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Objective: During presurgical evaluation for focal epilepsy patients, the evidence
supporting the use of high frequency oscillations (HFOs) for delineating the epileptogenic
zone (EZ) increased over the past decade. This study aims to develop and validate
an integrated automatic detection, classification and imaging pipeline of HFOs with
stereoelectroencephalography (SEEG) to narrow the gap between HFOs quantitative
analysis and clinical application.

Methods: The proposed pipeline includes stages of channel inclusion, candidate HFOs
detection and automatic labeling with four trained convolutional neural network (CNN)
classifiers and HFOs sorting based on occurrence rate and imaging. We first evaluated
the initial detector using an open simulated dataset. After that, we validated our full
algorithm in a 20-patient cohort against three assumptions based on previous studies.
Classified HFOs results were compared with seizure onset zone (SOZ) channels for their
concordance. The receiver operating characteristic (ROC) curve and the corresponding
area under the curve (AUC) were calculated representing the prediction ability of the
labeled HFOs outputs for SOZ.

Results: The initial detector demonstrated satisfactory performance on the simulated
dataset. The four CNN classifiers converged quickly during training, and the accuracies
on the validation dataset were above 95%. The localization value of HFOs was
significantly improved by HFOs classification. The AUC values of the 20 testing patients
increased after HFO classification, indicating a satisfactory prediction value of the
proposed algorithm for EZ identification.

Conclusion: Our detector can provide robust HFOs analysis results revealing EZ at the
individual level, which may ultimately push forward the transitioning of HFOs analysis
into a meaningful part of the presurgical evaluation and surgical planning.

Keywords: high frequency oscillations, epileptogenic zone, epilepsy surgery, stereoelectroencephalography,
convolutional neural network
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INTRODUCTION

Although a majority of seizures can be well controlled
by antiepileptic drugs, approximately 30% of patients suffer
from uncontrolled seizures despite pharmacotherapy, who are
potential candidates for presurgical evaluation and subsequent
surgery interventions (Devinsky, 1999; Jobst and Cascino, 2015).
Accurate localization and safe removal of the EZ are major
prognostic factors for good surgical outcomes (Vakharia et al.,
2018). Intracranial EEG recordings are often used to identify
the epileptogenic regions, especially in MRI negative cases, for
their capability of direct recording of epileptogenic discharges
from brain parenchyma with high temporal and spatial accuracy,
and they have been considered an electrophysiological gold
standard for delineating SOZ, which defines EZ to a large extent
(Rosenow and Luders, 2001). SEEG using depth electrodes has
been more widely adopted in recent years because it is superior
for recording deep brain structures and less invasive compared
with the subdural grid electrode approach (Nagahama et al., 2018;
Zijlmans et al., 2019). Currently, epileptologists mainly focus
on ictal SEEG to reveal SOZ; however, interictal HFOs have
increased in popularity as a promising biomarker for the EZ over
the past decade (Bragin et al., 1999; Jacobs et al., 2008).

It has been well illustrated and replicated that the rates of
HFOs were higher within the SOZ than outside (Worrell et al.,
2004; Urrestarazu et al., 2007; Jacobs et al., 2008). From a surgical
perspective, several studies have shown that tailored resection
of HFOs regions predicts better surgical outcomes and that
residual HFOs are prognostic markers for seizure recurrence (Wu
et al., 2010; van Klink et al., 2014; van ’t Klooster et al., 2015).
In addition, a recent meta-analysis also indicated a significant
relationship between the removal of tissue with high HFOs rates
and surgical outcomes (Holler et al., 2015).

HFOs are characterized as transient small and fast
oscillating phenomenon, which typically last 6–30 ms with
varied morphometry (Zijlmans et al., 2017). They can
also sometimes be mislabeled due to impulse-like artifacts
contamination and improper filtering (Benar et al., 2010).
Therefore, it is well acknowledged that manual detection of
HFOs can be extremely laborious, time-consuming and prone
to subjective bias (Lopez-Cuevas et al., 2013; Spring et al.,
2018). Under this background, a variety of automated detection
algorithms have been developed, which were implemented
to help limit the manpower required for HFO analysis
significantly and to avoid the bias induced by human raters
(Thomschewski et al., 2019). However, most HFO detection
algorithms have been conducted through simply thresholding
instantaneous frequency traces, which might be vulnerable to the
influence of artifacts and the irregular morphometry of HFOs
(Chaibi et al., 2013).

Abbreviation: AUC, area under the curve; cHFO, candidate high frequency
oscillations; CI, confidence interval; EEG, electroencephalography; EZ,
epileptogenic zone; FN, false negative; FP, false positive; FRs, fast ripples;
HFOs, high frequency oscillations; MRI, magnetic resonance imaging; qHFOs,
quality high frequency oscillations; ROC, receiver operating characteristic; Rs,
ripples; SD, standard deviation; SEEG, stereoelectroencephalography; SOZ,
seizure onset zone; TF, time-frequency; TP, true positive.

