2.69 (m); 3.22 (m); 4.51 (m); 7.11 (s)
Anserine 3.791 (s)
Creatine 3.0 (s); 3.93 (s)

Inositol monophosphate (IMP) 4.043 (s); 8.577 (s)
Inosine 3.042 (s):8.353 (s)

Keys: (s:) singlet; (d:); doublet; (t:) triplet; (q:) quartet; (m:) multiplet.

3.2. Multivariate Statistical Analysis for Distinct Metabolic Fingerprints Reflecting Different
Genotyping Traits of Chicken Breeds

In the current study, PCA and OPLS-DA models were constructed to visualize intrinsic
and extrinsic similarities and differences of all groups and to investigate the metabolic dif-
ferences of all groups and different classifications of chicken breasts, respectively. First, pair-
wise PCA models of TNC (100% Thai native), TSC (50% Thai native), and TNC crossbred
(25% Thai native) compared with commercial broiler chicken (0% Thai native) were con-
structed (Figure 1A–D). All pairwise PCA score plots demonstrated the unique metabolic
fingerprints of all breeds compared with commercial broiler chicken, of which the first
principal component (PC1) of all models determined a clear class separation. Likewise,
pairwise OPLS-DA score plots demonstrated distinct class discrimination (Figure 2A–D).
OPLS-DA loadings plots further demonstrated that TNC crossbred, TSC, and TNC con-



Animals 2021, 11, 902 6 of 13

tained higher levels of anserine and anserine/carnosine compared with commercial broiler
chicken (Figure 3A–D). Moreover, it is noteworthy that TNC (CH breed) and TSC showed
higher levels of lactate than their commercial broiler counterpart did. These differences in
metabolic traits could possibly result from the genetic improvement of each breed, with
different purposes and selection indices reflecting the metabolic alteration; for example,
commercial broiler chickens have been developed for faster growing, mainly selected on
breast yield [31]. Other breeds have been developed for growth and egg production using
conventional and molecular breeding tools, but they are still slower growing compared
with commercial broilers because this genetic trait is limited and different criteria were
used for genetic selection [32–35].
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Figure 1. Principal component analysis (PCA) scores discriminating metabolites of chicken breast
extracts of (A) commercial broilers versus PD = Pradu Hang Dam Mor Kor 55 (100% Thai native);
Q2 = 0.62, (B) commercial broilers versus CH = Chee KKU 12 (100% Thai native); Q2 = 0.53, (C) com-
mercial broilers versus KM = Khai Mook E-san (50% Thai native;); Q2 = 0.43, and (D) commercial
broilers versus KKU-ONE (25% Thai native); Q2 = 0.39.

The comparison of metabolic differences within TNC (PD and CH), TSC, and TNC
crossbred could not be distinguished among groups in either the PCA or OPLS-DA model
(p > 0.05). The data are shown in Figure 4 for the pairwise comparison of CH versus
KKU-ONE. The pairwise comparison model for PD versus KM showed similar results
to the aforementioned model. TNC as CH versus TSC and TNC crossbred could not be
distinguished among groups, possibly because TSC and TNC crossbred were developed
by CH utilization to achieve a sustainable to developing four Thai synthetic chicken lines
known as Khai Mook E-san, Kaen Thong, Soi Nin, and Soi Pet, whereas terminal cross
known as KKU-ONE. Therefore, some genes may be close to one another [32–35]. This
result showed that both TNCs and their crossbred forms have close potential.
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 Figure 3. OPLS-DA loading plots discriminating metabolites of chicken breast extracts of (A) commercial broilers versus
PD = Pradu Hang Dam Mor Kor 55 (100% Thai native), (B) commercial broilers versus CH = Chee KKU 12 (100% Thai
native), (C) commercial broilers versus KM = Khai Mook E-san (50% Thai native), and (D) commercial broilers versus
KKU-ONE (25% Thai native).
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3.3. Relative Concentration of Anserine and Anserine/Carnosine Content

Relative concentrations of anserine and anserine/carnosine content were obtained
from the area under the peak of the 1H NMR spectra and obtained from chicken breast
extracts of TNC crossbred, TSC, and TNC (PD and CH). All breeds demonstrated signif-
icantly higher contents of anserine and anserine/carnosine (p < 0.05) than commercial
broiler chicken, as shown in Figure 5 and Table 2.
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Table 2. Relative concentrations of anserine and anserine/carnosine in chicken breast extracts.

Effects BR KKU-ONE KM CH PD SEM p-Value

Breeds
Anserine 404.37 ± 51.64 B 691.71 ± 49.85 A 757.58 ± 49.85 A 837.50 ± 49.85 A 780.64 ± 50.53 A 50.34 <0.0001

Anserine/carnosine 100.21 ± 11.81 B 169.93 ± 11.40 A 177.01 ± 11.40 A 187.85 ± 11.40 A 179.20 ± 11.55 A 11.51 <0.0001

Breed × sex
Anserine 0.2394
Female 453.27 ± 54.41 777.02 ± 76.95 759.83 ± 76.95 811.37 ± 62.83 716.83 ± 88.85 72.00
Male 253.76 ± 108.82 629.83 ± 62.83 751.06 ± 62.83 884.19 ± 76.95 807.97 ± 58.17 73.92

Anserine/carnosine 0.1670
Female 105.65 ± 12.29 187.67 ± 17.39 177.06 ± 17.39 172.29 ± 14.19 162.52 ± 20.08 16.27
Male 75.03 ± 24.59 158.48 ± 14.19 177.35 ± 14.19 210.61 ± 17.39 186.99 ± 13.14 16.70

A,B represent the level of significance of the differences among the genotypes (p < 0.01), PD = Pradu Hang Dam Mor Kor 55 (100% Thai
native), CH = Chee KKU 12 (100% Thai native), KM = Khai Mook E-san (50% Thai native), and KKU-ONE (25% Thai native).