During clinical application of HFOs, not only is the detection
accuracy important, but the classification of various events is also
crucial. HFOs can be categorized into ripples (Rs, 80–250 Hz) and
fast ripple (FRs, 250–500 Hz) according to their frequency range
(Jacobs et al., 2012). FRs are reported to be more focal and closely
linked to epileptogenicity than Rs (Engel et al., 2009; Akiyama
et al., 2011). Evidence indicates that HFOs cooccurring with a
spike were more closely related to the SOZ (Wang et al., 2013).
In addition, artifacts due to muscle activity or bad connections
result in significantly more FP findings. Therefore, a two-stage
detection and classification framework was proposed and has
achieved high sensitivity in recent years while maintaining high
specificity by identifying different types of events at the second
stage (Zijlmans et al., 2017). Under such a framework, some
detectors have been developed as semiautomatic, requiring visual
validation (Navarrete et al., 2016), while others have implemented
fully automated postprocessing steps such as feature extraction
and clustering for the classification problem (Gliske et al., 2016;
Liu et al., 2016a).

For discriminating false HFOs or any other events, it has
been suggested that time-frequency (TF) representation of
HFOs is highly beneficial in distinguishing events of different
types (Benar et al., 2010). Therefore, the event discrimination
task can be categorized as a two-dimensional time-frequency
image classification problem. Convolutional neural network
(CNN)-based models are promising techniques that have been
applied successfully for classifying images, and they have gained
momentum in recent years for their advantageous performance
over traditional models (Krizhevsky et al., 2012). Therefore, we
hypothesized that CNN image classifiers can also be used for the
HFO classification problem with good efficiency.

Although several HFOs detection algorithms have been
published, the general validation and clinical value of these
approaches are less well addressed in the clinical application
aspect (Zijlmans et al., 2017). For ease of clinical use, the
following merits should be considered for any efficient HFOs
analysis tools. First, it should maintain high sensitivity and
specificity when detecting HFOs. Second, the requirement for
user input parameters and intervention should be minimized
to save labor and reduce bias. Third, the algorithm should
have robust classification ability to identify artifacts, subtypes of
HFOs and HFOs cooccurring with other interictal epileptiform
discharges. Fourth, because the final goal for any HFO detector
is to locate the EZ through the distribution of HFOs, the
clinical value of the algorithm should be evaluated and validated.
Finally, the results should be properly projected on anatomical
structures to facilitate surgical planning. Motivated by the clinical
need for efficient and reliable HFOs analysis tool, the proposed
algorithm attempted to cover the abovementioned properties
and provided a comprehensive solution for HFO analysis. The
automatic procedures mimic typical manual analysis, which
includes channel selection (excluding channels outside the brain,
with clear continuous artifacts or located in white matter), HFOs
detection, classification and anatomical projection.

Overall, our detection algorithm adopted the two-stage
framework containing an initial detector and a CNN-based
classifier. We first validated the initial detector through a labeled
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simulated dataset built by Roehri et al. (2017). To further validate
the clinical values of this pipeline, we retrospectively applied the
method to intracranial EEG data recorded from 20 patients who
underwent resection surgery with good surgical outcomes but
with different pathological substrates. Taking advantage of the
labeled events after classification, we further validated the results
in a real dataset against some established findings in the literature
while evaluating its performance for predicting SOZ.

MATERIALS AND METHODS

Stages of the Proposed Pipeline
Channel Selection
Preimplantation 1 mm isotropic T1 weighted MRI images and the
coordinates for each depth electrode contact in individual space,
which were determined by coregistering the post implantation
computerized tomography image with the preimplantation MRI,
and raw SEEG data were collected. First, brain extraction was
performed by ROBEX (Iglesias et al., 2011) to make a binary
brain mask to identify outside brain contacts. Raw SEEG data
were first subjected to a notch filter for line noise of 50 Hz and
its harmonic up to 450 Hz using a 3-order Butterworth filter and
then were re-referenced offline in a bipolar manner. Any bipolar
SEEG channel containing outside brain contact was excluded
from further analysis to avoid artifacts. Then, a binary gray
matter mask was produced by the SPM121 unified segmentation
procedure with a threshold of 0.4. A 3 × 3 × 3 voxel cube
centered on the middle point of the 2 adjacent contacts was
modeled to identify whether the bipolar channel was localized
in the white matter. The bipolar channel was labeled as out
of gray matter if the 3 × 3 × 3 voxel cube contained fewer
than 9 gray matter voxels. The bipolar channel was labeled as
low amplitude if the corresponding root mean square (RMS)
was below 35% of all channels, formerly excluding those labeled
as out brain. Only channels labeled as out of gray matter and
low amplitude were excluded for further analysis. Channels with
extreme high-amplitude noise (voltage > 1000 uV) lasting for
more than 1 s were also excluded from the analysis. This stage
ensured that most artifact contaminated channels as well as
low-amplitude channels in white matter were screened out from
further analysis.

Candidate HFO (cHFO) Detection and Automatic
Labeling
After the channel selection described above, the baseline-
corrected SEEG segments were first filtered using a 64-order
zero-phase forward and reverse bandpass FIR filter in the
80–500 Hz range. Then, the rectified filtered signal envelope
was determined using spline interpolation over local maxima.
The SDs of the bandpass filtered signal in each 100 ms epoch
was calculated for the whole time series with a step length of
100 ms, generating a distribution of SDs for each channel. An
amplitude threshold was set to five times the median of SDs
(Staba et al., 2002; Liu et al., 2016b). A cHFO was defined if

1https://www.fil.ion.ucl.ac.uk/spm/

the envelope surpassed the amplitude threshold and lasted more
than 6 ms. The maximum envelope peaks of putative HFOs
separated by fewer than 20 ms were considered as one event.
According to the 1/f law, the amplitude of FRs was lower than Rs,
so we repeated the aforementioned procedures with 250–500 Hz
bandpass signals and detected extra events to form the final
cHFOs for further classification.

The cHFOs were extracted and epoched in 600 ms windows
centered on local envelope peaks, and the Morlet wavelet (central
frequency equals 1 Hz, and the full-width at half-maximum
equals 3 s) TF transform (1–500 Hz with step length equals 1 Hz)
was applied to generate the scalograms (Pantazis et al., 2005).
To decrease the impact of the 1/f spectrum on the scalogram,
we bandpass filtered the raw data with a first-order Butterworth
8–490 Hz while preserving most of the low-frequency features,
especially spikes from the raw traces, before the TF transform.
The raw power was log-transformed and smoothed for better
visualization as TF maps. We extracted the central 200 ms
window TF maps as the final training and classification dataset
to avoid edge effects during the TF transform. Considering the
typical duration of HFOs (6–30 ms) and interictal epileptiform
discharges such as spike (30–70 ms) and sharp wave (70–200 ms)
(Aanestad et al., 2020), we think that the 200 ms window
will sufficiently cover the whole spectrum characteristics of the
detected events.

After some trials on a small training and validation subset,
ResNet101 was finally chosen since it yielded the best results with
the least overfitting out of AlexNet, GoogLeNet, VGG-16 (Alom
et al., 2018). Four pretrained convolutional neural network
Resnet101 were trained through transfer learning as binary
classifiers with purposes of labeling artifacts, spikes, Rs and FRs
in sequence order. Details of Resnet101 can be found in He et al.
(2016). Transfer learning was implemented by replacing the last
3 layers of the pretrained ResNet101 to a new fully connected
layer, softmax layer and class-output layer in sequence. The whole
TF image datasets included 29,744 artifacts events against 68,988
non-artifacts events, 30,387 spike events against 23,452 non-spike
events, 38,447 R events against 22,152 non-R events, and 26,454
FR events against 27,695 non-FR events. The image dataset was
composed of a mix of real signals and simulated data described
below except that all the artifact TF images were generated from
real data. The main source of artifacts was electromyography
and sharp transients. The real training materials were extracted
from 12 consecutively selected drug-refractory epilepsy patients
in Beijing Tiantan hospital from June 2018 to July 2019 (detailed
clinical information is provided in Supplementary Table 1).
Two experienced reviewers worked independently to label the
events, and only those events with the same conclusion from both
reviewers were included in the dataset. We randomly divided
the data into training and validation datasets, using 80% of the
images for training and 20% for validation. The training process
used stochastic gradient descent with a momentum of 0.9. We
used cross entropy as a loss function. The minibatch size was
set to 32, max epochs to 3 and initial learning rate to 0.0001.
To further validate the robustness of the training process, we
repeatedly trained the network by using 70% and 90% of the
images for training and 30% and 10% for validation. The training
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processes were stopped manually when the loss/accuracy plateau
was reached to avoid overfitting, and the accuracies on the
test dataset were recorded. Theoretically, the four consecutive
classifiers would output 9 reasonable categories of labels, which
were artifacts, spike, R, FR, spike + R, spike + FR, spike + R +
FR, R + FR and other (defined by four negative predictions and
treated as artifacts). After event labeling, cHFO not concurrent
with artifacts were labeled quality HFO (qHFO).

HFOs Occurrence Rate Sorting and Imaging
The occurrence rate was normalized to the highest occurrence
rate channel. Normalized value assignment was performed
in every voxel included in the volume defined by a
9 × 9 × 9 mm cube model centered on each electrode

contact (David et al., 2011). The results were smoothed through
a [4 4 4] Gaussian kernel, which was overlayed on volumes. The
pipeline was developed in MATLAB 2018a (The MathWorks,
Inc., Natick, MA, United States) and illustrated in Figure 1.
Codes of the algorithms described in this paper, including the
trained neural network, are open-source and openly available2.

Evaluation of the Initial Detector Using
Simulated Data
The simulated dataset provided an ideal testing environment
featured by its artifact-free signals and well-controlled

2https://github.com/zhaobaotian/HFO_AI_Detector_Open

FIGURE 1 | Schematic illustration of the automatic analytical strategies. (A) Channel selection was performed to exclude electrodes located in white matter, showing
low-amplitude fluctuation and located outside brain (plotted in red). (B) Example of an unfiltered bipolar signal in a 400 ms window. (C) Signals were independently
subjected to 80 and 250 Hz high-pass filters and were then rectified (black trace) for envelope extraction (yellow trace). Thresholds (red trace) were calculated based
on the envelopes. Candidate HFOs were extracted by identifying envelopes surpassing the corresponding threshold of each channel. (D) Morlet wavelet transform
was applied to convert the epoched candidate HFO time series to time-frequency domain images, which were further used as input for the CNN classifiers.
(E) Example training and validation dataset used for the four binary CNN classifier training. (F) HFOs sorting based on the occurrence rate. The yellow bar suggested
the application of thresholding in HFOs occurrence rate that would be overlaid on the anatomical image. (G) The results were then projected to the anatomical
structures and shown as a heatmap illustrating the distribution of high-occurrence HFOs. CNN: convolutional neural network; HFOs: high frequency oscillations;
Spk: spike; R: ripple; FR: fast ripple.