In the current study, TNC, TSC, and TNC crossbred extracts contained higher anser-
ine and anserine/carnosine content than commercial broiler chicken did, and this result
is in agreement with the previous findings of Liu et al., Kojima et al., Jayasena et al.,
Ali et al. [9,10,36,37] that native chicken meat contains higher anserine compared with com-
mercial broiler chicken. The differences in anserine and carnosine among the chicken breeds
may be attributed to the different muscle fiber types [9,19,38]. Previous reports [16,23,39]
have suggested that native and crossbred chickens contained higher amounts of muscle
fiber type IIB muscle than commercial broilers do. According to Jung et al. and Verdiglione
et al. [19,40], chicken breast meat contains type IIB muscle fibers of the fast-twitch glycolytic
type, which play an important role in anaerobic metabolism to adenosine triphosphatase
(ATP). Normally, the accumulation of lactic acid is higher in the breast than it is in the thigh
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muscle in chickens [41]. Hence, chicken breast muscle needs endogenous compounds with
high buffering properties, such as anserine and carnosine [19,42].

In addition, anserine content in chicken meat based on feed intake and protein level
in the feed, refs. [43,44] reported that raised on different level of soybean meal has effect on
histidine-containing chicken meat. In this study, all the birds were raised with a broiler
diet with the starter feed containing 21% CP and growing feed consisting of 19% CP. In
terms of the amount and kind of amino acid, we have no information because the company
provided only feedstuff information. Nevertheless, we recorded the feed intake and found
that total feed intake up to the time of slaughter of the TNC PD, TNC CH, TSC, TNC
crossbred, and commercial broiler chickens were 4539.8, 3874.5, 3591.9, 3265.0, and 3439.1 g,
respectively; there were no significant differences in the feed intake among breeds (p > 0.05).
These results indicate that the differences in anserine and anserine/carnosine content may
be genetic.

Among the chicken breeds, TNC—especially PD—and such Thai native crossbred
chickens as KKU-ONE (Thai native genetic fraction to 25%) are popular in Thailand
because of their greater growth performance and their texture. Many enterprises are
interested in trying to take them up for modern trade, which requires component-quality
nutrients/bioactive compounds that are beneficial to human health and wellbeing. From
this perspective, the results of this study have the advantage of opening opportunities to
enhance the competitiveness of the healthy food market and export abroad. Moreover, it
can sustainably increase community income by developing and promoting functional food
and natural products as a natural extract from native chicken meat and chicken broth for
an aging society. Reference [45] suggested that anserine (beta-alanyl-3-methyl-L-histidine)
supplementation improves memory functions in the context of Alzheimer’s disease in a
mouse model, with a protective effect on the neurovascular units. In addition, ref. [13]
reported that the lactate concentration in blood decreased and endurance performance
improved after consuming chicken breasts, which is beneficial for people who like to
exercise. Therefore, TNC and their crossbred forms have the potential to be a source of
functional meat.

3.4. Antioxidant Activity of Dipeptide-Rich Chicken Breast Extracts

The DPPH radical scavenging assay is an accepted mechanism for screening radical
scavenging activity [46]. In this study, the antioxidant activity of the extracts of breast meat
was determined (Figure 6 and Table 3). The results showed that the antioxidant activity of
TNC meat extract was higher than TNC crossbred and commercial broiler extracts were
(p < 0.01). Comparing the CH breed (502.76A) with the other breeds, CH had the highest
antioxidant activity when compared with PD (406.57B), KM (414.08B), KKU-ONE (421.71B),
and broiler (294.86C) meat. References [9,47] have shown that native chicken meat extracts
are rich in anserine and carnosine, with high antioxidant activity. Therefore, TNC, TSC,
and TNC crossbred could potentially serve as a functional chicken meat source.

Table 3. Antioxidant effect of dipeptide-rich chicken breast extract of TNC, TSC, and TNC crossbred
animals.

Breeds BR KKU-ONE KM CH PD SEM

Antioxidant
activity (%) 294.86 C 421.71 B 414.08 B 502.76 A 406.57 B 84.83

A,B,C represent the level of significance of the differences among the genotypes (p < 0.01). PD = Pradu Hang Dam
Mor Kor 55 (100% Thai native), CH = Chee KKU 12 (100% Thai native), KM = Khai Mook E-san (50% Thai native),
and KKU-ONE (25% Thai native) compared to BR = commercial broiler chicken.
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4. Conclusions

This study was conducted to identify the presence of dipeptide anserine and its
antioxidant properties in chicken breast extract of Thai native and crossbred chickens
compared with commercial broiler chickens. We found that the metabolites of Thai native
and crossbred chickens could be distinguished from commercial broiler chicken in terms
of their rich anserine and anserine/carnosine contents and higher antioxidant properties
compared with commercial broiler chicken. Therefore, Thai native and crossbred chickens
may have the potential to serve as functional meat sources.
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5/11/3/902/s1, Figure S1: Representative 400 MHz 1H NMR spectra of PD = Pradu Hang Dam Mor
Kor 55 (100% Thai native), CH = Chee KKU 12 (100% Thai native), KM = Khai Mook E-san (50% Thai
native), and KKU-ONE (25% Thai native) breeds compared with BR = commercial broiler chicken.
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