Frontiers in Neuroscience | www.frontiersin.org 4 June 2020 | Volume 14 | Article 546

https://github.com/zhaobaotian/HFO_AI_Detector_Open
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-14-00546 June 2, 2020 Time: 20:39 # 5

Zhao et al. SEEG HFOs Detection

signal-to-noise ratios (SNRs) of HFOs. We adopted the
HFOs dataset simulated by Roehri et al. (2017) since it was
already tested against four state-of-the-art openly available
detectors, namely the Short Time Energy, the Short Line Length,
the Hilbert and the MNI detector from RIPPLELAB Toolbox
(Navarrete et al., 2016). Thus, the benchmarks of our detector
can be directly compared with those open detectors. Specifically,
the dataset included 960 channels lasting for 2 min with a
sampling rate of 2,048 Hz. Each channel contains 42 inserted
events of 7 different types: 1. spike; 2. spike cooccurring with
an R; 3. spike cooccurring with an FR; 4. spike cooccurring
with an R and an FR; 5. R; 6. FR; 7. R cooccurring with an
FR. Following the suggestions by the authors of the dataset,
we defined a 100 ms time window centered on each simulated
HFO as the CI. CIs containing detections were considered true
positives (TP), those without detections were defined as FN, and
detections falling outside CIs were labeled as FPs. We used the
precision (Precdetection) and sensitivity (Sensdetection) criteria as
well as the F1-score, which combines precision and sensitivity,
to characterize the detection performance over the SNRs. The
precision and F1-score were defined as 1 and 0, respectively,
when no event was detected (i.e. TP + FP = 0) in 0 dB channels.

Sensdetection =
TP

TP+ FN

Precdetection =
TP

TP+ FP

F1− score =
2TP

2TP+ FN+ FP

Testing Cohort and SEEG Recordings
Patients from Beijing Tiantan Hospital and Beijing Fengtai
Hospital following the criteria between October 2015 and
October 2017, were included in this analysis retrospectively: (1)
unifocal epilepsy confirmed by analysis of SEEG seizure onsets;
(2) surgical resection after the SEEG; (3) the sampling rate of
EEG amplifier >2000 Hz; and (4) postoperative Engel I with at
least a 24-month follow-up. Only Engel I patients were included
so that we could assume that the EZ was correctly identified.
This study was approved by the Ethics Board of the Beijing
Tiantan Hospital, Capital Medical University. Informed consent
was given by patients or their legal guardian/next of kin about the
use of data for research purposes.

The SEEG recording was carried out as part of the clinical
routine of the included patients. Intracerebral multiple contact
depth electrodes (Huake-Hengsheng Medical Technology,
Beijing, China; 8–16 contacts, length: 2 mm, diameter: 0.8 mm,
1.5 mm apart) were placed using a CRW frame-based system
(Integra Radionics, Burlington, MA, United States) to record
intracranial EEG data. The strategy for electrode placement,
independent from the present study, was based on noninvasive
information providing clinical hypotheses about the localization
of the EZ. Twenty-four hours after electrode implantation,
electrophysiological signals were recorded on a video EEG
system (Nihon-Kohden, Tokyo, Japan). Long-term SEEG
monitoring was carried out to record at least two habitual

seizures. The built-in antialiasing hardware bandpass filter of
the amplifier was set to 0.08–600 Hz for a 2000 Hz sampling
rate. Typical monitoring sessions lasted from 7 days up to
1 month. We randomly selected one 5–10 min clip from each
patient without selection of electrode contacts, patient’s state
(awake/sleep), or quality of recordings.

Concordance of HFOs Results and SOZ
In clinical situations, all the depth electrodes were implanted
according to the consensus reached during the phase I evaluation.
The medical history, scalp EEG, ictal semiology, structure MRI
and fluorodeoxyglucose-positron emission tomography were
reviewed and discussed. In all patients presented here, SOZ was
independently visually identified by two senior epileptologists
(Xiao-qiu Shao and Wen-han Hu) by reviewing and labeling
the channels with the earliest ictal discharge during recorded
seizures. The SOZ was taken as the gold standard guiding surgical
planning of resection in individual bases.

To evaluate the SOZ prediction ability of this algorithm,
sensitivity (SenSOZ), specificity (SpecSOZ) and ROC curve with
AUC were calculated and served as quantitative parameters.
Sensitivity and specificity were defined as (Burnos et al., 2014):

SensSOZ =
CHHFOin SOZ

CHHFOin SOZ+ CHNon−HFOin SOZ

SpecSOZ =
CHNon−HFOnot in SOZ

CHNon−HFOnot in SOZ+ CHHFOnot in SOZ

We manually set threshold to the first N channels with the highest
HFOs rate to be CHHFO and the rest to be CHNon−HFO. The ROC
curve was obtained by plotting the SenSOZ as a function of the
(1 - SpecSOZ) at each cutoff N, which was increased from one to
the number of total contacts in each patient with a step length of
one. The corresponding AUC of each patient was calculated using
the trapezoid method.

Although the accuracy of the four classifiers was evaluated
in the validation set, to further test their efficiency and
generalization ability in the clinical environment, we next
conducted an additional analysis with hypotheses in relation
to the automatic classifier that (1) the localization value of
HFOs could be enhanced by eliminating artifacts; (2) HFOs
co-occurring with spike have better predictive value for SOZ than
those without. (3) HFOs with FR are more closely related to SOZ
than those without.

RESULTS

Performance of the Initial Detector on
the Simulated Data Set
An accurate initial detector lays a solid foundation for the
integrated HFOs detection and classification framework. Taking
advantage of the well-established simulated HFOs dataset, we
were able to evaluate the overall performance of the initial
detector using the 3 metrics described in the “Materials and
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Method” section. As expected, the performance of the automatic
detector increased with SNRs. The median and range of
sensitivity, precision and F1-score for different SNRs were 0 dB
[5.56%, 0–33.3%], 5 dB [44.44%, 8.33–86.11%], 10 dB [94.44%,
66.67–100%], 15 dB [97.22%, 91.67–100%]; 0 dB [100%, 0–100%],
5 dB [95.12%, 66.67–100%], 10 dB[97.14%, 85.71–100%, 15 dB
[97.22%, 87.50–100%]; 0 dB [0%, 0–48.98%], 5 dB [59.45%,
15.00–92.54%], 10 dB [94.44%, 79.37–100%], 15 dB [97.22%,
91.89–100%], respectively. The results suggest satisfactory and
stable accuracy of the initial detector, especially when the SNR
was high (10 dB and 15 dB). The distributions of the sensitivity,
precision and F1-score of different SNRs are shown in Figure 2.
Generally speaking, our initial detector outperformed the Short
Time Energy, the Short Line Length, the Hilbert and the MNI
detector from RIPPLELAB Toolbox and was comparable with
Delphos detector (Roehri et al., 2017).

Classification Accuracy of the Trained
CNN Classifiers
Four Resnet101 networks, namely, artifacts, spike, R and FR
classifiers, were trained. The loss function generally converged
quickly, and the loss/accuracy plateaus were reached after
2–3 epochs. Specifically, after the last iteration, the prediction
accuracies in the validation set for artifacts, spike, R and
FR classifiers of different training/validation split ratios were
summarized in Table 1. It is worth noting that we divided
the whole dataset into training and validation groups rather
than training, validating and testing groups since we adopted a
pretrained ResNet-101 network, which did not require intensive
structure modification or hyperparameter tuning during training
and validation processes. The training process showed robustness
across different split ratio and no overfitting problem occurred.

Demographics and HFOs Detection and
Classification Results of the Testing
Cohort
In general, 20 consecutive patients (4 female) met the inclusion
criteria and were included as the testing cohort. Their
pathological results varied, including hippocampal sclerosis,
focal cortical dysplasia and tuberous sclerosis complex (TSC).
Detailed demographics and clinical information are provided
in Supplementary Table 2. In total, 2,048 channels (mean
102.4, range 57–187) were fed into the pipeline, and the mean
duration of interictal clips for each patient was 9.2 min (range
4.2–11.7 min) for each subject. Based on the channel inclusion
criteria automatically implemented by the algorithm, 142 (6.9%),
254 (12.4%) and 22 (1.1%) channels were identified as outside
the brain, inside white matter and with extreme amplitude values,
respectively, which were excluded from further analysis. A total of
125,567 cHFOs were detected during the first stage. The detailed
detection and classification outputs are provided in Table 2.
Representing example figures of the labeled artifact, spike + R,
spike + R + FR can be found in Figure 1D.

Concordance Between Labeled HFOs
and SOZ
To a large extent, the ultimate goal for any HFO detector is to
provide interpretable results revealing EZ; therefore, we decided
to compare the concordance between labeled HFOs and SOZ
with the dual purpose of validating the classification results
against the assumptions based on previous studies and further
evaluating the diagnostic ability of this detector for identifying
the EZ in a real dataset.

FIGURE 2 | Performance of the initial detector tested on an open simulation dataset. The three metrics were calculated as sensitivity (A), precision (B) and F1 score
(C) for different SNRs. The violin plots show the range (minimum to maximum) and distribution of the data. The black dots represent the median values. Different
color indicates different SNRs groups. SNRs: signal-to-noise ratios; Sensdetection: sensitivity of the initial detection; Precdetection: precision of the initial detection.
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TABLE 1 | Training results of different split ratios for ResNet101 classifiers.

Classifiers Accuracies from different
training/validation split ratio

70% 80% 90%

Artifacts 98.98% 99.03% 99.18%

Spike 97.93% 98.11% 98.12%

Ripple 95.65% 95.97% 95.99%

Fast ripple 96.46% 96.55% 96.71%

SOZ channels were visually marked by capturing the earliest
ictal epileptic discharges identified by neurologists in 20 patients
based on at least one ictal SEEG. In total, 127 channels (mean
6.4, range 1–14) were labeled as SOZ, and detailed SOZ channel
information can be found in Supplementary Table 2. Instead of
thresholding and simply comparing the overlap between HFO
channels and SOZ channels, we chose to calculate the ROC curves
and corresponding AUC value for each subject, representing the
ability for SOZ localization of this algorithm.

AUC values for different representative event types were
compared at the group level. The median (interquartile range)
of AUC values for cHFOs and qHFOs were 0.979 (0.106)
and 0.988 (0.080) (p = 0.0043, Wilcoxon signed-rank test),
suggesting the effect of artifact removal on improving the
localization value. After excluding all artifact events, qHFOs
with spike versus qHFOs without spike exhibited significant
differences (p = 0.0111, Wilcoxon signed-rank test) and the
corresponding median (interquartile range) of AUC values were
0.964 (0.073) and 0.899 (0.184), indicating a better prediction
value of qHFOs with spike than those without for identifying
the EZ. Likewise, we further compared the localization value
of qHFO with FR and without, and the median (interquartile
range) of AUC values were 0.964 (0.086) and 0.974 (0.087),
respectively. The comparison result was statistically insignificant
(p = 0.4209, Wilcoxon signed-rank test). See Figure 3 for the
statistic comparisons above. We speculate that this phenomenon
might partially be attributed to the ceiling effect since the AUC
values clustered close to 1 in those 2 groups as well as the theory
that FR were generated by more restricted regions compared
to ripples (Bragin et al., 2002; Gonzalez Otarula et al., 2019).
Although the difference was not significant, separating qHFOs
with FR largely increased the two lowermost AUC values from
0.624 and 0.662 to 0.840 and 0.840, resulting in higher mean AUC
values for qHFOs with FR.

Next, we sought to compare the proportion of qHFOs with
FR outside and inside SOZ. We hypothesized that the proportion
of qHFOs with FR was higher inside SOZ than outside qHFO
channels based on previous studies. The results illustrated in
Figure 4 confirmed our hypothesis (mean ± SD: 0.503 ± 0.202
versus 0.327 ± 0.146, p = 0.0005, paired t-test). The above
significant differences still existed after Bonferroni correction
for multiple comparisons. To present an intuitive imaging
illustration of the efficacy of classification, we plotted the density
map of the HFOs rate on the glass brain in Montreal Neurological
Institute space without thresholding as Figure 5.

DISCUSSION

Even HFOs have been recognized as a promising biomarker
for identifying the EZ in recent years, analysis of HFOs is
still challenging, mainly due to their usual low signal-to-noise
ratio, their heterogeneous patterns and their association with
other epileptic activity (Thomschewski et al., 2019). Automatic
detection of HFOs has a considerable advantage over visual
marking in terms of efficiency. Different algorithms, such as
the short-time energy detector (Staba et al., 2002), the short
line length detector (Gardner et al., 2007), the Hilbert detector
(Crepon et al., 2010), and the Montreal Neurological Institute
detector (Zelmann et al., 2012), have been published and are
publicly available through the RIPPLELAB Toolbox (Navarrete
et al., 2016); however, many publicly available detectors face
challenges such as artifact contamination and the lack of
robustness across different situations (i.e. low inter-method
reproducibility), which impede their clinical implementation
(Frauscher et al., 2017). To narrow the gap between HFOs
analysis and clinical EZ localization, we designed an integrated
pipeline imitating the current workflow of HFOs analysis. We
have also systematically validated the performance of our detector
in simulated datasets and real datasets. Features of the proposed
pipeline include (1) channel selection based on anatomical
localization and RMS to exclude flat channels and minimize
the influence of artifacts; (2) automatic detection of cHFO
through filtering and amplitude thresholds followed by labeling
detected events with tags of spike, R and FR using a deep
convolutional neural network in a supervised manner; and (3)
visualization of high-rate HFOs channel distribution projected
on brain structures.

Many automatic and semiautomatic algorithms have been
developed and have shown promising results. However, apart
from those flourishing studies, researchers should still be cautious
about the sensitivity and specificity of their SOZ localization
values. Part of the reason could be attributed to the lack of
a gold standard for identifying HFOs. A working definition
is that oscillatory activities in a frequency band from 80 to
500 Hz clearly stand out from the baseline signal and persist
for at least four oscillation cycles. This definition may provide
practical guidelines for the manual identification of HFOs;
however, it lacks specific parameters needed for designing
automatic detectors (Roehri et al., 2017). In addition, the
literature constantly indicates that manual labeling can act as
the gold standard (Amiri et al., 2016; Zuo et al., 2019), but
manual labeling has been questioned in terms of subjective
bias and interrater reliability. Here, as the base of our initial
detector, we adopted a traditional yet feasible definition by Anatol
Bragin et al. that successive RMS values with amplitudes of 5
SDs above the mean amplitude of the RMS signal longer than
6 ms in duration (Staba et al., 2002) with subtle modification
as described in the “Materials and Method” section. As was
discussed in the paper by Roehri et al. (2017), it was challenging to
directly compare the performance between detectors because of
the lack of gold standard, therefore, they proposed a benchmark
framework and an openly available simulated dataset to ease the
problem. The reason we choose the simulated dataset to validate
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TABLE 2 | Detection and classification results and the AUC values regarding SOZ of 20 testing patients.

Patient Clip
duration

(min)

Channel selection Event classification AUC values

Total WM OB EV Total Art./others Spk R FR Spk + R Spk + FR Spk + R + FR R + FR cHFOs qHFOs qHFOs w/FR

01 9.7 121 13 9 0 15865 743 196 1970 21 9081 44 3770 40 0.764 0.764 0.757

02 11.7 120 17 6 7 10403 3655 32 1874 107 1633 28 2276 798 0.956 0.980 0.962

03 5.0 81 13 2 1 2482 71 26 469 5 694 9 1154 54 0.946 0.946 0.949

04 7.0 115 22 2 2 981 92 29 63 11 278 68 432 8 0.996 1.000 0.992

05 9.6 136 16 12 2 643 211 3 137 6 131 3 142 10 0.998 0.998 1.000

06 10.8 58 2 7 0 10427 1267 30 392 288 2568 209 5424 249 0.855 0.893 0.889

07 4.5 100 5 10 0 4435 781 52 476 161 777 210 1815 163 1.000 1.000 1.000

08 4.2 70 5 2 2 2781 495 47 284 66 624 77 1130 58 0.920 0.946 0.939

09 11.3 111 8 11 0 6338 2580 37 330 72 1632 30 1606 51 0.989 0.991 0.993

10 10.1 76 8 9 0 2755 682 52 600 45 530 81 693 72 0.973 0.997 0.995

11 9.7 104 17 7 0 4131 492 12 2771 14 417 5 364 56 0.633 0.658 0.840

12 9.7 100 19 7 0 1757 110 19 663 2 462 11 462 28 1.000 1.000 0.945

13 10.8 60 2 4 1 5074 912 53 2509 58 1283 5 142 112 0.980 0.987 0.967

14 6.7 187 27 10 2 9085 832 68 2273 143 2692 218 2658 201 0.985 0.986 0.926

15 10.2 126 17 8 2 11256 1367 136 1095 96 3291 187 4905 179 0.990 0.989 0.993

16 11.1 105 15 12 1 10709 323 108 1366 148 5344 59 3207 154 0.791 0.782 0.840

17 11.2 128 8 7 0 10717 222 58 2529 11 5153 17 2612 115 1.000 0.998 0.981

18 11.1 57 12 4 0 9657 442 230 598 21 3898 108 4296 64 0.992 1.000 0.992

19 11.0 118 11 8 1 4215 1677 19 583 18 1161 7 717 33 0.775 0.839 0.839

20 9.5 75 17 5 1 1856 369 4 80 5 289 7 1089 13 0.978 1.000 1.000

Total 184.8 2048 254 142 22 125567 17323 1211 21062 1298 41938 1383 38894 2458 / / /

WM: channels identified in white matter; OB: channels identified outside brain; EV: channels including extreme amplitude values; Art.: artifacts; Spk: Spike; R: ripple; FR: fast ripple; cHFOs: candidate high frequency
oscillations; qHFOs: quality high frequency oscillations; AUC: area under the curve.
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FIGURE 3 | ROC curves and AUC values of different event types in the testing cohort. ROC curves were plotted for each patient comparing cHFOs and qHFOs, (A)
qHFOs with and without spike (B) and qHFOs with and without FR (C). The corresponding AUC values were calculated with the trapezoid method. Significant
differences were found between cHFOs and qHFOs (p = 0.0043, Wilcoxon signed-rank test) (D), qHFOs with and without spike (p = 0.0111, Wilcoxon signed-rank
test) (E), but not qHFOs with and without FR (p = 0.4209, Wilcoxon signed-rank test) (F). *p < 0.05, **p < 0.01. ROC: receiver operating characteristic; AUC: area
under the curve; HFOs: high frequency oscillations; cHFO: candidate HFOs; qHFOs: quality HFOs; FR: fast ripple; w/: with; w/o: without.

our initial detector is that there are benchmarks of four openly
available detectors based on this dataset and we can directly
compare our detector with others. To evaluate the initial detector
in a systematic manner, we tested our initial detector using
the simulated dataset, and the performance was satisfactory,
especially when the SNRs were high and robust compared
with other four state-of-the-art openly available detectors from
RIPPLELAB Toolbox (Navarrete et al., 2016).

Even though the performance was inspiring in the simulated
dataset, we should keep in mind that the real dataset might
be complicated, containing artifacts, physiology HFOs and
pathological HFOs with various patterns (Engel et al., 2009;
Kovach et al., 2011; Cimbalnik et al., 2018). Therefore, the
clinical translation of HFOs as a biomarker of EZ has been
largely limited by the ability to reliably detect and accurately
classify HFOs (Khadjevand et al., 2017). With the purpose of
improving the specificity of HFOs for indicating EZ, endeavors
have been made to distinguish events of interest. For example,
Fabrice Wendling et al. used a similar two-stage approach to
detect events of interest and identify FRs based on parameters
extracted from Fourier transform or wavelet transform (Birot
et al., 2013). Taking advantage of multiple handcrafted features

such as power band ratio, spectral centroid, and entropy, Su
et al. successfully divided HFOs candidates into several clusters
based on unsupervised clustering algorithms, which increased
the accuracy for pathological HFOs detection (Liu et al., 2018).
In this study, we aimed at improving this situation using four
well trained CNN classifiers after initial detection. To be specific,
in the testing dataset from real patients, we termed the detected
events from initial detector as cHFOs, which indicated that they
cannot be directly deemed as HFOs without further artifacts
rejection. As can be seen from Table 2, there were 13.80% false
HFOs and they could make a big difference in the final results.
The trained classifiers successfully improved the localization
value of HFOs for SOZ by rejecting those artifacts. The SOZ
localization value was further improved after the FR classifier was
applied, suggested by the increased AUC values.

Clinically, physicians tend to use high-pass filtering of EEG
signals to suppress background activity and highlight some
oscillations in the frequency band of interest. However, both
HFOs and sharp transients may be represented as in Amiri
et al. (2016); in this scenario, it is often helpful to overview
the broadband signal or the time-frequency scalogram, which
manifests the full spectral characteristics of the HFO event,
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FIGURE 4 | Percentage of qHFOs with FR inside and out of SOZ. The
percentage of qHFOs with FR was significantly higher inside SOZ than outside
(p = 0.0005, paired t-test). HFOs: high-frequency oscillations; FR: fast ripple;
SOZ: seizure onset zone; qHFOs: quality HFOs.

FIGURE 5 | HFOs imaging plotted on a glass brain in Montreal Neurological
Institute space showing (A) the automatic labeled gray matter depth electrode
coverage; (B) the spatial distribution of cHFOs; (C) the distribution of qHFOs
and the spatial distribution of qHFOs with FR (D). It can be seen from the
figures that with classification, the result was more specific and localized,
indicating SOZ. No thresholding was used in the above figures. The intensity
bar represents the min-max normalized HFOs occurrence rates. HFOs: high
frequency oscillations; cHFO: candidate HFOs; qHFO: quality HFOs; FR: fast
ripple; SOZ: seizure onset zone.

for categorization tasks. Inspired by current clinical workflows
and different from unsupervised clustering, we chose the CNN
model as our classifier, reflecting the idea from data to decisions.
The development of machine learning in recent years has heavily

emphasized and benefited from CNN, which was originally
designed to handle object classification tasks. Across multiple
layers, these networks extract features from low levels to higher
levels, often described as end-to-end and inspired by the
brain recognition process (Di Carlo and Cox, 2007). Among
different CNN architectures, ResNet101 mitigates the problem
of vanishing gradient resulting from improper hyperparameter
tuning and the increased stacked layers by skip connections,
and it is also actively chosen for computer vision tasks for its
ability to generalize well to different datasets and problems (Wu
et al., 2019). In contrast to handcrafted feature-based clustering,
a deep learning neural network can automatically extract features
and perform classification tasks. The key of this classification
algorithm was to gather enough representative events as training
materials so that the classifier can be trained toward good
generalization ability. Because the imbalance distribution of
different event types was shown in the results, it was more
feasible to train four binary CNN classifiers rather than one
multiclass classifier. Using transfer learning, it was possible to
train a more generalized deep neural network for classification
with limited samples.

The issue with the TF scalogram is that the low-frequency
component may make HFOs less visible given specific settings
because of the 1/f spectrum law. Researchers have designed
various strategies, such as autoregressive integrated moving
average, Teager-Kaiser operator energy and H0 z-score (Roehri
et al., 2016) to flatten the spectrum. Here, we arbitrarily
performed 8 Hz high-pass filtering of the raw trace and then
log-transformed the raw energy. The spectrum was whitened,
while most low-frequency components were preserved under
such settings. In scalograms, true HFOs are visible as isolated
“blobs” in the time-frequency plane, while the pure spike and
the transient sharp artifact produce a single elongated shape
with no visible band-limited blobs (Benar et al., 2010). During
the manual labeling period, it was sometimes challenging to
discern HFOs when the spikes co-occurred. We tended to check
the raw and high-pass filtered trace as supplementary proof for
visual classification. Based on the combined manually labeled and
simulated dataset, the training and validation results of the four
ResNet101 classifiers showed robust accuracies above 95% across
different split ratios. The four successfully trained classifiers laid
solid foundation for improving the localization value of HFOs.

After the classifiers were trained properly, we sought to
further validate the classification performance in 20 real patients
against 3 assumptions, which could be safely drawn from
previous studies: (1) the EZ localization capability could be
enhanced by removing artifacts and false HFOs (Benar et al.,
2010); (2) HFOs cooccurring with spikes had higher localization
value than those without (Wang et al., 2013; Weiss et al.,
2016; Wang et al., 2017), and (3) FRs were more closely
related to the EZ (Engel et al., 2009; Gonzalez Otarula et al.,
2019). By labeling cHFOs, our detector successfully verified
the assumptions concluded from previous studies. In addition,
we demonstrated that the AUC values of qHFOs and qHFOs
with FR clustered near 1. In the qHFOs with FR group, 19
out of 20 AUC values were above 0.8, and 15 were above
0.9. The results suggested the excellent ability to predict SOZ
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channels using the classified HFOs rate. Poor concordance was
found in two TSC patients, reflecting the multifocal nature and
a complex widespread epileptic network in patients with TSC
(Okanishi et al., 2014).

Aside from artifact removal, it was also important to separate
pathological HFOs and physiological HFOs. Previous studies
suggest that they could be distinguished based on their frequency
band, their co-occurrence with interictal epileptiform discharges
(Wang et al., 2013; Jacobs et al., 2016), their stereotyped
morphology patterns and their spatial distribution (Liu et al.,
2018). Therefore, successful classification of HFOs with FR or
co-occurring with other interictal epileptiform discharges such as
spike may help improve the specificity of HFOs in delineating EZ,
which could be achieved through our algorithm.

Detection and classification algorithms tend to be optimized
for recording a specific group with limited diversity in
epilepsy syndromes, which is true for this automatic pipeline.
Validation on a larger cohort from a multicenter is needed to
better evaluate the prediction performance of this algorithm.
Furthermore, because of the sophisticated design, this algorithm
is computationally expensive compared with other detectors.

In this paper, we proposed an integrated pipeline for
automatic detection, classification and imaging of HFOs with
SEEG. Our initial detector demonstrated robust detection
results on a comprehensive simulated dataset. The CNN-based
classifiers achieved satisfactory accuracy, and their generalization
ability was also validated in an extra real patient cohort.
Thus, the proposed detection method dramatically decreased
the workload in assessing the presence of HFOs in SEEG
while providing straightforward interpretable results for
surgical planning.
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